
Institut für Systemarchitektur
Fakultät Informatik

Automation of The SLA Life Cycle in Cloud

Computing

A Thesis Submitted in Partial Fulfilment of
the Requirements for the Award of the Degree of

Ph.D. (Dr.-Ing.)

from

TECHNISCHE UNIVERSITÄT DRESDEN

by

Waheed Aslam Ghumman M.Sc.
Born on 23.01.1981 in Kasur, Pakistan

Scientific Advisers:
Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill TU Dresden, Germany
Prof. Dr.-Ing. habil. Martin Wollschlaeger TU Dresden, Germany
Prof. Dr. Jörg Lässig Hochschule Zittau/Görlitz

Dresden, December 06, 2016

DECLARATIONS

1. I, Waheed Aslam Ghumman, hereby assure that I created the present work
without inadmissible help of third parties and without use of other aux-
iliary means than those specified; thoughts that are directly or indirectly
taken over from other sources are marked as such.

2. At the selection and evaluation of the material, as well as at the prepa-
ration of the manuscript, I did not receive supporting services from any
other person or third party except those specified clearly.

3. Additional persons have not been involved at the mental creation of the
presented work. In particular, I did not make use of the assistance of a
commercial dissertation consultant. Third-parties did neither directly nor
indirectly receive benefits of pecuniary value for works that are related to
the content of the present dissertation.

4. Up to now, neither in Germany nor in any other country the work has
been presented in this or a similar form to another examination agency,
and it has not yet been published either except the one mentioned clearly.

5. I confirm that I acknowledge the applicable doctorate regulations of the
Fakultät Informatik, Technische Universität Dresden.

Dresden, December 06, 2016 Signature (Waheed Aslam Ghumman)

Dedicated to

my father, mother, sisters, brother, wife and to my son Rafey.

Acknowledgements

First of all, I would like to express my special gratitude and thank
to my supervisor Prof. Alexander Schill for continuously motivat-
ing me to complete this thesis. His timely guidance, expression
of belief in my work and optimistic behavior during our meetings
has played a vital role to accomplish this work. I would like to
thank Prof. Jörg Lässig for giving me the opportunity of carrying
out initial research under his supervision. I would like to thank
all of my colleagues at Hochschule Zittau/Görlitz especially Ab-
hishek Awasthi, Markus Ullrish, Nico Dittmann, Andreas Schulz,
Jens Heider and Daniel Tasche for their suggestions and for cre-
ating a friendly working environment. I would also like to thank
Mrs. Romy Jarschel, Dr. Marius Feldmann and Dr. Tenshi Hara
for their help and support related to administrative tasks and for
making arrangements of research trips.
A special thank to my parents for their hard work throughout their
life to support me, to educate me and to sacrifice their leisures for
my bright future. Words are not sufficient to express their kind-
ness, love and guidance. I would like to greatly thank my beloved
wife Mrs. Qurat Ul Ain Waheed for her selfless support, motiva-
tion and love which has been a great influence on my professional
work. Finally, I feel truly blessed to have my son Muhammad
Rafey Waheed Ghumman in my life who is always a source of
amusement and a motivation to work hard.

Thanks to all of you.
Waheed Aslam Ghumman

ABSTRACT

Cloud computing has become a prominent paradigm to offer on-
demand services for softwares, infrastructures and platforms. Cloud
services are contracted by a service level agreement (SLA) between
a cloud service provider (CSP) and a cloud service user (CSU)
which contains service definitions, quality of service (QoS) param-
eters, guarantees and obligations. Cloud service providers mostly
offer SLAs in descriptive format which is not directly consumable
by a machine or a system. The SLA written in natural language
may impede the utility of rapid elasticity in a cloud service. Man-
ual management of SLAs with growing usage of cloud services
can be a challenging, erroneous and tedious task especially for the
CSUs acquiring multiple cloud services. The necessity of automat-
ing the complete SLA life cycle (which includes SLA description
in machine readable format, negotiation, monitoring and manage-
ment) becomes imminent due to complex requirements for the pre-
cise measurement of QoS parameters. Current approaches toward
automating the complete SLA life cycle, lack in standardization,
completeness and applicability to cloud services. Automation of
different phases of the SLA life cycle (e.g. negotiation, monitoring
and management) is dependent on the availability of a machine
readable SLA. In this work, a structural specification for the SLAs
in cloud computing (S3LACC in short) is presented which is de-
signed specifically for cloud services, covers complete SLA life cycle
and conforms with the available standards. A time efficient SLA
negotiation technique is accomplished (based on the S3LACC) for
concurrently negotiating with multiple CSPs. After successful ne-
gotiation process, next leading task in the SLA life cycle is to
monitor the cloud services for ensuring the quality of service ac-
cording to the agreed SLA. A distributed monitoring approach for
the cloud SLAs is presented, in this work, which is suitable for
services being used at single or multiple locations. The proposed
approach reduces the number of communications of SLA violations
to a monitoring coordinator by eliminating the unnecessary com-
munications. The presented work on the complete SLA life cycle
automation is evaluated and validated with the help of use cases,
experiments and simulations.

Table of Contents

List of Tables . iv
List of Figures/Illustrations vi

1 Introduction 1
1.1 Cloud Computing 1

1.1.1 Essential Characteristics 2
1.1.2 Service Models 3

1.2 Service Level Agreements and Legal Contracts . . . 4
1.3 SLA Life Cycle . 5
1.4 Motivation . 6
1.5 Thesis Vision, Objectives and Scope 8

1.5.1 Vision and Objectives 8
1.5.2 Scope . 9

1.6 Summary and Thesis Structure 10

2 State of The Art 12
2.1 SLA Specifications and Languages 13

2.1.1 WSLA, Keller & Ludwig, 2003 13
2.1.2 SLAng, Lamanna et al., 2003 & 2004 15
2.1.3 WS-Agreement, Andrieux et al., 2007 17
2.1.4 SLA*, Kearney et al., 2010 18
2.1.5 CSLA, Kouki et al., 2014 20
2.1.6 SLAC, Uriarte et al., 2014 22

2.2 Negotiation Techniques and Preliminaries 24
2.3 SLA Negotiations 26

2.3.1 SLA Negotiation Model Setups 27
2.3.2 Concurrent Negotiations in Cloud-Based Sys-

tems, Siebenhaar et al., 2012 28

i

TABLE OF CONTENTS ii

2.3.3 Optimal Negotiation of Service Level Agree-
ments for Cloud-Based Services through Au-
tonomous
Agents, Yaqub et al., 2014 29

2.3.4 An Autonomous Time-Dependent SLA Ne-
gotiation Strategy for Cloud Computing, Dast-
jerdi & Buyya, 2015 31

2.4 SLA Monitoring, Management and SLA Life Cycle 33
2.4.1 Low Level Metrics to High Level SLAs - LoM2HiS

Framework: Bridging the Gap Between Mon-
itored Metrics and SLA Parameters in Cloud
Environments, Emeakaroha et al., 2010, 2012 34

2.4.2 SLA Management and SLA Life Cycle in
General . 36

2.5 Summary . 36

3 Structural Specification of SLAs in Cloud Comput-
ing (S3LACC) 38
3.1 Preliminaries, SLOs and Metrics 39
3.2 Requirements for SLA Specification 40

3.2.1 Composition 40
3.2.2 Common Template for Service User and Ser-

vice Provider 41
3.2.3 Dependency 42
3.2.4 Scope of The SLA Specification 42

3.3 Proposed SLA Specification - S3LACC 43
3.3.1 S3LACC Overview 43

3.4 Service Description 45
3.5 Service Level Objectives (SLOs) 47

3.5.1 Metrics . 48
3.6 Guarantees / Obligations 52
3.7 S3LACC Framework 53
3.8 Use Case . 54
3.9 Summary . 57

4 Automated SLA Negotiation 58

TABLE OF CONTENTS iii

4.1 Negotiation Protocol 59
4.2 The Flip-Flop Negotiation Strategy and its Building

Blocks . 63
4.2.1 Time Based 3D Linear Utility Function . . . 63
4.2.2 Concession Computation using Polynomial

Interpolation 67
4.2.3 Flip-Flop Negotiation Strategy 69

4.3 Multi-Provider Concurrent Negotiations 73
4.4 Experimental Verification 74
4.5 Summary . 79

5 Automated SLA Monitoring 81
5.1 Introduction and Motivation 81
5.2 Distributed Monitoring of the Cloud SLAs 82
5.3 Distributed Monitoring of Cloud SLAs Using Par-

tial Violations . 85
5.4 Implementation and Experimental Verification . . . 88

5.4.1 Experimental Validation Using Monitoring
Simulation 88

5.5 Summary . 94

6 Implementation, Comparative Analysis and Con-
clusions 96
6.1 Introduction . 96
6.2 Implementation . 97

6.2.1 Prototype 99
6.3 Comparative Analysis 104

6.3.1 Comparative Analysis of S3LACC with Re-
lated Work 105

6.3.2 Comparative Analysis of Flip-Flop Negotia-
tion with Related Work 107

6.3.3 Comparative Analysis of the Proposed Mon-
itoring Approach with Related Work 110

6.4 Conclusions and Scientific Contributions 111

References 121

List of Tables

3.1 Example of requirements for the availability SLO
and its multiple metrics 41

3.2 Example of S3LACC based SLA for the scenario
described in Section 3.8 (Part 1/2) 55

3.3 Example of S3LACC based SLA for the scenario
described in Section 3.8 (Part 2/2) 56

4.1 Example data for the availability percentage metric
with effect of Tε on utility level 66

4.2 Example metric data for Experiment 1 75
4.3 Negotiation Service (NS) data for Experiment 1,

one NS is created for one provider 75
4.4 Data for first CSP (NS1) for Experiment 1 76

5.1 Example data . 87
5.2 Experiment data and results with 4 SLOs 91
5.3 Experiment data and results with 8 SLOs 91
5.4 Experiment data and results with 20 SLOs 93

6.1 Comparative analysis of S3LACC framework with
other approaches 105

iv

List of Figures

1.1 Cloud computing overview 3
1.2 Service level agreement between a cloud service user

and a cloud service provider 5
1.3 An overview of SLA life cycle 6

2.1 WSLA meta model 14
2.2 Agreement structure 18
2.3 Agreement template structure 18
2.4 Overview of the service discovery, offer and agreement 19
2.5 Structure of SLA and SLA Template in SLA* . . . 20
2.6 Variable model (1− n) with no broker 28
2.7 Variable model (1− n) with broker 28
2.8 An overview of concurrent negotiation architecture 28
2.9 LoM2HiS Framework Architecture 35

3.1 S3LACC transformation process from SLA template
to the final SLA . 44

3.2 UML representation of SLA structure in S3LACC . 45
3.3 An overview S3LACC framework 53

4.1 Negotiation protocol based on alternating offer model 62
4.2 Example of time based 3D linear utility function . . 67
4.3 Concession computation γj(Tu) if Vj,w > V b−→a

j,q . . . 69
4.4 Concession computation γj(Tu) if Vj,w ≤ V b−→a

j,q . . . 69
4.5 Flip-flop negotiation strategy flowchart 72
4.6 Experiment 1: comparison agreement utility for ne-

gotiation using flip-flip and without flip-flop 77
4.7 Experiment 2: comparison agreement utility for ne-

gotiation using flip-flip and without flip-flop 77

v

LIST OF FIGURES vi

4.8 Comparison of time taken to reach an agreement for
Experiment 2 . 78

4.9 Experiment 3: comparison agreement utility for ne-
gotiation using flip-flip and without flip-flop 78

5.1 Classical distributed monitoring model for cloud SLAs 83
5.2 UML representation of monitoring simulation setup 89
5.3 Experiment to evaluate the proposed method for

number of communications for 4 SLOs 92
5.4 Experiment to evaluate the proposed method for

number of communications for 8 SLOs 92
5.5 Experiment to evaluate the proposed method for

number of communications for 20 SLOs 94

6.1 UML diagram of SLA Structure in S3LACC (Met-
ric class is collapsed in this diagram due to space
limitation, which is expanded in next Figure) . . . 97

6.2 UML diagram of SLA Structure in S3LACC with
metric and related classes expanded 98

6.3 Web interface for the negotiation simulation exper-
iments to compare the flip-flop negotiation strategy
with a simple negotiation strategy. 99

6.4 Results of the negotiation simulation based on the
parameters provided in the Figure 6.3. 100

6.5 Web interface for the monitoring simulation exper-
iments to evaluate the partial violation monitoring
method. 101

6.6 Results of the monitoring simulation based on the
parameters provided in the Figure 6.5. 102

Chapter 1

Introduction

1.1 Cloud Computing

Cloud computing is a type of computing in which resources are
provided on demand as a service over the Internet. The term
‘cloud’ is generally used to denote an aggregation of objects that
visually appears as a single entity and that hides its internal detail.
Cloud computing has been defined by many authors, i.e. [1, 2, 3]
with slightly varying definitions. L. M. Vaquero et al. [3] give the
following definition of cloud computing:

“Clouds are a large pool of easily usable and accessi-
ble virtualized resources (such as hardware, development
platforms and/or services). These resources can be dy-
namically reconfigured to adjust to a variable load (scale),
allowing also for an optimum resource utilization. This
pool of resources is typically exploited by a pay-per-use
model in which guarantees are offered by the Infrastruc-
ture Provider by means of customized service level agree-
ments (SLAs)”.

The earliest known use of term ‘cloud computing’ dates back to
1996 when it was used in one of the Compaq’s internal document.
More common initial usage of term ‘cloud computing’ is consid-
ered to be in 2006 when Google and Amazon started describing
cloud computing as a new paradigm of accessing software, data and
compute services over the web rather than on local machines or
desktops. Although, most active research and development work

1

1.1. Cloud Computing 2

on cloud computing had started in 2007/2008 [4, 5, 6, 7]. However,
a standardized definition by the National Institute of Standards
and Technology’s (NIST), USA was released in 2011 [8] as in the
following:

“Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly
provisioned and released with minimal management ef-
fort or service provider interaction”.

1.1.1 Essential Characteristics

Cloud computing can be described as having the following essen-
tial characteristics based on above definitions, recommendations
by NIST [8] and common understanding among researchers, cloud
providers and users:
On demand service: A cloud service should be available to a
cloud service user as and when needed. The user should be in-
dependently able to provision cloud services according to its need
without human intervention on cloud service provider side.
Broad network access: Cloud computing resources should be
accessible to heterogeneous platforms (e.g. mobile phones, laptop,
workstation or tablets) over the standard network protocols.
Resource pooling: A cloud service should be able to securely
serve multiple cloud service users by using same physical resource
and virtually separating the resource on logical level for each user.
Rapid elacticity: The resources in cloud service should be easily
scalable rapidly as needed, i.e. cloud service capabilities should
be elastic with respect to user’s needs to ensure efficient usage of
cloud resources.
Measured service: Cloud service should be transparently mea-
surable and billable, or in more general terms pay-as-you-go.

1.1. Cloud Computing 3

1.1.2 Service Models

Cloud computing services are generally categorized into the fol-
lowing three service models:
Infrastructure as a Service (IaaS): In this most basic cloud
service model, computing infrastructure is provided as a service
over the Internet, i.e. datacenter infrastructures, storage, virtual-
ized or dedicated servers, network services (e.g. firewalls) or com-
pute servers. So, rather than purchasing costly hardware, comput-
ing infrastructure is used as a cloud service and usage payments are
made as that infrastructure is used. Examples of IaaS are Ama-
zon Elastic Compute Cloud (EC2), RackSpace, VMware, Google
Cloud Storage etc.

Platform as a Service (IaaS): In this cloud service model,

Figure 1.1: Cloud computing overview

a platform is offered as a service in which cloud user may devel-
op/program, test or deploy a program, an application or a web
service. Examples of PaaS are Google App Engine, Heroku, Red
Hat’s OpenShift etc.
Software as a Service (SaaS): In this service model, a soft-

1.2. Service Level Agreements and Legal Contracts 4

ware application is offered as a service through a client interface.
The service user does not control or manage the underlying infras-
tructure, i.e. storage or operating system. Examples of SaaS are
Google Apps, Salesforce, YahooMail etc.
An overview of cloud computing is shown in Figure 1.1 in which
different users (A,B, C and D) may access different cloud services
(IaaS, PaaS and/or SaaS) by using different devices or interfaces.

1.2 Service Level Agreements and Legal Con-

tracts

A service level agreement (SLA) is part of a contract between
a cloud service provider (CSP) and a cloud service user (CSU)
which defines and describes different agreed properties of the ser-
vice. These properties are usually the quality of service (QoS)
parameters that guarantee desired functionality of the cloud ser-
vice. P. Bianco et al. [9] define service level agreements as in the
following:

“An SLA is part of the contract between the service con-
sumer and service provider and formally defines the level
of service”.

The use of service level agreements has been common in IT organi-
zations for many years to identify support requirements for internal
monitoring and external customers of IT services [9]. An overview
of SLA in cloud environment is shown in Figure 1.2 in which a
client gets a cloud service from a cloud service provider based on
its requirements and QoS parameters for the service are described
in an SLA. Service level agreement is either part of a main service
contract or is completely separate document. Service contract is
different from an SLA and is a legal binding between two or more
parties which outlines service provided, cost, duration, resources,
access rights etc. In other words, service contract describes terms
of business and legal rights whereas an SLA describes the quality
of service and performance measuring parameters e.g. availability
percentage, throughput, response time etc.

1.3. SLA Life Cycle 5

Figure 1.2: Service level agreement between a cloud service user and a cloud
service provider

1.3 SLA Life Cycle

Selection and acquisition of different cloud services is triggered by
business objectives and needs, i.e. requirement to use a specific
cloud service is based on definitive needs of a customer. These
requirements also form a basis to define different properties of the
desired cloud service or in other words, QoS parameters. These
requirements for QoS parameters can also be described as require-
ments of final SLA for the cloud service. Selection of cloud service
provider depends on desired service, its properties (QoS parame-
ters) and budget constraints etc. The selection process may in-
clude a negotiation between a cloud service provider and a cloud
service user over QoS parameters, budget constraints and other
associated properties/requirements of the cloud service. After a
successful negotiation process, an SLA is formed to described the
agreed QoS parameters. This SLA serves as a basis to monitor
real-time usage of the cloud service and also to manage the cloud
service if some violation occurs with respect to the SLA. This whole
process of defining requirements for cloud service (or requirements
for final SLA), negotiation, monitoring, management of the SLA
and re-defining/modifying the SLA based on new requirements, is
described as SLA life cycle [10, 11]. An overview of SLA life cycle
and its different phases is shown in Figure 1.3. SLA life cycle and
its different phases are described further in later chapters.

1.4. Motivation 6

Figure 1.3: An overview of SLA life cycle

1.4 Motivation

In e-business platforms, SLAs are essentially important for the
service consumer to monitor and manage the acquired cloud ser-
vices. Currently, SLAs are available only in descriptive form that is
not directly consumable by an external system and requires man-
ual tasks in different phases of SLA life cycle i.e these descriptive
SLAs can not be directly used in an automated negotiation algo-
rithm for an efficient and time saving negotiation between a cloud
service provider and a cloud service user. The major benefits (i.e.
cost effectiveness and rapid elasticity) of using cloud services may
be compromised if SLAs are not directly readable by a system. It
becomes very time consuming, demanding and laborious task to
manually describe the service requirements, using those descrip-
tive requirements to compare with offered cloud services, manually
negotiate with cloud service providers based on those descriptive
requirements, manually monitor and manage final agreed to SLAs
to ensure QoS parameters.

Example 1.4.1 Consider a network administrator ‘ADMIN’ who
is given a task to find an appropriate cloud based customer re-
lation management (CRM) system for its company. ADMIN is
given the requirements such as minimum availability during and
outside office hours, budget, storage, number of end users and

1.4. Motivation 7

response time. ADMIN looks up for different options and finds
out that many reasonable options exist to make a choice. For in-
stance, Amazon Web Services Marketplace1 alone offers 93 results
for cloud based CRMs. All available cloud based CRM solutions
come with descriptive SLAs, different prices, user ratings, server
options, storage options etc. ADMIN has the following tasks to
complete the final purchase of CRM software:

• Define all given requirements from its company.

• Manually compare different requirement against available op-
tions in market with respect to their SLAs, QoS parameters,
budget and storage.

• Manually negotiate with different available cloud service providers
to come up with an appropriate selection.

• Manually monitor and manage cloud service with respect to
finalized SLA to detect violation, smooth running of service
or to ensure other QoS parameters.

Above example demonstrates that manually selecting, monitoring
and managing cloud services with respect to their SLAs can be
very time consuming and exhausting task with chances of human
errors which can badly affect the output and productivity of the
selected cloud services. Also, any future changes in requirements
can lead to repetition of complete cycle. Moreover, cloud ser-
vices may include qualitative parameters such as reliability which
requires further processing to transform it to a quantifiable pa-
rameter. Many approaches and methods have been proposed and
developed which either partly target these problems of manually
defining, negotiating, monitoring and management of SLAs for
cloud services or they present an SLA life cycle management ap-
proach that does not includes all of the requirements discussed
above. So, major motivation of this work is to reduce the manual
tasks and automate the complete SLA life cycle. This automa-
tion of the SLA life cycle includes definition of cloud service QoS

1https://aws.amazon.com/marketplace

1.5. Thesis Vision, Objectives and Scope 8

parameters in system readable format/structure, automated nego-
tiation of SLAs, automated monitoring and management of SLAs.
Another major motivation to automate the SLA life cycle is to
facilitate the process of future changes in service requirements and
to automate this process with minimum manual input.

1.5 Thesis Vision, Objectives and Scope

1.5.1 Vision and Objectives

Cloud computing has been established as a popular paradigm for
scalable infrastructure solutions and services. Cost efficiency, rapid
elasticity, and timely availability of cloud resources are key features
of cloud services making it a propitious choice against tradition-
ally investing huge amounts of money to purchase private hard-
ware and software resources. Currently, cloud services are largely
offered with QoS parameters defined in service level agreements.
But these SLAs are offered as a plain text document and every
cloud provider has different contents for its SLA(s). Furthermore,
the SLAs and their formats, the QoS parameters and their defini-
tions are not standardized. These deficiencies of standardization
and unavailability of a common framework for digital SLAs lead
to new challenges and problems with growing cloud services ori-
ented IT solutions. This work intends to provide an SLA structure
that is based on standard SLA definitions. The single SLA struc-
ture should be flexible to specify service requirements (from service
user) or service offer (from service provider) as well as same SLA
structure should be used during negotiation process and afterwards
during monitoring and management processes. The desired SLA
structure is used as a basis for automating the complete SLA life
cycle, i.e. negotiation, monitoring, management and recycling of
SLAs. In addition, a web front-end is visioned to serve as a com-
mon platform for cloud service users, providers and developers
for defining, monitoring and managing SLAs. This web front-end
should offer different easy-to-use options to its users such that gen-
erating random SLAs (close to real world SLAs), perform multiple

1.5. Thesis Vision, Objectives and Scope 9

predefined tests for automated negotiation and monitoring sce-
narios to analyze the efficacy of selected negotiation/monitoring
method. These analytical tests are anticipated to be conducive in
decision making for selecting appropriate cloud provider(s), nego-
tiation method and monitoring method.

1.5.2 Scope

This work on automation of the SLA life cycle includes the follow-
ing research and development tasks:

• Detailed analysis of state of the art solutions for complete
SLA life cycle and its different stages.

• Identification of existing problems and gaps between manual
and automated SLA life cycle.

• Definition of a structure to specify requirements for SLA based
on required cloud service.

• Both qualitative and quantitative QoS parameters should be
processed using the proposed SLA structure.

• Automated negotiation strategy and its implementation for
defined SLA structure with analytical comparison to existing
negotiation approaches.

• The results of the automated negotiation process are not guar-
anteed to be optimized with respect to the requirements and
available options.

• Usage of same SLA structure to store the finalized SLA on
cloud service user side.

• Automated monitoring of QoS parameters as defined in the fi-
nal SLA. Only those QoS parameters are monitored for which
proper definition is available in the finalized SLA.

• Automated management of SLAs and their respective QoS
parameters is limited to the scope defined in finalized SLA,
i.e. all triggers, events and processes are defined directly in

1.6. Summary and Thesis Structure 10

SLA which are used in automated SLA management (optional
part).

• Integration of finalized SLA with other systems is possible as
XML data or as a web service (optional part).

• Automated recycling of SLA based on future changes is pos-
sible if recycling parameters are defined in the SLA which
makes automated re-negotiation and stores finalized SLA for
monitoring and management.

• Management of SLAs is limited to such tasks that are possi-
ble to be performed as an action from within a programmable
function, e.g., collecting the documents required for service
credits request in case of service violations or sending an elec-
tronic claim to a cloud service provider.

• A web front-end is developed to facilitate user in defining
SLAs and making different tests for automated negotiation
process based on randomly generated SLAs.

• The web front-end is used for storing SLAs, redefining SLAs
and to perform different tests for automated monitoring also.

• Implementation for an automated monitoring is provided only
for a specific cloud service e.g. Amazon S3 but presented SLA
structure is extensible for other cloud services.

1.6 Summary and Thesis Structure

In this chapter, a brief introduction of cloud computing is pre-
sented with its essential properties and most common service mod-
els in cloud computing. An overview of service level agreements,
legal contracts and their difference is also described briefly. More
detail on different components of an SLA and examples are cov-
ered in next chapters. An introduction to the SLA life cycle and
its different stages is described concisely. The motivation for au-
tomating the SLA life cycle is elaborated with an example. The
scope, vision and objectives of this work are also outlined precisely

1.6. Summary and Thesis Structure 11

in this chapter.
The remaining thesis work is intuitively divided into different chap-
ters based on different stages of SLA life cycle as in the following:

• Chapter 2 describes the existing approaches and solutions
for automation of the overall SLA life cycle and its different
stages.

• Chapter 3 defines an SLA structure and its components. All
components, their intended use and related examples are in-
cluded in this chapter.

• In chapter 4, an automated negotiation method for SLAs is
presented, implemented and validated using multiple experi-
ments.

• An approach for automated monitoring of SLAs based on pro-
posed SLA structure is formulated, implemented and experi-
mentally analyzed in chapter 5.

• In chapter 6, an implementation of the presented SLA spec-
ification and a comparison with existing solutions is given.
This chapter summarizes the presented work and also briefly
describes the possible future extensions.

Chapter 2

State of The Art

As discussed in Chapter 1, the SLA life cycle consists ot different
stages, i.e. specification, negotiation, monitoring, management
and recycling. In this chapter, state of the art approaches and
techniques are discussed for these stages of the SLA life cycle. Al-
though, many different approaches exist for each of the SLA life
cycle stages, only approaches that are most relevant to this thesis
work are mentioned and discussed. After describing state of the
art for every SLA life cycle stage, an analytical overview is also
presented in this chapter. This analytical overview discusses the
drawbacks in existing approaches and also leads to requirements
formalization for automation the of SLA life cycle presented in
next chapters. This chapter is structured as follows. Section 2.1
motivates for the need of SLA specification languages and also
discusses the most appropriate specification languages in the web
services domain and the cloud services domain. Section 2.2 de-
scribes general negotiation techniques that are used in two party
or multiple party setups. Section 2.3 explains different SLA nego-
tiation model setups and existing approaches for automated SLA
negotiation are also presented. Section 2.4 presents existing tech-
niques for the automated SLA monitoring/management and the
SLA life cycle as a whole. Section 2.5 summarizes the contents
presented in this chapter.

12

2.1. SLA Specifications and Languages 13

2.1 SLA Specifications and Languages

Cloud service providers generally offer SLAs in descriptive/natu-
ral language format which is not directly consumable by a ma-
chine/system. The SLA written in natural language may impede
the utility of rapid elasticity in cloud service. Different stages
of the SLA life cycle e.g. negotiation, monitoring and manage-
ment are also dependent on availability of a machine readable
SLA. A cloud service user is conventionally responsible itself to
monitor and enforce a natural language based SLA by first man-
ually transforming the SLA details and guarantees into a suitable
machine readable format. Different languages and specifications
have been proposed to represent an SLA as a machine readable
format e.g. Web SLA (WSLA) Framework [12], SLAng for defin-
ing SLAs in IT services [13][14], Web Services Agreement (WS-
Agreement) specification [15], SLA* as part of SLA@SOI project
[16], CSLA (Cloud Service Level Agreement) language [17] and a
formal language SLAC for SLAs [18]. Among these approaches,
WSLA, SLAng and WS-Agreement target specifically SLAs for
web service, SLA* deals with services in general and remaining
approaches are presented precisely for cloud services. In the fol-
lowing, these approaches are discussed briefly and verbosely in ac-
cordance with their relevance to cloud computing, expressiveness
and completeness as a SLA specification language. A comparative
review of SLA specification languages is also presented by Maarouf
et al. [19] which we discuss further in later sections.

2.1.1 WSLA, Keller & Ludwig, 2003

IBM research developed the WSLA framework to define and mon-
itor SLAs for web services. The WSLA framework includes an
XML schema based language to define the SLAs and a runtime
environment to interpret and monitor SLAs. Web services users
and providers can define SLAs, specify SLA parameters and their
measurement methods, relate the SLA parameters to the other
resources and use a monitoring service to automatically enforce
the SLAs. A UML (Unified Modelling Language) class diagram

2.1. SLA Specifications and Languages 14

[19] of meta model for the WSLA framework is depicted in Figure
2.1 and is elaborated in the following paragraphs. WSLA classi-

Figure 2.1: WSLA meta model

fies SLA management information into four types, i.e. (i) resource
metrics (e.g. routers, servers and instrumented applications), (ii)
composite metrics (e.g., by combining several resource/other com-
posite metrics according to a specific algorithm for aggregated cal-
culations), (iii) SLA parameters (to relate the composite metrics
provided by a service provider to the service level objectives of
service customer for evaluation, e.g. service availability, through-
put or response time) and (iv) business metrics (to relate SLA
parameters to the financial terms on service customer side). Each
SLA parameter refers to one metric (resource or composite). The
aggregation of metrics (to form a composite metric) is carried out
either by defining a function (which may include other metrics as
operands) or by defining a measurement directive (which describes
the method of measurement for the metric). WSLA language spec-
ification defines the SLA structure in three sections as described
below:

2.1. SLA Specifications and Languages 15

• Parties section combines information about the signatory
parties, i.e. service provider and service customer. This sec-
tion may also include information about supporting parties
to assist, measure, monitor or manage the web service.

• Service Description section consists of information about
the characteristics of a service together with its measurable
parameters. This section defines all service parameters, their
relation to the service(s), method of computation or measure-
ment and access protocols for metrics of a managed resource.
A measurement service (as part of the WSLA framework)
processes the information provided in this section.

• Obligations section defines the guarantees and conditions
under which these guarantees are valid. The WSLA frame-
work defines two types of obligations, i.e. Service Level Objec-
tives (SLOs) and action guarantees. SLOs define the promises
to maintain the state of a service for a certain period of time.
Action guarantee is a commitment of a signatory party to per-
form an action linked with the violation of an SLO. Likewise,
obligations of the parties involved and the conditions (under
which those obligations are valid) are defined in this section,
i.e. if a threshold is assigned to an SLA parameter then it
might also be required to define the constraints under which
this threshold is considered valid. A condition evaluation ser-
vice (as part of WSLA framework) processes the information
provided in this section to assess the violations of SLOs.

2.1.2 SLAng, Lamanna et al., 2003 & 2004

SLAng is an XML schema based language to define service level
agreements in IT services and e-business domains. SLAng’s gen-
eral structure of SLAs includes responsibilities of the service provider
(Server), responsibilities of the service user (Client) and their mu-
tual responsibilities (Mutual). These responsibilities are expressed
in three parts in an SLA: (i) end-point description (e.g. location in-
formation of service user and provider), (ii) contractual statements

2.1. SLA Specifications and Languages 16

(e.g. contract start/end dates and duration) and (iii) Service Level
Specification (SLS) parameters (i.e. QoS parameters and metrics
to measure those QoS parameters). SLAng divides the SLAs in
six types and two groups (vertical and horizontal) depending on
their service usage type as described below:

• Vertical SLAs represent a service to provide infrastructure
support to client

– Hosting SLA is between a service provider and a host

– Persistence SLA is between a host and a storage provider

– Communication SLA is between a application/host and
Internet service providers

• Horizontal SLAs represent a partly subcontracted service (of
the same type) by the client

– ASP SLA is between an application/service and an ap-
plication service provider

– Container SLA is between two containers (that host ap-
plications or services)

– Networking SLA is between two networking providers

SLAng uses Object Constraint Language (OCL) and UML to rep-
resent SLAs with respect to the responsibilities (Server, Client and
Mutual), i.e. constraints that are necessary to exist for successful
delivery of the service and that are agreed by the parties. SLAng
such that constraints should be placed only on mutually visible (to
both parties) events. This ensures that monitoring of violated con-
straints is easily detectable by the affected party. SLAng currently
supports multiple types of constraints, i.e. throughput, availabil-
ity, timeliness (response time), reliability (correctness of response)
and data accuracy/consistency. Further conditions about timing
of a constraint to be applied (i.e. when a particular constraint is
effective) or about state of service (i.e. mutually visible changes in
state of the service) may also be applied to enhance the monitoring
process.

2.1. SLA Specifications and Languages 17

2.1.3 WS-Agreement, Andrieux et al., 2007

WS-Agreement is an XML based language and a web services
based protocol for specifying agreement/contract between two par-
ties, generally a service provider and a service consumer. WS-
agreement is presented by Grid Resource Allocation Agreement
Protocol (GRAAP) working group of the Computer Area of the
Open Grid Forum (OGF). The WS-Agreement specification con-
sists of the following three parts:

• A structure to specify an agreement (as shown in Figure 2.2)

• A structure to specify an agreement template (as shown in
Figure 2.3)

• A set of port types (agreement factory, pending agreement
factory, agreement, agreement Acceptance) and operations
(i.e. to exchange resource information between ports or de-
stroy resources) to manage the complete life cycle of an agree-
ment, i.e. creation, monitoring and expiration of an agree-
ment

WS-Agreement specification facilitates a service consumer (agree-
ment initiator) to discover the required services. A service provider
(agreement responder) publishes available agreement templates.
Each agreement template describes service name, context, ser-
vice description terms (functionality that will be delivered un-
der the service), guarantee terms (assurances on service quality)
and agreement creation constraints (rules that must be followed
to create an agreement). An overview of service discovery, offer
and agreement after acceptance under WS-Agreement specifica-
tion is shown in Figure 2.4. An agreement initiator sends a request
to an agreement responder to get available agreement templates
(which describe the available service, its variations, quality pa-
rameters, guarantees etc). The agreement responder sends back
a list of agreement templates. The agreement initiator makes an
offer based on the agreement templates and sends it to agreement
factory service which evaluates the offer. Result of the evaluation
may be immediate acceptance or rejection depending on offer or

2.1. SLA Specifications and Languages 18

Figure 2.2: Agreement structure
Figure 2.3: Agreement template struc-
ture

decision is deferred. In case of acceptance, the agreement respon-
der sends a new agreement. If the decision is deferred then an
instance of pending agreement is sent to the agreement initiator
and once a decision has been made then agreement state is changed
to either observed (if offer is accepted) or rejected (if decision is
rejected). WS-Agreement specification supports only one round
of negotiation, i.e. agreement initiator makes an offer which is
either accepted or rejected. This deficiency is further covered by
WS-Agreement Negotiation [20] which extends the WS-Agreement
specification to allow negotiations and re-negotiations.

2.1.4 SLA*, Kearney et al., 2010

SLA* is proposed as part of SLA@SOI European project to gener-
alize the XML based web services standards WSLA, WS-Agreement
and WSDL. SLA* is an abstract syntax to formalize SLAs and SLA
templates (collectively termed as SLA(T)s) for services in general
rather than only for web services. An SLA template is a structure

2.1. SLA Specifications and Languages 19

Figure 2.4: Overview of the service discovery, offer and agreement

which includes information about a service, its QoS parameters,
guarantees, rules, party (i.e. a service provider) and constraints
whereas an SLA is an agreement made between two parties (a
service provider and a service user) based on the SLA template
after negotiating over the offer by service user. SLA* is developed
with an idea of language independence, better expressiveness and
easy extensibility. In SLA*, contractual obligations of parties are
enforced through constraints on actions of the parties. SLA(T)s
structures (SLAs and SLA templates) are represented in terms
of entities. An entity is a collection of key/value attribute pairs
where each attribute represents some property of that entity. A
key is a property/attribute name e.g. party.role and value is an
unordered set of expressions representing contents of that attribute
including constraints. An overview of SLA(T) structure is shown
in Figure 2.5. An SLA template consists of a template ID and a
version number which is used as a reference in final SLA. Interface
declaration represents an obligation on one of the SLA parties to
provide an interface where an interface defines a particular oper-
ation (e.g. messaging, reporting). In other words, obligations of
parties to report or send a message about an event or operation
is declared through interface declarations and this information is
accessible to other party through SLA. Variable declarations rep-
resent values or expressions and are used for convenience purpose.

2.1. SLA Specifications and Languages 20

Figure 2.5: Structure of SLA and SLA Template in SLA*

In SLA*, variables declarations are also used to specify domain re-
lated alternatives for an option e.g. ‘> 1 and < 5’ or ‘in the time
interval 7 : 00 to 15 : 00’. Apart from interface declarations (used
to define functional obligations), agreement terms are used to rep-
resent non-functional (QoS) obligations. SLA* agreement terms
may contain pre-conditions or constraints that must exist before
an agreement term becomes applicable. An agreement term may
contain multiple guarantees of one of the two kinds, i.e. states
and actions. A guaranteed state is a constraint in which a party
is obligated to maintain a particular state of the service e.g. ‘re-
sponse time < 8ms’. A guaranteed action is a constraint in which
a party is obligated to perform a specific action within a possible
deadline if a defined pre-condition to perform the action exists.
SLA* syntax is implemented as Java API, an XML schema and
BackusNaur Form (BNF) Grammer.

2.1.5 CSLA, Kouki et al., 2014

CSLA language is developed with main focus on dealing with QoS
uncertainty and performance fluctuations in cloud services. The

2.1. SLA Specifications and Languages 21

CSLA is based on the Open Cloud Computing Interface (OCCI)[21]
and reference architecture of cloud computing by National Insti-
tute of Standards and Technology, USA [22] [17]. CSLA defines
an SLA in three sections:

• Validity of the agreement, i.e. duration of agreement

• Parties of two types, signatory parties (i.e. service provider
and service customer) and supporting parties (i.e. trusted
third parties)

• Agreement template contains the following five elements:

– Cloud service definition, i.e. SaaS, PaaS or IaaS. Each
service can be defined in different modes of delivery (i.e.
normal mode and degraded mode) to handle the uncer-
tainty and fluctuation in a cloud service.

– Parameters define variables that are used in other sections
of the agreement template and refer to distinct elements
such as metric, monitoring and schedule.

– Guarantees define the obligations of one or more par-
ties and are comprised of four elements: scope (defines
the services covered in the guarantee), requirements (de-
fine the pre-conditions that must exist to run the scoped
services or to fulfill the guarantee), terms (each guaran-
tee term defines one or more objectives/SLOs evaluated
by constraints using metric, comparator and a threshold)
and penalties (to define compensations in case of viola-
tions in guarantees). A priority is defined for each SLO
to accommodate the QoS preferences of service user. The
metric is calculated according to predefined monitoring
in a particular schedule (period).

– Billing: CSLA supports two types of billing, i.e. pay-as-
you-go and all-in-package.

– Termination defines the termination date/time for the
service.

2.1. SLA Specifications and Languages 22

CSLA specification can be defined in different programming lan-
guages and is not XML restricted. Also, CSLA language can be
used for different types of a cloud services (i.e. SaaS, IaaS, PaaS).
Similar to degradation options in cloud service definition, QoS
degradation definition is also possible in CSLA by defining fuzzi-
ness (acceptable margin around a threshold) and confidence (the
percentage of compliance or reliability) to deal with uncertainty
and unpredictability at QoS preferences level.

2.1.6 SLAC, Uriarte et al., 2014

SLAC is presented as specification language particularly for cloud
computing and is claimed to support main cloud deployment mod-
els. SLAC is based on WS-Agreement and inherits many features
and structures from it. SLAC supports multi-party agreements in-
cluding a broker, business aspects (pricing schemes) of SLAs and
SLA management. A software framework1 is also developed which
uses SLAC to specify, evaluate and enforce SLAs. The formal syn-
tax of SLAC is defined in Extended Backus Naur Form (EBNF)
[23]. The semantics of SLAC is formalized as Constraint Specifica-
tion Problem (CSP) which enables the verification of consistency
of terms in an agreement at negotiation step and also validation
of service characteristics at SLA enforcement step. SLAC defines
the SLA in three parts:

• Description of the contract

• Specification of contract terms

• Guarantees for the contract terms

The description of an SLA consists of a unique identifier and at
least two parties (service provider and service user) with party
name (optional) and its role(s). Multiple roles for a single party
enables the definition of such scenarios in which a service provider
might also be a service user to some other party and an optional
party name supports the definition of an SLA template in which

1https://code.google.com/archive/p/slac-language/

2.1. SLA Specifications and Languages 23

a party name is not yet mentioned. The terms of an agreement
define the properties of the service as well as its value(s). Each
SLA must contain one or more terms. A term can be a metric
or group of terms (composed of multiple terms to define complex
characteristics of a service). Each term also contains a party name
(responsible to fulfill that term) and the contractors of the term
(one or more) which enables the definition of parties with different
roles, i.e. broker or service provider. A metric can be of three
types:

• Numeric metric can be a value constrained by open or closed
intervals or an expression. A unit is also attached to each
metric e.g. milliseconds.

• Boolean metric can contain true or false values.

• List metric contains a list of values.

SLAC predefines all metrics (including list metrics along with list
values) and their methods of measurements in the context of the
cloud domain. Guarantees for the contract terms define the obli-
gations of the responsible party (to take a defined action) in case
of a particular event. An SLA defined in SLAC (using EBNF) can
be checked for consistency at design time and a monitoring system
uses the well defined SLA at run time to enforce and evaluate ser-
vice guarantees. SLAC is extended to fulfill business aspects (i.e.
pricing schemes and negotiations) by dividing SLA management
into the following three phases:

• Information phase of an SLA, in which details about the ser-
vice, service users, service providers and brokers is collected;

• Agreement phase, in which parties finalize contract terms
through negotiation. This phase also includes finalizing the
price models (i.e. flat or variable prices);

• Settlement phase, in which SLAs are enforced and evaluated
through a monitoring service

2.2. Negotiation Techniques and Preliminaries 24

SLAC elaborately defines flat and variable pricing schemes in an
extended language specification to facilitate practical pricing mod-
els computing. The evaluation and experimentation of SLAC is
performed mainly for IaaS scenarios, however, it is envisaged by
the authors that SLAC can also be used to define SLAs for other
cloud service models also, i.e. SaaS or PaaS.

2.2 Negotiation Techniques and Preliminaries

Negotiation is a process of communication between two or more
parties to reach an agreement on a given issue/objective. In ser-
vice computing, the most common negotiation arrangement con-
sists of an offer from one party and acceptance (or counter offer)
from another party in a cyclic pattern until an agreement is made.
This arrangement may involve an adjudicator or negotiation agent
to intercede the negotiation process. This negotiation model is
termed as alternating offer protocol and is based on Rubinstein’s
bargaining model [24]. Rubinstein’s model has the following char-
acteristics:

• Two parties;

• Complete information is available about negotiation environ-
ment;

• Unlimited number of iterations, i.e., negotiation process con-
tinues until an agreement is made;

• Alternating offers, i.e. first party makes an offer in first round,
offer can be accepted or rejected, if offer is rejected then op-
posite party makes a counter offer in second round, first party
may accept or reject that offer from opposite party, if offer is
rejected then first party makes another offer in third round
(better than first round offer) and it continues until one party
accepts offer from other party;

• Delays are costly (in terms of time, money or some other
factor).

2.2. Negotiation Techniques and Preliminaries 25

Negotiation is a routine process in Service Oriented Architectures
(SOA) and multi-agent systems. Parties in SOA or agents may
have to negotiate in different scenarios to optimize their interests
or activities leading to their goals. Generally, different negotia-
tion strategies are required to be adopted in different setups for
an optimal agreement between agents or parties [25]. A conces-
sion is an amount that one party concedes with an intention of
reaching an agreement during negotiation process. In simple se-
tups (consisting of two parties), three common concession tactics
exist [26] as described below. The concession tactics are commonly
parameterized by the value β.

• Conceder (β > 1), in which a party makes a great concession
during the start of the negotiation process. A party that fol-
lows this concession strategy soon reaches its final limit of ac-
ceptable value. Although this strategy increases the chance of
a successful agreement sooner, however, it also favors the op-
ponent party as giving great concessions at start time means
to move towards a setting which is more favorable to the op-
ponent party.

• Linear (β = 1) concession strategy makes an equal amount
of concession in each round of negotiation process. This strat-
egy is considered moderate as chances of reaching a common
ground (win-win scenario) are high in this strategy. This
strategy is, however, not very supportive in time bound setups
as slow concession may increase time to reach an agreement.

• Boulware (β < 1) is a concession strategy in which a negoti-
ating party maintains its initial offer value during almost all
negotiation rounds until deadline is approaching and makes a
great concession towards the end of the negotiation process.
This strategy may result in a favorable agreement for negoti-
ating party, however, due to no concession at all during initial
rounds of negotiation process, a negotiating party may end up
with no agreement due to time constraints.

Time dependent tactics represent a concession approach in which

2.3. SLA Negotiations 26

a party concedes more as deadline is approaching. Resource de-
pendent tactics give a concession depending on the availability, de-
mand and consumption of a resource. As resources become more
scarce, the concession amount increases and vice versa. Behavior
dependent tactics are applied where opponent’s concession strat-
egy and willingness to make an agreement are apparently known.
The benefit of using each of these concession tactics is measured
through a utility function. The utility function returns a value
representing the more favorable or less favorable agreement made
based on initial values of the negotiating party and the value on
which an agreement is made, i.e. as negotiating party makes con-
cessions during negotiation process, the overall utility of the pos-
sible agreement decreases.

2.3 SLA Negotiations

Cloud services are adopted as cost effective and time saving solu-
tions for an infrastructure, software or a platform. Different qual-
ity issues may arise (related to an acquired cloud service) due to a
degraded service, delay in response, packet loss, provisioning time
or some other QoS parameter. These issues may affect the desired
business objectives and may cause different types of losses to a
party. As the cloud service market has grown rapidly, selection of
an appropriate service according to preset business objectives and
negotiation process becomes a time consuming and complex task.
Moreover, performing these tasks (i.e. negotiation and provider
selection) manually may affect other stages of an SLA life cycle
and different functions in an organization linked with the acquired
cloud service. Cloud services are usually automatic in their elastic
functionality, i.e. a cloud service may scale up or down automat-
ically depending on load. Similarly, acquisition of new services
without manual intervention is also a mandatory requirement in
most of the cases [27]. As QoS parameters of a cloud service are
defined in an SLA, so it requires an automatic negotiation process
for an SLA for timely and effective acquisition of a cloud service.
Many approaches has been presented to automate negotiation for

2.3. SLA Negotiations 27

SLAs [28][29][26][30][31][32][33][34][35][27][36]. We discuss only a
few of these approaches in the following sections.

2.3.1 SLA Negotiation Model Setups

Cloud services are available in different variations, i.e. a provider
may offer cloud services under fixed terms (no negotiation over
QoS parameters and price is possible) while another provider may
offer negotiable cloud services. Moreover, cloud services may also
involve a service broker (a negotiator/mediator between a service
user and service provider(s)) to negotiate on behalf of the user .
Considering these scenarios and different requirements, a negotia-
tion model may be one of the following types:

• Fixed model (1−n) represents a setup in which one service
user is selecting from n number of service providers offering
their services on fixed terms, i.e. QoS parameters and price
of the offered service are not negotiable.

• Variable model (1−n) with no broker represents a setup
(depicted in Figure 2.6) in which one service user negotiates
directly with n number of service providers over price and
QoS parameters.

• Variable model (1 − n) with broker is same as variable
model (1 − n) with a difference that a broker or mediating
party negotiates on behalf of the service user with service
providers over QoS parameters and price (as depicted in Fig-
ure 2.7).

• Variable model (m−n) represents a setup in which m num-
ber of service users are competing/bidding for different cloud
services offered by n number of providers. In this setup more
than one service broker may exist and all service providers
offer negotiable services. Also, a service provider may be a
service user of some other cloud service.

• Mixed model represents the most flexible model in which
all of the above setups can be combined, i.e. some service

2.3. SLA Negotiations 28

Figure 2.6: Variable model (1 − n)
with no broker

Figure 2.7: Variable model (1 − n)
with broker

providers may offer fixed term services while others may offer
negotiable prices.

2.3.2 Concurrent Negotiations in Cloud-Based Systems,
Siebenhaar et al., 2012

In this work [26], an SLA negotiation approach is presented for
multiple cloud providers across multiple tiers, i.e. user tier (service
user and broker), service tier (service provider and service user of
other resource service provider) and resource tier (resource service
provider). This approach enables combining services from mul-
tiple providers and negotiating with them concurrently through
different entities. An overview of the negotiation architecture is
shown in Figure 2.8. Each negotiating entity in this architecture

Figure 2.8: An overview of concurrent negotiation architecture

is represented in a Cloud Negotiation Support System (CNSS). A
user initiates a request of a single service or combined services (de-
pending on its functional requirements and business objectives) to

2.3. SLA Negotiations 29

the broker’s CNSS. Then the broker or coordinating entity (CE)
evaluates the request, selects appropriate service providers and
creates the required number of negotiating entities (NE) to start
the negotiation process. In the service tier, a service provider may
need infrastructure services from another service provider (in re-
source tier) to fulfill needs of its service users (in user tier). Service
provider sends its request for infrastructure services to CE which
creates further NEs to negotiate with different resource providers.
NEs of service/resource requester communicate with the NEs of
service/resource provider, respectively. NEs in service provider are
aware of available service levels and their QoS parameters which
are used at the time of negotiation with NEs of user tier. Similarly,
NEs of resource tier are aware of available resources and their QoS
parameters. This information is used while negotiating with NEs
of service tier. Each of these negotiation tasks is run concurrently
by responsible NEs and the result of the concurrent negotiation
process is passed to CE. The CEs of user tier and service tier eval-
uate the results and select most appropriate service provider and
resource provider, respectively. This negotiation architecture uses
linear, conceder and Boulware tactics for experiments with their
effect on consumer’s and provider’s utility.

2.3.3 Optimal Negotiation of Service Level Agreements
for Cloud-Based Services through Autonomous
Agents, Yaqub et al., 2014

In this work [35], a near-optimal SLA negotiation strategy is pre-
sented for cloud computing environments. The negotiation setup
uses Rubinstein’s alternating offer protocol [24] where two partic-
ipating parties are negotiating over different issues (SLA param-
eters) by exchanging bids (offers and counter offers). A bid b is
defined as b = {x1, ..., xN} where x is chosen (offered) value of N
issues. For example, if we have two issues x1 =availability and
x2 =response time with best possible values of 99.9 and 0.4ms,
respectively then we may start our first bid with best possible (de-
sired) values, i.e. b = {99.9, 0.4}. The worth of the bid b is given

2.3. SLA Negotiations 30

by a linear additive utility function u(b) as:

u(b) =
N∑
i=1

wiVi(xi)

where wi is the weight (preference/priority factor for a QoS pa-
rameter) for an issue xi such that

N∑
i=1

wi = 1

and Vi(xi) = eval(xi)/max(eval(xi)) ∈ [0, 1] representing ratio of
selected value for an issue in a bid b to the best possible value
of that issue e.g. if the issue x1(availability) has value of 95 in a
bid then V1(x1) = 95/99.9 = 0.95. The evaluation (Vi(xI)) along
with weight (wi) for an issue (xi) enables a service user or service
provider to set its priorities with respect to service requirements.
It is argued in this work that autonomous negotiation process is
complex and computationally expensive. Generally, a negotiation
strategy is modeled as a 3-tuple such that S = (B, Mo, A) where B
is bidding function to generate a counter offer based on opponent’s
offer, Mo is the opponent’s assessed modes (concession strategy)
based on received bid and A is the acceptance function which
decides to accept opponent’s bid. The computation of S based on
its functions is a complex task and a computationally inexpensive
negotiation strategy is proposed in this work termed as ‘Reactive
Exploitation’ (RE). According to this negotiation strategy (RE),
a party generates its bid based on a quasi tit-for-tat policy, i.e. a
concession is given if the opponent is also observed to do the same.
This negotiation strategy is outlined as in th following:

• The negotiation process is restricted by time constraints;

• A party starts negotiation process with minimal concession
in first bid;

• Opponent accepts bid (which is quite unlikely due to low con-
cession and opposite interests) or generates a counter offer

2.3. SLA Negotiations 31

(bid);

• If a counter offer is received then from second bid onwards,
first party generates its new bid based on the mean value of
opponent’s last l many bids and remaining time in negotiation
process;

• First party maintains record of best counter offer received so
far and latest generated bid;

• The RE strategy utilizes maximum time in most cases to ex-
ploit maximal possible options;

• An agreement is made by selecting the best acceptable bid
received in the process.

RE is experimented for PaaS environment against different nego-
tiation agents, i.e. Boulware, Linear Conceder and TheNegotiator
[37]. The results of experiments show that RE performs at par
with state of the art opponents.

2.3.4 An Autonomous Time-Dependent SLA Negotia-
tion Strategy for Cloud Computing, Dastjerdi &
Buyya, 2015

This negotiation framework presents a time dependent strategy
(as described in Section 2.2) to automate the SLA negotiation
process computing environments. This approach is motivated to
help in increasing the profits of cloud service providers by testing
different work loads and market scenarios under time dependent
tactics. The model setup used in this approach includes a scenario
in which a service user wants to find an IaaS provider with the
following requirements:

• Hard disk (functional requirement and fixed)

• CPU (functional requirement and fixed)

• Memory (functional requirement and fixed)

• Cost (non-functional requirement and negotiable)

2.3. SLA Negotiations 32

• Availability (non-functional requirement and negotiable)

• Deadline (non-functional requirement and fixed)

As cloud service user and service provider have opposite priorities,
e.g. a user wants to maximize service availability and minimize
cost whereas a service provider wants to get maximum profit by
offering minimum services. In other words, if overall utility of SLA
agreement is increasing for one party then overall utility for op-
posite party is decreasing. Moreover, users have time constraint
(fixed deadline) with an assumption that if a service is not ac-
quired by a particular time then service user is not able to satisfy
its end users. A client negotiation service (NS) on service user’s
side negotiates with different service providers on behalf of the
user and this NS is also able to measure the reliability of an offer
from a service provider. Similarly, a NS on provider side deals
with different service requests from service users. The negotiation
framework in this approach works as in the following:

• A service user (client)sends its service requirements (e.g. CPU,
memory, storage and other QoS parameters) to client NS.

• Client NS starts discovering appropriate service providers de-
pending on functional and non-functional requirements sub-
mitted by client.

• Client NS starts negotiation process with NSes of the discov-
ered providers by using time dependent tactics and makes an
initial offer to provider’s NS.

• Provider’s NS evaluates the client’s offer by considering its
available resources, functional requirements and QoS param-
eters of requested service. If provider accepts the offer then
a reliability factor is also sent to client’s NS along with ac-
ceptance message, otherwise the provider generates a counter
offer according to its negotiation tactics.

• Client NS may receive acceptance or counter offer. If a counter
offer is received by NS then client’s NS evaluates the offer by
again considering deadline and other requirements.

2.4. SLA Monitoring, Management and SLA Life Cycle 33

• This process of offer and counter offer is repeated until an
agreement has been made or deadline approaches.

The outcome of above negotiation process is an SLA if negotiation
is successful. This approach assumes that negotiating parties are
unaware of opponent’s concession tactics and also investigates risk
of malicious negotiation attempts under this setup, i.e. a mali-
cious client may submit arbitrary offers to service provider to gain
knowledge of provider’s concession tactics and resource utilization
preferences. The malicious client may use this information to ac-
quire an actual service from the same provider faster than other
clients. This scenario may cause profit loss for a provider and also
deprive other clients from acquiring scarce resources in a compet-
itive environment. On the other hand a provider may also use
offer information from client’s NS to maximize its profits in future
transactions.

2.4 SLA Monitoring, Management and SLA Life

Cycle

Monitoring of cloud services is a task of great importance for both
service provider and service user [38]. Quality assurance is manda-
tory for cloud services to realize the underlying business objec-
tives. SLAs contain different QoS parameters (e.g. availability,
response time or throughput) as part of service contract. These
QoS parameters must be observed continuously for preferred usage
of cloud services according to QoS requirements. A complex SLA
may contain multiple QoS parameters and guarantees by service
provider. Manual and continuous monitoring of these QoS param-
eters and guarantees is usually not possible and it may also hinder
the timely actions to rectify a problem/degradation in a service.
Also, if a violation with respect to SLA occurs, then an accurate
measure/action must be taken as defined in the SLA (generally
within a deadline). Automatic monitoring of QoS parameters and
guarantees with respect to the SLA is a much needed functionality
in cloud services [39]. Multiple approaches have been presented to

2.4. SLA Monitoring, Management and SLA Life Cycle 34

facilitate the automated monitoring task in cloud computing en-
vironments [40][41][42][43][44][45][46]. A detailed review of cloud
service monitoring is presented by Aceto et al. [38] and by Hussain
et al. [47]. In the following sections, we discuss a most relevant
monitoring approach, few SLA management approaches and SLA
life cycle as a whole.

2.4.1 Low Level Metrics to High Level SLAs - LoM2HiS
Framework: Bridging the Gap Between Monitored
Metrics and SLA Parameters in Cloud Environ-
ments, Emeakaroha et al., 2010, 2012

LoM2HiS (Low-level resource Metrics to High-level SLAs) frame-
work [40] is presented as a solution to map low level resource met-
rics (e.g. system uptime and downtime) to high level SLA pa-
rameters (e.g. availability) for detection of SLA violation threats.
LoM2HiS is developed as part of FoSII (Foundations of Self-governing
ICT Infrastructures) infrastructure. FoSII is divided in two core
parts, i) enactor component (self management part of the deployed
services) and ii) LoM2HiS (monitoring component which provides
information to enactor component). It is assumed in this approach
that negotiation process has already been completed and SLA is
stored in repository for service provisioning. Future SLA violation
threats are detected by defining tighter thresholds than real SLA
objective thresholds. However, threat thresholds are assumed to
be predefined in this work and no particular component is defined
for this purpose. A step by step functioning of LoM2HiS frame-
work is shown in Figure 2.9.
The monitoring process of LoM2HiS starts after negotiated SLA

is stored in repository. In step 1, service provider stores mapping of
low level metrics to SLA parameters. As service user requests the
service (step 2), the runtime monitor loads related SLA from the
SLA repository (step 3). Infrastructure resources are the network
resources and hosts in a datacenter for cloud services. Monitoring
agents in infrastructure resources measure raw metrics (of service
usage) which are accessed by host monitor (step 4). These raw

2.4. SLA Monitoring, Management and SLA Life Cycle 35

Figure 2.9: LoM2HiS Framework Architecture

metrics are analyzed by host monitor to extract metric-value pairs
and periodically sends it to runtime monitor (step 5) as well as to
enactor component (step 6). The runtime monitor uses an XML
parser to extract the SLA parameters and their values available
in the agreed SLA document. In step 7, runtime monitor gets re-
lated mappings from repository and compares them with measured
metrics (received from host monitor) to build an equivalent of the
agreed SLA objectives. The result of this comparison is stored
back to mapped metrics repository. The runtime monitor also no-
tifies the enactor component if future violation threats occur (step
8). The enactor component takes decision about changes in service
to prevent future violation threats (step 9). As a result, service
is scaled up/down or any other preventive measure is taken on
run time to continue fulfilling service objectives. Different com-
ponents of implemented LoM2HiS framework and FoSII frame-
work exchange messages using Java Messaging Service (JMS) API
and communication model among components is based on queuing
mechanism. An extended version of this approach is also presented
in 2011/2012 [42].

2.5. Summary 36

2.4.2 SLA Management and SLA Life Cycle in General

SLA management of cloud services includes tasks such as prepar-
ing claims in case of service violations, updating SLA parameters
if requirements change or performing an action triggered due to
a monitoring event. Shu et al. [48] present an approach for life
cycle based SLA management for web services. An SLA manage-
ment platform is presented in [48] to define SLAs for web services,
registration of SLAs, monitoring and mapping of provider supplied
parameters to service user’s QoS parameters. In a most recent sur-
vey, Faniyi et al. [49] present an overview of SLA management for
cloud services in which it is argued that cloud SLAs have still not
standardized enough to be automatically deployed. It is also con-
cluded in [49] (based on detailed analysis), majority of approaches
related to SLAs have considered between one to three SLA param-
eters. Rak et al. [41] base their work for SLA monitoring on the
mOSAIC API [50] (which offers development of inter-operable,
portable and provider independent cloud applications). In [51],
mOSAIC API is used as basis for user-centric SLA management.
Maarouf et al. [52] present a model for the SLA life cycle man-
agement in a more recent paper where different phases of the SLA
life cycle are discussed and modelled using UML (unified model-
ing language) diagrams. However, this work does not includes any
SLA specification itself.

2.5 Summary

In this chapter, a detailed review of state of the art for different
phases of cloud SLAs life cycle is presented. The SLA specifica-
tion can be considered as a basis for automating the whole SLA
life cycle, so different options for are discussed with reference to
the web services and the cloud services. The negotiation of SLAs
is an important phase of the SLA life cycle which requires coop-
eration of a CSP, a CSU and a third party (agent) in some cases.
The negotiation process requires a common definition of the SLA
parameters among the participating parties. Different SLA nego-

2.5. Summary 37

tiation setups and approaches are also discussed in this chapter.
Likewise the SLA monitoring phase becomes of high importance
due to performance and QoS requirements. Most of the existing
approaches wither concentrate on limited parts of the SLA life cy-
cle or they lack in meeting the available standardization guidelines
for the SLAs.

Chapter 3

Structural Specification of SLAs
in Cloud Computing (S3LACC)

In previous chapter, an overview of state of the art in specifica-
tion languages and models is described with an analysis of existing
shortcomings. It is discussed in earlier chapters that automation of
the SLA life cycle is dependent on transformation of a descriptive
SLA to a machine readable SLA. This chapter introduces a cloud
computing domain specific model to specify SLAs in a machine
readable format. The proposed model is titled S3LACC (Struc-
tural Specification of SLAs in Cloud Computing). The design of
S3LACC is rationalized considering the following standards/guide-
lines:

• Cloud computing service metrics description (draft) by Na-
tional Institute of Standards and Technology (NIST), US De-
partment of Commerce (2014)1

• Cloud service level agreement standardization guidelines by
European Commission (2014)2. These guidelines are pre-
sented by Cloud Select Industry Group, Subgroup on Ser-
vice Level Agreement (C-SIG-SLA) which is also working in
close collaboration with Cloud Computing Working Group
of International Organization for Standardization (ISO) for

1NIST Special publication 500-307, available online at:
http://www.nist.gov/itl/cloud/upload/RATAX-CloudServiceMetricsDescription-DRAFT-
20141111.pdf

2Available online at: https://ec.europa.eu/digital-single-market/news/cloud-service-level-
agreement-standardisation-guidelines

38

3.1. Preliminaries, SLOs and Metrics 39

preparing international standard for SLAs (under ISO/IEC
19086 project)3. The SLA standard (ISO/IEC 19086) by ISO
is still under development.

3.1 Preliminaries, SLOs and Metrics

An SLA is a binding document containing explicit information
about the cloud service, its QoS parameters, measurement met-
rics, guarantees, rules of service and any other information that is
important for at least one of the users of an SLA. In this section,
a basic overview of QoS parameters, metrics and preliminary def-
initions (important to an SLA specification) is presented.
A Service Level Objective (SLO) is a mean to measure the
level of a cloud service [10]. An SLO can be quantitative (e.g.
availability) or qualitative (e.g. reliability). A qualitative SLO
has a value that is described in a descriptive form. An SLO should
have the following characteristics [53]:

• Attainable

• Repeatable

• Measurable

• Understandable

• Meaningful

• Controllable

• Affordable

• Mutually acceptable

A metric is a method or scale to measure an SLO e.g. the
SLO availability is generally measured with the metric percent-
age. An SLO contains a service level, metric, measurement period,

3ISO/IEC JTC 1/SC 38 - Cloud Computing and Distributed Platforms:
http://www.iso.org/iso/home/store/catalogue tc/catalogue tc browse.htm?commid=601355

3.2. Requirements for SLA Specification 40

measurement type and location [54]. The QoS parameters (non-
functional requirements of a service) are also referred as SLOs [12].
However, depending on an SLA, the SLO may define functional re-
quirement of a service also e.g. minimum required disk space. An
SLA may contain different types of SLOs, i.e. performance related
SLOs (e.g. availability, response time or throughput), security re-
lated SLOs (reliability, authentication type, authentication level,
session expiry time or data transfer protocol), data related SLOs
(e.g. backup frequency or restore availability period).

3.2 Requirements for SLA Specification

The precise definition of an SLA is important for cloud service
users and providers [54]. Likewise, an admissible SLA specification
should fulfill some definitive requirements. In the following sub-
sections, fundamental requirements for an SLA specification are
discussed.

3.2.1 Composition

An SLO may contain one or multiple metrics to measure its ser-
vice level. For example, the availability SLO might be composed
of multiple metrics e.g. availability percentage, number of outages,
maximum duration per outage, outage type (regional, global) or
measurement period etc. Composition of different metrics for a
single SLO is complex, i.e. [35] uses performance as a composite
metric which is defined by combining response time and through-
put. In most of the SLA specifications, minimum or maximum
values for an SLO are linked directly in that SLO and are com-
puted manually. However, in case of the SLOs which contain mul-
tiple metrics, it can be difficult to assign a single value (or score)
to represent required values of each metric. Moreover, a single
value assigned to multi-metric SLO can not effectively prioritize
individual metrics in that SLO.

Example 3.2.1 A cloud service user Bob is planning to acquire
a new cloud based infrastructure service. Apart from other func-

3.2. Requirements for SLA Specification 41

tional and non-functional requirements, Bob sets requirements for
the SLO availability as specified in Table 3.1: Bob has discov-

Metric name Acceptable value Desired value

Availability percentage 95% 100%
Number of outages 10 0
Maximum duration per outage 30 mins 1 min

Table 3.1: Example of requirements for the availability SLO and its multiple
metrics

ered few service providers, who offer almost similar and negotiable
cloud based infrastructure services. Bob’s priority (generally se-
lected from the interval [0, 1]) for service availability is very high
due to his business objectives and is set to 0.5. For an automated
negotiation process. Bob is following an optimal negotiation strat-
egy as described in Section 2.3.3. Bob wants to combine all of the
information related to availability SLO along with other service re-
quirements in a machine readable format such that generating bids
automatically during negotiation process is possible according to
Bob’s negotiation strategy. Representing all of this information is
not a straight forward task and requires a flexible language which
can accommodate multiple metrics based SLOs including their pri-
ority levels, metrics values, negotiation information and measure-
ment period.

An SLO may also include another SLO as part of it as discussed
above with the reference to [35] or an SLA may include another
sub-SLA of a supporting service.

3.2.2 Common Template for Service User and Service
Provider

Mostly, specification languages for cloud SLAs target one of the
entities, i.e. service users or service providers. Automation of the
SLA life cycle as a whole and specifically automation of the ne-
gotiation, monitoring and management requires a common SLA
template so that different parties may share specified informa-
tion in a mutually understandable and agreed format. Having

3.2. Requirements for SLA Specification 42

a common template can also eliminate different additional tasks
like transformation from one format to an other or sending meta-
data in different communications during negotiation or monitoring
phases. This can reduce network communication load significantly
in scenarios where multiple cloud services are dynamically provi-
sioned.

3.2.3 Dependency

A cloud SLA may contain different service parameters, guarantees,
rules and obligations. These components of the SLA are usually
linked and one metric’s value may be used as an input in com-
putation of an other metric. For example, availability percentage
metric is computed as follows:

Availability percentage =
service actually available + planned downtime

Total service time × 100

In above calculation, the parameter (service actually available)
might not be a straight forward calculation and may include a
condition e.g. service is considered unavailable only if service re-
sponse time is greater than 10 seconds for at least 40% of requests
sent during 3 minutes continuously (time period) and total num-
ber of requests are not higher than allowed limit (throughput) at
any point of time during those 3 minutes. In this example, the
availability percentage metric is dependent on other metrics in-
cluding planned down time, service response time, time period and
throughput. Similarly, different parts of an SLA may depend on
other parts, i.e. an SLO may be dependent on an other SLO or
on a metric from an other SLO, a guarantee may include observed
values from different metrics, an action as a result of SLA violation
may include resetting values of different SLOs.

3.2.4 Scope of The SLA Specification

The SLA specification presented in this work is targeted to define
a standard model to represent an SLA for the cloud services. This

3.3. Proposed SLA Specification - S3LACC 43

specification is useful for both cloud service provider and cloud ser-
vice user. A standardized SLA model (common to the both service
provider and service user) is helpful to automate different states of
the SLA life cycle, i.e. negotiation, monitoring and management.
This work defines in detail the complete structure of the cloud
services based SLA which is suitable for automation and can be
used to represent all important information in an SLA especially
such information which is relevant to ensure the quality of a ser-
vice. However, this work does not define all possible SLOs and
metrics to measure those SLOs, i.e. any well defined SLO and its
metric(s) can be represented using SLA specification presented in
this work but the definition of possible SLOs/metrics for different
cloud services is out of scope of this work.

3.3 Proposed SLA Specification - S3LACC

The SLA life cycle starts with definition of business objectives for a
targeted service. After the service requirements are finalized based
on the business objectives, service discovery process starts. The
discovered services are defined in SLA templates. Each negotiat-
ing party sets its negotiation priorities. The negotiation process is
either finalized with an agreed SLA if successful or with no out-
come if failed. In the following sections, a detailed description of
the S3LACC is given.

3.3.1 S3LACC Overview

An SLA template is a document which consists of service de-
scription, obligations, QoS parameters (SLOs), metrics to measure
those SLOs and guarantees. The SLA template is a common doc-
ument among the participating parties and is a basis for the nego-
tiation process. Mostly, an SLA template is a different document
than the final agreed SLA. However, in S3LACC, an SLA template
and final SLA are combined into a single structure. To achieve this
common structure, the SLA parameters (Ps = {P1, ..., Pn} such
that Pi ∈ Ps and 1 ≤ i ≤ n) are divided in the following three

3.3. Proposed SLA Specification - S3LACC 44

types:

• Template parameter represents such information which is
part of an SLA template only and is denoted by a P T

i . The
template parameters are not negotiable. An SLA with tem-
plate parameters is generated by a service provider based on
a mutually known format.

• Negotiation parameter represents such parameter which
contains information about automated negotiation process
and is denoted by PN

i .

• Agreement parameter contains the agreed value of a ne-
gotiated parameter and is denoted by P F

i .

• Mix parameter contains such information which may be-
long to different phases of the SLA transformation in different
SLAs and is donated by P ρ

i where ρ ∈ {T, N, F}.

Figure 3.1: S3LACC transformation process from SLA template to the final
SLA

The categorization of SLA parameters enables specification of all
information in a single SLA and is adapted in different phases of

3.4. Service Description 45

the SLA life cycle. Negotiation parameters and agreed values of
the negotiated parameters are added to the SLA template by the
CSP and the CSU individually. An overview of this transforma-
tion from SLA template to the final SLA is shown in Figure 3.1.
An SLA in S3LACC is composed of service description, one or
more SLOs, zero or more guarantees, zero or more obligations and
zero or more notes (containing such explanatory information and
clauses which are not related to QoS parameters). A UML rep-
resentation of the relationships between the SLA and its different
parts is shown in Figure 3.2. Detail of each SLA part is given in
the following subsections. An SLA in S3LACC is composed of the
following parts:

• Service description

• SLOs

• Guarantees

• Obligations

• Notes

Figure 3.2: UML representation of SLA structure in S3LACC

3.4 Service Description

Service description is composed of the following parameters:

• SLA name/identifier (SLANameT) is a unique name and/or
a unique identifier assigned to the SLA and is mutually known
to all parties.

3.4. Service Description 46

• Service provider (ServiceProviderT) represents the name of
the CSP and is available in the SLA template.

• Service user (ServiceUserN) represents the name of the cloud
service user and contains empty value in the SLA template.

• Third parties list with roles (ThirdPartiesρ) is a list of par-
ties involved in a cloud service other than the CSP and the
CSU, e.g. broker or an external monitoring service provider.
This list is represented as ThirdPartiesρ = [TP ρ

1 , ..., TP
ρ
m]

where m ≥ 0, ρ ∈ {T, N, F} and TP ρ
i = 〈ThirdParty

Namei, Rolei〉 where 0 ≤ i ≤ m. A third party information
may be added as negotiation parameter TPN

i (e.g. broker
or negotiation agent) or as a final agreement parameter TP F

i

(e.g. a third party for SLA monitoring).

• Service duration (ServiceStartDateT imeF ,
ServiceEndDateT imeF) represents the start date and end
date of the service.

• Service renewal parameters (ServiceRenewalParametersF)
contain information about automatic renewal of the cloud
service on a preset date/time or based on a precondition.
Automatic renewal may involve automatic renegotiation also.
Renewal parameters are the following:

– Precondition (ServiceRenewalConditionF) represents a
boolean expression that must be evaluated to true before
the service is renewed. If the precondition is empty then
service is renewed automatically on preset date/time.

– Renegotiate on renewal (RenegotiateOnRenewalF) is a
boolean which represents whether a renegotiation is re-
quired on service renewal or not. Renegotiation parame-
ters are defined in Section 3.5.1.

– Service renewal date/time (ServiceRenewalDatT imeF)
is the time-stamp on which serviced is renewed.

– Renew service (ResetService()F) is a function that resets
all agreement parameters (P F

i) to their initial values or

3.5. Service Level Objectives (SLOs) 47

to renegotiated values.

• Service current state (ServiceCurrentStateF) contains the
current state of a cloud service. It may contain one of the
intuitive values {Starting, Stopping, Stopped, Started, Termi-
nated}.

3.5 Service Level Objectives (SLOs)

The performance of a cloud service is characterized by defining
Service Level Objectives (SLOs). As discussed in Section 3.1 and
Section 3.2, an SLO may depend on another SLO, may be a qual-
itative SLO (e.g. reliability) or quantitative SLO (e.g. response
time). It is also discussed in Section 3.2.1 that a single SLO may
contain more than one metrics. As cloud services are becoming
more complex due to service composition or cloud federations, an
SLO may be comprised of both qualitative and quantitative in-
formation. For example, an SLO, reliability of benchmark data
in a cloud based bioinformatics data analysis service may be de-
scribed as: benchmark data should be highly reliable (qualitative)
with chances of loss of data during computations being less than
0.5% (quantitative). One way to represent such an SLO can be
to divide one SLO in two separate SLOs, i.e. reliability degree
SLO (qualitative) and chances of loss of data (qualitative). In
S3LACC, qualitative and quantitative properties of SLOs are in-
tuitively shifted to their metrics and a single SLO may contain
one or multiple metrics (qualitative, quantitative or mix of both).
Functioning and further detail of quantitative and qualitative met-
rics are discussed in Section 3.5.1. An SLO contains the following
parameters under S3LACC:

• SLO ID (SLOIDT) contains the unique identifier of the SLO.

• Name (SLONameT) contains the SLO name.

• SLO weight (SLOWeightρ) is a value from the interval [0, 1]
to represent the priority of an SLO. This value is used at the

3.5. Service Level Objectives (SLOs) 48

time of negotiation to generate and evaluate the negotiation
bids.

• Metric list (Mρ
s (SLOID) = {Mρ

1 , ...,M
ρ
l } where l ≥ 1), rep-

resents list of metrics IDs associated with the SLOID.

• SLO list (SLOρ
s = {SLOρ

1, ..., SLO
ρ
k} where k ≥ 0), is a list

of SLOs used to combine one or more SLOs as sub-SLOs to
meet composition requirements.

3.5.1 Metrics

A metric MT
i (SLOID) can be one of the following value types:

• Numeric

• Date/time

• Range of numeric or date/time values

• Boolean (true or false represented as 1 or 0, respectively)

• Qualitative/fuzzy

Metric Ratio Type

Definition 3.5.1 Directly Proportional Metric: A metric is di-
rectly proportional metric if its utility value increases with its in-
creasing value.

An example of directly proportional metric is availability percent-
age, i.e. utility value of a service with higher percentage is also
higher.

Definition 3.5.2 Inversely Proportional Metric: A metric is in-
versely proportional metric if its utility value increases with its
decreasing value.

An example of inversely proportional metric is duration per out-
age, i.e. utility value of longer duration outage is lower.
Based on metric value types, a metric is one of the following two
types:

3.5. Service Level Objectives (SLOs) 49

A quantitative metric represents a metric which contains a nu-
meric value, boolean value, date/time or range of numeric or date/-
time values.
A quantitative metric represents a metric which contains value
type in set {ν} \ {qualitative/fuzzy} . A qualitative metric in
S3LACC has value type of qualitative/fuzzy. All possible descrip-
tive values of the qualitative metric are defined as a well ordered
set (Xs = {X1, ..., Xj} where j ≥ 1, Xi ∈ Xs and 1 ≤ i ≤ j) with
respect to the utility level (U(Xi)) of each descriptive value (Xi)
such that U(Xi) < U(Xi+1) and U(Xi) = i/j. Semantically, util-
ity level of a descriptive value Xi represents its worthiness level. A
qualitative metric in S3LACC is automatically processed by con-
verting its descriptive values to their numeric utility levels.
Metric Parameters A metric is comprised of the following pa-
rameters:

• Metric ID (MetricIDρ) is a unique metric identifier

• Name (MetricNameρ)

• Unit of measurement (MetricUnitρ)

• Negotiation parameters

• Renegotiation parameters

• Monitoring parameters

The negotiation parameters of a metric are the following:

• Negotiable (IsNegotiableT) is a boolean value which describes
whether metric is part of the negotiation process or not. A
false value is used when a metric is defined for monitoring or
management purposes only.

• Mandatory (IsMandatoryN) is a boolean value which is set
by the CSP and the CSU in their respective template as part
of the negotiation strategy. If a true value is assigned to
this parameter then negotiation requirements (as restricted
by desired value and acceptable value) for the metric must be
fulfilled otherwise the negotiation process is unsuccessful. If a

3.5. Service Level Objectives (SLOs) 50

false value is assigned to this parameter then it represents that
negotiation requirements are preferred to be fulfilled, however
not mandatory.

• Weight (MetricWeightN) is value from interval [0, 1] repre-
senting the priority/importance level of the metric. A weight
at SLO level and at metric level facilitates to prioritize an
SLO and metrics within an SLO separately.

• Desired value (DesiredV alueN) represents best possible sin-
gle value or range of values for the metric. Depending on
negotiation policy, this value is usually the starting value in
the negotiation process.

• Acceptable value (AcceptableV alueN) represents the reserve
value (or worst possible value that is acceptable) during the
negotiation process.

• Agreed value (AgreedV alueF) represents the final value that
is agreed between the CSP and the CSU after negotiation
process.

• Deadline (DeadlineT) is the maximum number of negotiation
rounds or time limit allowed for the negotiation process for
the metric. This parameter is part of the SLA template and
set by the CSP. However, a CSU may set a different value if
required but not exceeding the value set by the CSP.

• Concession values (CV N
s = {〈D1, CV1〉, ..., 〈Dq, CVq〉}) is an

ordered set (with respect to deadlineDi) such that 〈Di, CVi〉 ∈
CV N

s , CVi is concession value and 1 ≤ i ≤ q. If this set con-
tains only one tuple (〈D1, CV1〉) then D1 = DeadlineN which
means that in every negotiation round an equal amount of
concession value CV1 is applied to generate a new bid value
for the metric. If more than one tuples are present in the set
CVs then concession value CVi is applied until deadline Di.
After Di, the concession value CVi+1 is applied until deadline
Di+1 and so on. These values can be used to preset a nego-
tiation strategy, i.e. conceder, Boulware, linear or a custom

3.5. Service Level Objectives (SLOs) 51

concession strategy can be defined by varying the values in
this set.

• Negotiation strategy (NegotiationStragety()N) is a function
which dynamically fills the negotiation parameters in set CVs
and may depend on opponent’s negotiation strategy, number
of competitors, demand/supply and/or any other factor. This
function is used to implement any type of automated and
dynamic negotiation strategy by modifying the set CVs on
runtime.

Renegotiation parameters define a set of new values or expres-
sions for the specified parameters of a metric for which negotiation
information is to be updated for the renegotiation process. This
set is defined as:
RNP F

s = {RNP F
1 , ...RNP

F
r } where r ≥ 0, RNP F

i ∈ RNP F
s ,

0 ≤ i ≤ r and RNP F
i = 〈RNPID,ResetParameterName,

NewV alueOrExpression〉. RNP F
s enables to automate the rene-

gotiation process in case of service failure or SLA violation by
linking the RNPID to the violation rules defined in section 3.6.
Monitoring parameters are the following:

• Computation formula (ComputationFormulaF) is a well formed
mathematical expression to compute the value of a metric
which may include the observed/calculated values of other
metrics in the same SLA, constants and/or variables contain-
ing values from the metrics of other SLA(s), web service(s),
database value(s) or any other internal and/or external data
source.

• Monitoring schedule (MSF) is a set which contains different
monitoring schedules at which monitoring of the metric is per-
formed:
MSFs = {MSF1 , ...,MSFt } where t ≥ 0, MSFi ∈ MSFs , 1 ≤
i ≤ t, MSFi = 〈MSStartDatei, MSEndDatei,

MSStartT imei, MSEndT imei, MSFreqi, StoreLocation〉
and MSFreqi ∈ {ms, ss,mm, hh, dd,mm, yy}.
MSStartDatei, MSEndDatei, MSStartT imei and

3.6. Guarantees / Obligations 52

MSEndTimei are start and end dates and times, respectively,
at which monitoring schedule MSFi of a metric starts and
ends. MSFreqi is the monitoring frequency which contains
one of the value from the set {ms, ss,mm, hh, dd,mm, yy} to
represent monitoring of the metric every millisecond, second,
minute, hour, day, month or year, respectively. This flexi-
ble monitoring schedule technique allows to define the differ-
ent monitoring schedules for different weekdays, for different
months of the year or for a particular season to accommo-
date the dynamic requirements of cloud service monitoring.
StoreLocation contains the data storage location where the
monitored value is stored.

3.6 Guarantees / Obligations

An SLA guarantee is an agreed commitment by a cloud service
provider to maintain a certain service level. Guarantees are de-
fined with respect to the agreed values of metrics in the SLOs. A
guarantee has the following parameters:

• Guarantee ID (GuaranteeIDρ) is a unique identifier.

• Guarantee precondition (GuaranteePreconditionρ) is a com-
bination of one or more boolean expressions (containing ob-
served/calculated value(s) of the metric(s), variable(s) and/or
constant(s) joined by boolean operators (AND, OR, NOT).

• Guarantee action (GuranteeAction()ρ) is a function that per-
forms predefined tasks (e.g. automatically logging of the spe-
cific information, changing
ServiceCurrentStateF or preparing a service claim docu-
ment).

Obligations are also defined as guarantees with similar parameters
as guarantees, i.e. ObligationIDρ, ObligationPreconditionρ and
ObligationAction()ρ. Obligations are different from guarantees in
such a way that obligation may not depend on observed/calculated
metric values but rather may depend on external conditions e.g.

3.7. S3LACC Framework 53

Figure 3.3: An overview S3LACC framework

a cloud service user may be obliged to inform the cloud service
provider two hours in advance if further resources are required
compared to what is agreed in the SLA.

3.7 S3LACC Framework

S3LACC framework briefly gives an overview of the S3LACC’s us-
age in a cloud environment. An overview of S3LACC framework
is depicted in Figure 3.3. Service requirements come from the
CSU which starts a provider discovery process and may involve a
broker/third party as a support service party. It is assumed that
all CSPs for the same service have the similar SLA templates.
The SLA processing service selects the shortlisted CSPs, negoti-
ation parameters are added to the SLA template and any quali-
tative metrics are transformed to their quantitative utility levels
by qualitative metric processor. A custom negotiation strategy
may also be embedded in the SLA as described in above sections.
The negotiation service may involve a broker to mediate the ne-
gotiation process. After the negotiation process, agreed values
from the SLA are communicated to the monitoring service com-

3.8. Use Case 54

ponent. The monitoring service reads real-time metric values from
the specified locations on the specified time schedule. Variables are
stored separately which contain up-to-date data values from dif-
ferent sources. Each variable contains a particular data value from
a specific data source. These variable values are used as input in
metric computation formula and also in condition expressions (e.g.
in GuaranteePrecondition or in ObligationPrecondition). The
guarantees/obligations service checks for service violations or obli-
gations. An integration with external system is achieved through
an integration service which transforms the SLA data to XML for-
mat.
The SLA management tasks are performed as actions in a guar-
antee or an obligations component. A use case in the following
section illustrates SLA management tasks in guarantees’ and obli-
gations’ actions.

3.8 Use Case

As a proof of concept, we transform a precise descriptive SLA of a
cloud based customer relation management (CRM) service S1 (as-
sumed) to the S3LACC based SLA. Let’s consider the following
scenario for the service S1:

A company ABC has its offices throughout the country and re-
quires S1 to be used by its employees (S1 users). ABC requires
that S1 should have availability from 95% to 100%. S1 may have 2
to 6 outages per month with maximum duration of 10 minutes per
outage. The S1 users should be authenticated using one of the pro-
tocols {TACACS+, RADIUS, DIAMETER, Kerberos, OpenID},
arranged in ascending order of priority. S1 users should be au-
thenticated within 5 seconds after submitting the login informa-
tion. The cloud service providers CSP1 and CSP2 offer S1. ABC
receives SLA template from CSP1 and CSP2, adds negotiation pa-
rameters according to its objectives and starts an automated nego-
tiation process with the CSP1 and CSP2. An agreement is made
with the CSP1 after negotiation process. According to the final
SLA, the following terms are agreed. If monthly availability of the

3.8. Use Case 55

Service description:
SLANameT = S1 SLA, ServiceProviderT = CSP1, ServiceUserN = ABC
Variables:
var x1 = PlannedDowntime = 5× 5 = 25mins
var x2 = TotalServiceT imeAgreed =<Total agreed service time in the month>
var x3 = ActualAvailability = <Monitored value>
var x4[] = DurationPerOutageInTheMonth =<Array of outage durations>
var x5 = MonthlyServiceCost = x3 × <price per unit>
var x6[] = UserAuthenticationT imes =<Array of monitored values>
var x7 = MonthlyLoginRequests =<total number of login requests>
var x8 = AccountBalance =<External value from accounting system>
SLOs:
SLOIDT = SLO1, SLOName

T = Availability, MT
s (SLO1) = {M1,M2,M3}

SLOIDT = SLO3, SLOName
T = Authentication, MT

s (SLO3) = {M4,M5}
Metrics:
MetricIDT = M1, MetricNameT =Availability percentage
MetricIDT = M2, MetricNameT = Number of outages per month
MetricIDT = M3, MetricNameT = Duration per outage
MetricIDT = M4, MetricNameT = Authentication protocol
MetricIDT = M5, MetricNameT = Average authentication time per user
MetricIDT M1 M2 M3 M4 M5

IsNegotiableN true true true true true
IsMandatoryN true true true true true
WeightN 0.40 0.15 0.15 0.15 0.15
AcceptableV alueN 95% 6 10 mins TACACS+ 5 sec
DesiredV alueN 100% 2 1 min OpenID 1 sec
AgreedV alueF 96% 5 6 mins OpenID 3 sec
DeadlineN 20 4 10 5 5

CV N
s

{〈0.001, 15〉,
〈0.007, 20〉} {〈1, 4〉} {〈1, 10〉} {〈1, 5〉} {〈1, 5〉}

Computation
FormulaF

x3 + x1
x2

× 100 Length(x4) x4 None
Sum(x6)

x7

Table 3.2: Example of S3LACC based SLA for the scenario described in Section
3.8 (Part 1/2)

3.8. Use Case 56

Guarantees:
GuaranteeIDF = G1, GuaranteePreondition

F = M1 < 96%
- GuaranteeAction()F{

var ClaimAmount = 0.2× x5;
Send claim to CSP1 of ClaimAmount;
Send logged information to CSP1 for monthly service unavailability;

}
GuaranteeIDF = G2, GuaranteePreondition

F = M5 > 3 seconds
- GuaranteeAction()F{

var ClaimAmount = 0.07× x5;
Send claim to CSP1 of ClaimAmount;

}
Obligations:
ObligationIDF = O1,
- ObligationPreonditionF = x8 < reserve amount AND bill is due tomorrow
- ObligationAction()F{

Inform CSP1 about delay in payment
}

Table 3.3: Example of S3LACC based SLA for the scenario described in Section
3.8 (Part 2/2)

S1 is less than 96% then CSP1 will reimburse 20% of the monthly
service cost. S1 may have up to 5 outages per month with max-
imum duration of 5 minutes per outage. ABC is responsible to
provide logged information of service unavilability (date, time, du-
ration). If average user login time is more than 3 seconds then
CSP1 is liable to reimburse 7% of the monthly service cost. ABC
is responsible to inform CSP1, one day in advance if ABC wants
payment of the S1 to be delayed.
Above SLA description is transformed to the S3LACC based SLA
as shown in Table 3.2 and Table 3.3. In this use case, only rele-
vant SLA parts of the S3LACC are included in this description.
SLO1 (Availability) contains three metrics (with metric IDs M1,
M2 and M3) and SLO2 (Authentication) contains two metrics (a
qualitative metric M4 and and a quantitative metric M5). As-
sumed negotiation and agreement parameters are described for
each metric in a nested table for illustration. The metric parame-
ter WeightN is set by the ABC according to its priority (supposed)
for each metric. The negotiation process for M4 starts from high-

3.9. Summary 57

est priority authentication protocol (i.e. OpenID) and if not ac-
cepted by a CSP then a lower priority protocol is suggested in
next round. CV N

s represents the list of tuples containing conces-
sion value up to a specific deadline during the negotiation process,
e.g. {〈0.001, 15〉, 〈0.007, 20〉} for M1 indicates that 0.1% conces-
sion is given on initial preferred value of 100% until 15 rounds of
the negotiation process. From 16th round and until 20th round,
0.7% concession is offered. Variables (containing values of different
sources) are used in computation formulae of some metrics.

3.9 Summary

In this chapter, we have proposed a specification for SLAs in cloud
computing (S3LACC) with a good trade-off between complexity
and expressiveness . Our specification targets specific requirements
of cloud domain such as complex dependencies among different
metrics and composition of different metrics in one SLO (through
metric lists). Current approaches lack standardized structure def-
inition according to international standards for the cloud comput-
ing SLAs. Also, support for automation of the complete SLA life
cycle is generally ignored in most of the SLA specification lan-
guages and models. S3LACC meets all of these requirements by
defining an intuitive SLA structure which can be used to imple-
ment almost all types of negotiation strategies and monitoring
policies for an automated SLA life cycle. Also, renegotiations in
case of QoS violations and automated recycling of the SLA is pos-
sible using S3LACC. Qualitative parameters are an important part
of the cloud SLAs which are easily definable using the S3LACC.
Note: This SLA specification (S3LACC) has been published in
the following paper:
Waheed Aslam Ghumman, Alexander Schill. Structural Speci-
fication for the SLAs in Cloud Computing (S3LACC). In Pro-
ceedings of the 13th International Conference on Economics of
Grids, Cloud, System and Services (GECON), Springer Publish-
ing, September 2016, Athens, Greece.

Chapter 4

Automated SLA Negotiation

The SLA negotiation between a cloud service provider (CSP) and
a cloud service user (CSU) is a pivotal process in the SLA life
cycle. An SLA may include many negotiable quality of service
(QoS) parameters with each QoS parameter having multiple op-
tions. Different combinations of possible selections grow expo-
nentially as number of QoS parameters and their options grow.
Manually negotiating for all of the QoS parameters considering
their various options can be an erroneous and diligent task with
lower utility. It is gainful for both of the CSU and the CSP to
automate the negotiation process with minimum human interac-
tion. In previous chapter, a structural specification (S3LACC) is
presented to formally represent the SLAs for the cloud services in
a machine readable format. The SLA described in the S3LACC is
utilized as a basis in this chapter to include a negotiation strategy.
The negotiation process may involve a broker or agent to medi-
ate the negotiation process. Also, negotiation setups may differ
with respect to the number of CSUs and the CSPs involved in the
negotiation process. Each party (a CSU or a CSP) prepares its
offer with respect to its business objectives which are quantized
by assigning different utility levels (using a utility function) to the
different values of an SLA parameter. The party receiving the of-
fer evaluates the received offer using its offer evaluation function.
A party may accept an offer or reject an offer with or without
a counter offer. Subsequent offers usually include a concession
(calculated using a concession computation function) on initially

58

4.1. Negotiation Protocol 59

offered value to make an offer acceptable to the opponent. The
automated negotiation process can be divided into the following
sub tasks:

• Negotiation protocol (Section 4.1)

• Negotiation strategy (Section 4.2)

– Concession computation function

– Offer generation using utility function

– Offer evaluation function

4.1 Negotiation Protocol

The CSU’s requirement of a new cloud service leads the CSU to
discovery of the CSPs offering such a cloud service. After short-
listing the appropriate CSPs, the CSU gets an SLA template from
the relevant CSPs. The SLA template contains the SLA param-
eters including their values as a basis for the negotiation process.
The CSU starts negotiation process with each shortlisted CSP
separately. The CSU makes first offer to a CSP using the SLA
template, business objectives and requirement constraints. Ac-
quisition of new services without manual intervention is also a
mandatory requirement in most of the cases [27]. As QoS pa-
rameters of a cloud service are defined in an SLA, so it requires
an automatic negotiation process for an SLA to timely and effec-
tively acquisition of a cloud service. The negotiation protocol used
in this work is based on Rubinstein’s bargaining model [24] as de-
scribed in chapter 2, with few alterations. The negotiating parties
(the CSU and the CSP) exchange the offers using Rubinstein’s al-
ternating offer protocol, however, contrary to Rubinstein’s model,
the negotiation process in this work is time bound with limited
rounds of negotiation. Generally, the SLA negotiations are bound
by number of negotiation rounds (termed as deadline). However,
fixed number of rounds as a deadline approach may not be suit-
able for time critical cloud services. For example, consider a case
where a CSP requires to search for a new cloud service for sudden

4.1. Negotiation Protocol 60

increase in its web based utility service. If fixed-rounds are used
as a deadline during the negotiation in this example then there
might be a chance that SLA negotiation negotiation process with
different CSPs is delayed due to network delays, computation time
or due to complex negotiation strategies. Any delay in the negoti-
ation process might be costly for the CSU. Conversely, a deadline
based on amount of time ensures that either agreement is made
during the given time or negotiation process is terminated at the
end of the deadline. In this work, amount of time is used as a
deadline. In realistic scenarios, it might not be possible to enforce
a single deadline (same amount of time) for all CSPs and CSUs,
so there are higher chances that each CSP has its own deadline for
negotiation process, mentioned in the SLA template. On the other
hand, a CSU may have a different requirements for the negotiation
deadline according to its business objectives. So, a CSU may set
a different deadline than the deadline set by the CSP in the tem-
plate. However a CSU is not allowed to set the deadline greater
than the deadline of the CSP. The CSU is required to communi-
cate its shorter deadline to the CSP. Let TCSUmax and TCSPmax represent
the maximum time for the negotiation process individually set by
the CSU and the CSP, respectively such that TCSUmax ≤ TCSPmax and
Tmax is the maximum time for the complete negotiation process
then Tmax is the minimum of the TCSUmax and TCSPmax , i.e.:

Tmax = min(TCSUmax , T
CSP
max) (4.1)

Let
T ao be the time to generate an offer by a party a,
T a−→bt be the time to travel an offer, acceptance, rejection or con-
firmation from a to the other party b (offer receiver),
T be be the evaluation time taken by the party b to make a decision
(acceptance, rejection or counter offer),
T bco be the time taken by b to generate a counter offer, and
T ae be the time taken by a to evaluate the response (counter offer)
of b,
then total round trip time T a←→brtt of generating an offer by a and

4.1. Negotiation Protocol 61

getting its response or counter offer from b is following:

T a←→brtt = T ao + T a−→bt + T be + T bco + T b−→at + T ae (4.2)

The maximum number of complete negotiation rounds NRmax is
the floor of the division of the total time allowed for negotiation
by the time taken for one round trip of the negotiation process,
i.e.

NRmax =

⌊
T amax
T a←→brtt

⌋
(4.3)

Let NRact be the actual number of rounds completed during the
negotiation process including the decision round of acceptance or
rejection for an offer or counter offer, where NRact ≤ NRmax, then
total time for the negotiation process (TN) is

TN =

T a←→brtt ×NRact − T bco − T ae + T a−→bt if b accepts offer

T a←→brtt ×NRact − T ao − T be + T b−→at if a accepts counter

offer

T a←→brtt ×NRact − T bco − T ae if b rejects offer

T a←→brtt ×NRact + T a−→bt if a rejects offer

Tmax if negotiation

process timesout

(4.4)
If deadline of the negotiation process is based on number of nego-
tiation rounds then user’s control over time taken per negotiation
round is lost which may increase negotiation duration significantly.
The negotiation protocol (bound by maximum time allowed for the
negotiation process) is shown in Fig. 4.1. The negotiation process
of offers and counter offers continues until acceptance by one of
the parties, rejection by one of the parties or Tmax is reached. If
an acceptance is sent by one of the parties then other party sends
a confirmation of acceptance to complete the SLA agreement. If a
confirmation is not sent until Tmax then agreement is not made and
negotiation process is considered void. The two step acceptance
protocol (i.e. acceptance and confirmation) is beneficial for both
CSU and CSP. The CSU may evaluate offers of other CSPs after

4.1. Negotiation Protocol 62

Figure 4.1: Negotiation protocol based on alternating offer model

4.2. The Flip-Flop Negotiation Strategy and its Building Blocks 63

receiving an acceptance from the CSP and before making the final
selection. On the other hand, if an acceptance is sent by the CSU
then the CSP may evaluate offers of other CSUs before making its
final decision. A similar negotiation protocol is used by Dang et al.
[55] where acceptance and confirmation are termed as pre-accept
and accept, respectively. Similarly, pre-reject and reject are used
as a two phase rejection protocol in [55]. In this work, rejection is
only one step process and confirmation of rejection is not required.
This restriction of single step rejection enforces a very useful rule
that a party must send a counter offer if an offer is not accepted
to ensure the fair play, i.e. a party sending the rejection should
not expect a new offer from its opponent.

4.2 The Flip-Flop Negotiation Strategy and its

Building Blocks

In previous section, the negotiation protocol is explained. In this
section a concurrent negotiation strategy is presented for the model
setup 1−n without broker, i.e. one CSU negotiates with n number
of CSPs over SLA parameters. Before describing the algorithm for
the negotiation strategy, different components of the negotiation
strategy are formalized in the following subsections:

4.2.1 Time Based 3D Linear Utility Function

A utility function is used to rate the worthiness of a generated offer
or of a counter offer received from the other parties. Generally,
utility function U(x)is based on single parameter value x, i.e. y =
U(x). In the following, utility function U(x) is derived where x ∈
{offer, counter offer}.
Let Ma be a metric to measure an SLO. Ma has a best value Vb
(most desired value of the Ma) and a worst value Vw (also referred
as a reserve value or a worst acceptable value). The utility level
of Vb is umax, utility level of Vw is umin and ∆u = umax−umin. Let
V be a value of Ma in the interval [Vw, Vb] then the utility of the

4.2. The Flip-Flop Negotiation Strategy and its Building Blocks 64

value V is given by the function u(V) as below:

u(V) = umin + ∆u×
(
V − Vw
Vb − Vw

)
(4.5)

The equation 4.5 gives a linear utility function of any given value
V of a metric Ma. The utility level may increase or decrease with
increasing value of the metric depending on its ratio type (directly
proportional or inversely proportional). If utility level increases
with increasing value V then its directly proportional metric and
if the utility level decreases with increasing value V then its in-
versely proportional metric. In other words, if Vb > Vw then its
directly proportional metric and if Vw > Vb then its inversely pro-
portional metric. In most of the related work, either two types
of utility functions are defined separately for two types of metric
ratio types or a partial function is defined to calculate utility level
depending on the metric ratio type, e.g. in [36]. However, it is not
necessary to define two separate functions or a partial function for
calculating the utility level. The utility function defined in the
equation 4.5 covers both types of metrics.
An SLA contains one or more SLOs. Let Ms = {M1, ...Mm} be a
set of negotiable metrics wherem ≥ 1 and SLOs = {SLO1, ..., SLOn}
be a set of SLOs, where n ≥ 1. Each SLOi ∈ SLOs is measured
by a unique subset of metrics Mi ⊂ Ms where 1 ≤ i ≤ n. If
SLOi does not contain any negotiable metric then Mi = ∅. An
offer Oa−→b

k (also termed as a bid in literature) from the party a

to the party b is comprised of the selected values of all negotiable
metrics, i.e. Oa−→b

k = {V a−→b
1,k , ...V a−→b

m,k } where Oa−→b
k ∈ Oa−→b

s ,

Oa−→b
s = {Oa−→b

1 , ..., Oa−→b
p } and 1 ≤ k ≤ p. Similarly, COb−→a

s =
{COb−→a

1 , ..., COb−→a
q } are counter offers from the party b to the

party a. Each metric Mj also contains a weight wj representing
its priority, where 1 ≤ j ≤ m. The selected value of metric Mj in
a kth offer from a to b is V a−→b

j,k . The overall utility U(O) of an
offer O is computed as below (using equation 4.5):

U(Oa−→b
k) =

m∑
j=1

wj × u(V a−→b
j,k) (4.6)

4.2. The Flip-Flop Negotiation Strategy and its Building Blocks 65

A similar utility function (with few variations) is used by the dif-
ferent SLA negotiation approaches, e.g. in [35]. The difference
in the utility function defined in the equation 4.6 and in the [35]
is that the overall utility in equation 4.6 is computed using the
individual utility (Vj) of each metric Mj whereas overall utility in
[35] is computed using the real selected value of each metric.
As discussed in Section 4.1, the negotiation protocol is time depen-
dent rather than depending on the number of negotiation rounds.
An earlier agreement is in favor of both CSP and CSU. The utility
may decrease if an agreement is made towards the end of the ne-
gotiation process. The utility functions given in the equations 4.5
and 4.6 are two dimensional, i.e. the value Vj and its utility u(Vj).
Considering this fact, computation of the overall utility should also
include the effect of time elapsed during the negotiation process.
So, equation 4.5 is modified to compute a time dependent three
dimensional utility function u(V a−→b

j,k , Tε), time as a third dimen-

sion) for the value V a−→b
j,k of a metric Mj in the equation 4.7 as in

the following:

u(V a−→b
j,k , Tε) = uT=0

min + ∆uT=0×

(
V a−→b
j,k − Vw
Vb − Vw

)
− (λT ×Tε) (4.7)

where Tε is the unit number of time elapsed during the negotia-
tion process, uT=0

min is the utility for the value Vw at the start time,
i.e. T = 0, uT=0

max is the utility for the value Vb at time T = 0,
∆uT=0 = uT=0

max − uT=0
min and λT is the depreciation factor to deter-

mine the decrease in the initial utility of Vj due to passage of time.
Similarly, the overall utility function U(O) (equation 4.6) is modi-
fied to include the effect of the time elapsed during the negotiation
process as below:

U(Oa−→b
k , Tε) =

m∑
j=1

wj × u(V a−→b
j,k , Tε) (4.8)

Example 4.2.1 (3D Linear Utility Function) Let’s consider an
example metric availability percentage including the effect of time

4.2. The Flip-Flop Negotiation Strategy and its Building Blocks 66

Tε Availability Percentage
100 99.9 99.8 99.7 99.6 99.5

0 1 0.9 0.8 0.7 0.6 0.5
1 0.9 0.8 0.7 0.6 0.5 0.4
2 0.8 0.7 0.6 0.5 0.4 0.3
3 0.7 0.6 0.5 0.4 0.3 0.2
4 0.6 0.5 0.4 0.3 0.2 0.1

Table 4.1: Example data for the availability percentage metric with effect of Tε
on utility level

on its utility level as given in the following:
uTmin = 0 = 0.5 (minimum utility of the availability percentage
value Vj at time T = 0)
uTmax = 0 = 1 (maximum utility of the availability percentage value
Vj at time T = 0)
∆uT=0 = 1− 0.5 = 0.5 (difference in the minimum and maximum
utility values at T = 0)
Vw = 99.5 (worst acceptable value of the metric availability per-
centage)
Vb = 100 (best possible value of the metric availability percentage)
λT = 0.1 (depreciation factor, i.e. utility decrease by 10% with
passage of every unit of time)
By using above data along with the different values of the avail-
ability percentage and time in the equations, different values of the
utility level are obtained as shown in table 4.1, e.g.:

u(99.8, 3) = 0.5 + 0.5×
(

99.8− 99.5

100− 99.5

)
− (0.1× 3) = 0.5

The availability percentage is given in the second row from column
two to seven. Elapsed unit time (Tε) is given in first column from
row three to row seven. The utility level of availability percentage
with respect to elapsed time is given in the cells from (2, 3) to (7, 7)
where first elements in (2, 3) and (7, 7) are column numbers and
second elements are row numbers. The graphical representation of
this three dimensional data is shown in Figure 4.2.

4.2. The Flip-Flop Negotiation Strategy and its Building Blocks 67

0	

1	
2	

3	
4	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

100	

99.9	

99.8	

99.7	

99.6	

99.5	

U
"l
ity

	

Time	

Figure 4.2: Example of time based 3D linear utility function

4.2.2 Concession Computation using Polynomial Inter-
polation

Concession is the amount which is applied on the initial value
of the metric and it reduces the utility of a negotiable SLA pa-
rameter. By allowing the concession, a party is moving towards
its opponent’s preferences. By allowing an inaccurate concession
amount without due consideration of the negotiation environment
factors (e.g. opponent’s concession pattern, deadline or overall
utility) may result in a lesser useful agreement. In this section,
a concession computation method is presented which is based on
opponent’s concession pattern using the polynomial interpolation.
The estimation of the opponent’s concession for later offers is used
as a basis to compute CSU’s own concession value. The process of
the concession computation is explained in the following.
The first offer from the CSU is generated with the most preferable
values of all negotiable metrics which gives the maximum utility.
For the initial four rounds of the negotiation process, the CSU uses
the concession value as specified in the negotiation parameters of
Mj (see Section 3.5.1). Let Ts = {T0, T1, ..., Tmax} be a set of unit
time values in increasing order such that Tu ∈ Ts, 0 ≤ Tu ≤ Tmax.
The first concession (ζb−→a1 (Mj)) on metric Mj from the opponent

4.2. The Flip-Flop Negotiation Strategy and its Building Blocks 68

b to a is ζb−→a1 (Mj) = V b−→a
j,2 − V b−→a

j,1 , i.e. value of metric Mj

in the counter offer 2 subtracted by the value of the metric Mj

in the counter offer 1. Similarly, the set of concession value for
the metric Mj is ζb−→as,j = {ζb−→a1,j , ..., ζb−→aq−1,j } for the set of points
in time Ts(CO

b−→a) = {T (COb−→a
2), ..., T (COb−→a

q)} at which the
counter offers are received, respectively. The opponent’s conces-
sion function (αj(Tu)) for the metric Mj on the basis of its last
three concession values, received in the counter offers (using poly-
nomial interpolation method) is computed as given in the following
equation:

αj(Tu) =
ι+2∑
ι=v

0≤v≤q

 v+3∏
κ=v+1
κ6=ι

Tu − T (COb−→a
κ)

T (COb−→a
ι)− T (COb−→a

κ)

 ζb−→aι,j (4.9)

Semantically, equation 4.9 gives a function to compute the oppo-
nent’s concession value at time Tu using the last three concession
values and the points of time at which last three counter offers
were received. Using equation 4.9, opponent’s concession is pre-
dicted for the remaining negotiation process considering the ex-
pected number of negotiation rounds using equations 4.2 and 4.3,
i.e. {αj(Tu), αj(Tu + T a←→brtt), ..., αj(T (COb−→a

q))}. By evaluating
the opponent’s expected concession values in all of the remaining
counter offers (using equation 4.9), it is possible to predict the ex-
pected final value V b−→a

j,q for a metric Mj in the final counter offer
COb−→a

q that opponent is expected to offer. Let Vj,w is the worst
acceptable value (reserve value) of the metric Mj then the user’s
concession UC is set as given in the following:

UC = γj(Tu) =

V a−→b
j,k − V b−→a

j,q − θ
NRrem

if Vj,w ≤ V b−→a
j,q

V a−→b
j,k − Vj,w − θ

NRrem
if Vj,w > V b−→a

j,q

(4.10)

4.2. The Flip-Flop Negotiation Strategy and its Building Blocks 69

T a0

V a−→b
j,k

T (Oa−→b
k)

V a−→b
j,p V b−→a

j,q
Vj,w

T amax
θ

Figure 4.3: Concession computation γj(Tu) if Vj,w > V b−→a
j,q

T a0

V a−→b
j,k

T (Oa−→b
k)

V a−→b
j,p

Vj,w V b−→a
j,q

T amax
θ

Figure 4.4: Concession computation γj(Tu) if Vj,w ≤ V b−→a
j,q

where NRrem are the remaining number of rounds in the nego-
tiation process, i.e. until the last counter offer is received and
NRrem = NRmax −NRact and θ is the amount that is subtracted
further from the expected final counter offer value (V b−→a

j,q) from
the opponent to keep a gap between V b−→a

j,q and the last expected
offer (V a−→b

j,p) of the user , which is also useful to hide the exact
reserve value Vj,w from the opponent. This gap (θ) is added in the
final offer (V b−→a

j,q) if agreement is not reached until the final offer.
This method dynamically changes user’s concession by predicting
the opponent’s expected offer using polynomial extrapolation. The
representation of the values in equation 4.10 is shown in Figures
4.3 and 4.4 for the first and the second case of the equation 4.10,
respectively.

4.2.3 Flip-Flop Negotiation Strategy

As initial offer from the CSU contains best possible values of all
metrics, it generates highest utility for the CSU. Subsequent offers
and counter offers yield lesser utility. On the other hand, selection
of suitable values for each metric is a complex task. The num-
ber of possible combinations of different values of the negotiable
metrics grows very rapidly as number of metrics (in general liter-
ature called as issues) and their acceptable values increase. For
instance, if number of negotiable metrics is m and each metric has
χ number of possible values then total numbers of possible offers
are χm. In realistic scenarios, each metric has different number of

4.2. The Flip-Flop Negotiation Strategy and its Building Blocks 70

possible values. The total number of possible offers (NOmax) for
m number of metrics with each metric having different number of
possible values is computed as given in the following equation:

NOmax =
m∏
j=1

NVj (4.11)

where NVj is the number of possible values in metric Mj. Each
offer may have different utility and different offers may have same
utilities due to difference of time at which they are selected. In a
limited amount of negotiation time, it is hard to optimize the ne-
gotiation result by sending every possible combination as an offer
starting from the highest utility offer and moving towards the low-
est utility offer. So, an intelligent strategy is required to select the
appropriate offers during the negotiation process. In this section
a negotiation strategy is presented which selects the appropriate
value of each metric by considering the opponent’s concession pat-
tern and by utilizing the time based 3d utility function. The main
idea is to reach an early agreement and to increase the utility level
due to time. The negotiation strategy is outlined in the following:

1. The negotiation process starts by generating the user’s (CSU)
offers using the concession value as set in metric’s negotiation
parameters (as defined in the SLA specification presented in
chapter 3) until NRact = 4;

2. The counter offers from the opponent (CSP) and the points
in time (when they are received) are recorded;

3. Opponent’s concession is estimated based on the first four
counter offers using polynomial extrapolation (equation 4.9);

4. User’s concession (UC) is determined according to the equa-
tion 4.10;

5. User increases UC by a factor δ i.e. UC ′ = UC + δ such
that estimated number of negotiation rounds are decreased
by 1. The motive to increase user’s concession from UC to
UC ′ is to reach an early agreement and to achieve higher

4.2. The Flip-Flop Negotiation Strategy and its Building Blocks 71

utility due to time (as a same metric value has higher utility
at earlier agreement time). For instance, if UC is determined
with respect to NRrem then:

UC ′ =
V b−→a
j,q − θ − V a−→b

j,k

NRrem − 1
(13)

and δ = UC ′ − UC. This process of increasing the conces-
sion is termed as flip. The δ value is also pushed to a stack
(ConcessionStack) to keep track of increased concessions val-
ues;

6. If opponent keeps its concession rate constant (same as it
was in previous counter offer) or decreases the concession
value (indicating that opponent is following a greedy strat-
egy), then user recalculates UC using equations 4.9 and 4.10.
If ConcessionStack is not empty then a value (σ) is popped
from the stack and UC is subtracted by the σ i.e. UC ′′ =
UC − σ. This process of decreasing the concession value is
termed as flop. The intuition behind flop step is to recover
the loss that was made in previous offer with a motive to reach
an agreement and which was not possible due to opponent’s
greedy strategy;

7. After flop step, the user attempts another flip step while
preparing the next offer and δ is moved to the ConcessionStack ;

8. If opponent responds with an increased concession such that
percentage increase is equal to or greater than user’s increase
percentage then user keeps on repeating flip step until oppo-
nent’s concession becomes again constant or opponent’s con-
cession is decreased resulting in a flop step. The condition of
comparing percentage increase (of the user’s concession and
percentage increase of the opponent’s concession) ensures that
agreement is still reached at equal or better value (despite
increased concession) than it was expected with initial con-
cession UC;

9. The flip-flop process continues until an agreement is reached

4.2. The Flip-Flop Negotiation Strategy and its Building Blocks 72

Figure 4.5: Flip-flop negotiation strategy flowchart

or negotiation process times out.

Above process is depicted in Figure 4.5. The flip-flop negotiation
strategy is very safe to be used such that even in worst case no
loss is made to user as any increase during the flip process is re-
versed in the flop step if flip was not useful to the user. On the
other hand, if opponent responds positively then, with an increase
in concession with the same percentages by the user and the op-
ponent, makes a win-win situation, i.e. both reach at the same
agreement value as it was expected with initial concession rates
but in lesser number of rounds. The acceptance or rejection of a
counter offer is determined based on the condition that if counter
offer from the opponent has better utility than the user’s next of-

4.3. Multi-Provider Concurrent Negotiations 73

fer and it is better than or equal to reserve value then the counter
offer is accepted.

4.3 Multi-Provider Concurrent Negotiations

In above sections, negotiation method for a single user and sin-
gle provider is presented. However, in realistic scenarios, a CSU
generally has more than one choices with similar cloud services.
Let Ps = {P1, ..., Pρ} be the list of providers and Pi ∈ Ps is a
provider from the list. In the following, the negotiation process
with multiple providers using above negotiation strategy is given:

1. A concurrent negotiation coordinator CNC manages the multi-
provider concurrent negotiations. The tasks of the CNC in-
clude starting a negotiation service NS concurrently for each
provider Pi, evaluating the accepted offers or counter offers
and making decision of the final provider selection

2. A CSU gets SLA templates from all of the shortlisted CSPs

3. Deadline for the negotiation process is set according to the
smallest of (i) all CSPs’ deadlines or (ii) CSU’s deadline

4. All providers are informed about the negotiation deadline if
its shorter than any of them

5. CNC starts an instance of NS concurrently for each provider
Pi

6. Each NS initiates offer generation using the rules and strate-
gies discussed in Section 4.2 for a single CSP

7. If a CSPi accepts an offer sent by an NSi , then the NSi com-
municates acceptance to the CNC . The CNC collects infor-
mation from all of the other NSs (which are still in the nego-
tiation process) about their expected overall utility from the
predicted agreement value. As this model is based on 3D util-
ity function which considers time as an important factor, so

4.4. Experimental Verification 74

the NSi (reporting earlier acceptance from the CSPi) is com-
pared with all other NSs which are still in process with respect
to their expected overall utility. If the NSi has greater utility
than the other (that are still in process) then an acknowl-
edgment of acceptance is sent to the corresponding CSPi and
negotiation process with all of the remaining CSPs is termi-
nated

8. If an NSi gets a counter offer from a CSPi such that the
counter offer has greater or equal utility than the next of-
fer to be sent by the NSi then the NSi reports that counter
offer to the CNC to make a decision for acceptance of the
counter offer. The CNC compares the expected utilities of
the remaining NSs and the counter offer is accepted if all re-
maining NSs have lesser expected utility at agreement time.
After an acknowledgment of the acceptance from the CSPi

is received, the negotiation process is concluded and all other
NSs send a termination message to their corresponding CSPs.

4.4 Experimental Verification

We have implemented the flip-flip negotiation strategy (using Java)
for multi-providers (opponents) and single user to negotiate con-
currently in real-time. All experiments are performed on a Mac-
Book Pro (Mid 2010) 2.66 GHz Intel Core i7 with 4GB memory.
Example data is generated randomly (but with controlled lim-
its) for different experiments. All metrics are considered to be
inversely proportional metrics with user perspective i.e. increas-
ing the value of a metric decrease the utility level. Experiments
are performed with same data using flip-flop negotiation strategy
and without using flip-flop negotiation strategy. Five metrics are
included in the experiments. For each CSP, random data is gener-
ated for each metric and worst value for each metric in CSPs’ data
is kept lesser than then worst value for the same metric in user
data. The reason behind this step is to ensure that agreement is
possible between user and the CSP. If the CSP’s worst acceptable

4.4. Experimental Verification 75

Vb Vw UC uT=0
max uT=0

min Weight λT
Metric 1 39 79 1.33 1 0.66 0.14 0.12
Metric 2 72 95 0.77 1 0.69 0.18 0.1
Metric 3 65 86 0.70 1 0.56 0.2 0.11
Metric 4 37 64 0.90 1 0.54 0.15 0.1
Metric 5 53 103 1.67 1 0.66 0.13 0.12

Table 4.2: Example metric data for Experiment 1

Tmax(ms) θ T a←→bRTT (ms) T a−→bt

NS1 115000 14 3000 1
NS2 121000 19 5000 1
NS3 133000 20 4000 2
NS4 117000 20 5000 3
NS5 130000 19 6000 3
NS6 146000 17 3000 1
NS7 140000 14 2000 2
NS8 102000 12 4000 1
NS9 146000 13 2000 3
NS10 140000 19 4000 2

Table 4.3: Negotiation Service (NS) data for Experiment 1, one NS is created
for one provider

value is higher than the user’s worst acceptable value then agree-
ment is not possible in automated negotiation environment until
a much intelligent strategy is applied which can make human like
decisions i.e. even agreement is not possible and the CSP has free
resources then CSP may accept an offer lesser than its worst ac-
ceptable value. We elaborate here results of three different exper-
iments (all performed with completely different data). The data
for user metrics (used in Experiment 1) is shown in Table 4.2. For
Experiment 1, ten CSPs are included in the negotiation process
and one NS is created for one CSP to negotiate concurrently with
each CSP. The data for the NSs used in Experiment 1 is shown
in the Table 4.3. The CSP’s concession strategy is based on a ran-
dom approach such that if user increases its concession to reach
an agreement (flip) then there are 66.66% chances that CSP also
increases the concession by the same or greater percentage than
the percentage increase in user’s concession and 33.33% chances
are that CSP decreases its concession in its counter offer adopting

4.4. Experimental Verification 76

Vb Vw Concession
Metric 1 137 61 3.8
Metric 2 134 79 2.75
Metric 3 120 73 2.35
Metric 4 96 59 1.85
Metric 5 168 88 4

Table 4.4: Data for first CSP (NS1) for Experiment 1

the greedy approach. The input data for only first CSP included
in (Experiment 1) is shown in the Table 4.4 as an example. The
comparison of the utility levels (achieved using the flip-flop nego-
tiation strategy and without using it) is shown in Fig. 5.3 for the
Experiment 1. These utility levels represent the agreement utility
or the utility of the offer or counter offer that is accepted by the
CSP or by the user, respectively. It can be noted in Fig. 5.3 that
the flip-flop negotiation achieved higher or equal utility in 90% of
the cases in Experiment 1. A similar comparison for Experiment
2 is shown in Fig. 5.4 where the flip-flop generates better or equal
utility level in 100% cases. The difference in percentage of higher
or equal utility level is due to the difference in the data that is
used in these two experiments and due to the CSP’s concession
strategy (with 33% chances of adopting greedy strategy). How-
ever, despite these mixed concession strategies from the CSPs, the
flip-flop negotiation strategy performs better due to its safe con-
cession approach, i.e. in one step, concession is increased (flip)
to reach an early agreement but if, as a response, the CSP reacts
with greedy approach then the flip-flop strategy reverts back the
increase in concession during the previous offer by decreasing the
concession in the current offer (flop). Fig. 4.8 shows the compar-
ison of time to reach the agreement with each CSP in Experiment
2. The time to reach an agreement using the flip-flop negotia-
tion strategy is lesser or equal for all of the cases in Experiment
2. The Fig. 5.5 shows the results of Experiment 3 where util-
ity levels for the agreements made using the flip-flop and without
using the flip-flop negotiation strategy are shown. Based on the
experimental results, it can be claimed that flip-flop negotiation

4.4. Experimental Verification 77

-0.20	

-0.10	

0.00	

0.10	

0.20	

0.30	

0.40	

0.50	

0.60	

0.70	

0.80	

CSP0	 CSP1	 CSP2	 CSP3	 CSP4	 CSP5	 CSP6	 CSP7	 CSP8	 CSP9	

Ag
re
em

en
t	U

*l
ity

	

Without	Flip-Flop	 With	Flip-Flop	 U*lity	Difference	

Figure 4.6: Experiment 1: comparison agreement utility for negotiation using
flip-flip and without flip-flop

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

CSP1	 CSP2	 CSP3	 CSP4	 CSP5	 CSP6	 CSP7	 CSP8	 CSP9	 CSP10	

Ag
re
em

en
t	U

*l
ity

	

Without	Flip	Flop	 With	Flip	Flop	 U*lity	Difference	

Figure 4.7: Experiment 2: comparison agreement utility for negotiation using
flip-flip and without flip-flop

4.4. Experimental Verification 78

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

CSP1	 CSP2	 CSP3	 CSP4	 CSP5	 CSP6	 CSP7	 CSP8	 CSP9	 CSP10	

Ag
re
em

en
t	T

im
e	

Without	Flip	Flop	 With	Flip	Flop	

Figure 4.8: Comparison of time taken to reach an agreement for Experiment 2

-0.20	

-0.10	

0.00	

0.10	

0.20	

0.30	

0.40	

0.50	

0.60	

0.70	

CSP	1	 CSP2	 CSP	3	 CSP	4	 CSP	5	 CSP	6	 CSP	7	 CSP	8	 CSP	9	 CSP	10	

Ag
re
em

en
t	U

*l
ity

	

Without	Flip-Flop	 With	Flip-Flop	 Difference	

Figure 4.9: Experiment 3: comparison agreement utility for negotiation using
flip-flip and without flip-flop

4.5. Summary 79

strategy performs better in most of the cases and is very useful for
such environments in the cloud services SLA negotiation where
opponent’s negotiation strategy or concession rate are unknown.
Also, the flip-flop negotiation strategy is very useful for such cloud
environments where time is critical during the negotiation process
as the flip-flop negotiation strategy decreases the time to reach an
agreement which is beneficial for both CSU and CSP. The CSP’s
benefit of reacting positively to a flip-flop negotiation strategy is
that the CSP may allocate its resources efficiently to its customers
rather than keeping them reserved until a negotiation process is
concluded. In realistic cases, the communication time between a
CSU and a CSP is a bottleneck to any efficient negotiation strat-
egy. So, if number of negotiation rounds increase due to a greedy
negotiation strategy then time delays can be costly.

4.5 Summary

In this chapter, we have presented an SLA negotiation strategy
that is designed specifically for such cloud services which include
time as a critical factor during the negotiation process. A two-
step acceptance based negotiation protocol is defined to support
the flip-flop negotiation strategy along with the basic time calcu-
lations during the negotiation process. The fine grained approach
in this work for negotiation protocol and for the negotiation strat-
egy elaborates the building blocks of the negotiation process. The
major contributions of this work include the design of a negotia-
tion strategy for the SLA negotiation that considers the effect of
time on the utility during the negotiation process and an efficient
method of offer selection (using the polynomial extrapolation) to
reach an agreement in lesser time. The experimental results show
that such approach is beneficial to both CSU and CSP with re-
spect to time and the utility level of the agreed SLA. The flip-flop
negotiation strategy estimates the expected final offer from the op-
ponent and tries to reach at the same offer value earlier in time by
increasing the concession in a safe mode to mitigate the possible
utility loss due to increase in concession. A multi-provider concur-

4.5. Summary 80

rent negotiation method is also presented which uses the flip-flop
negotiation strategy.
Note: The work presented in this chapter has been published in
the following paper:
Waheed Aslam Ghumman, Alexander Schill, Jörg Lässig. The
Flip-Flop SLA Negotiation Strategy Using Concession Extrapola-
tion and 3D Utility Function. In the proceedings of the 2nd IEEE
International Conference on Collaboration and Internet Comput-
ing (CIC). November 2016, Pittsburgh, PA, USA.

Chapter 5

Automated SLA Monitoring

5.1 Introduction and Motivation

Successful negotiation process between a cloud service user (CSU)
and a cloud service provider (CSP) ends up with an agreed ser-
vice level agreement (SLA). Mostly, violations of SLA terms are
related to agreed service levels to be provided by a CSP. However,
adversely, the CSU is responsible for monitoring of SLA violations
and to claim service credits based on SLA violations. An SLA
for a cloud service generally contains multiple guarantees and QoS
(quality of service) parameters. In real world scenarios, a cloud
service is measured by precise key performance indicators (KPIs).
The number of KPIs are dependent on complexity of a cloud ser-
vice and objectives of a CSU. Manually monitoring all KPIs to
keep track of service parameters as agreed in the SLA can eas-
ily be error-prone, time consuming and a laborious task resulting
in consumption of human/technical resources. For example, ser-
vice availability defined in terms of five nines (99 .999 %) requires
high level of precision while monitoring. So, a fully automated
SLA monitoring method is essential to observe KPIs, to assure
quality of service and to predict the future performance of the
cloud service. In this chapter, a distributed monitoring model
for the cloud SLAs is presented which is extensively based on the
S3LACC (presented in Chapter 3). It is assumed in this chapter
that all KPIs and information relevant to the monitoring process
are readily available.

81

5.2. Distributed Monitoring of the Cloud SLAs 82

5.2 Distributed Monitoring of the Cloud SLAs

Cloud services offer easy access to contracted resources (software,
infrastructure, platform) from more than one locations generally.
A central monitoring system might not be sufficient to capture
KPIs from different locations. A classical distributed monitoring
system of cloud SLAs may be modelled as given in the following:

• Agreed SLA is stored on a central location (also referred as a
monitoring coordinator);

• All locations (using the cloud service) report events/infor-
mation, significant with respect to the quality of service and
agreed parameters;

• Monitoring coordinator analyzes the reported events/infor-
mation and manages the the cloud services accordingly.

Above model is represented in the Figure 5.1 where an arrow be-
tween a location and monitoring coordinator indicates communi-
cation of events/information from a location to the monitoring
coordinator and a response from the monitoring coordinator. The
number of events or amount of information reported from a cloud
service location to the monitoring coordinator is very significant.
Because larger number of reported events may consume network
bandwidth and also may increase workload on monitoring coor-
dinator whereas lesser number of reported events may decrease
the chances of reporting an important information/event to the
monitoring coordinator. Different approaches have been proposed
in literature to optimize the distributed monitoring with respect
to number of events to be reported. An analysis of similar opti-
mization problem is discussed in [56] where it is referred as the
countdown problem. The countdown problem is described as in
the following:

• There are k number of observers/sites (Ss = {S1, S2, ..., Sk})
on different locations such that Si ∈ Ss and 1 ≤ i ≤ k;

• Each observer sees some non-overlapping events, i.e. each
event is only seen by one observer;

5.2. Distributed Monitoring of the Cloud SLAs 83

Figure 5.1: Classical distributed monitoring model for cloud SLAs

5.2. Distributed Monitoring of the Cloud SLAs 84

• Target is to determine when a τ number of events have been
seen by an observer;

• If a small amount of information is sent to the coordinator
for each unusual event then total number of communications
are O(τ).

An initial solution for the countdown problem as discussed in [56]
proceeds as in the following:

• A limit τ/k is set as a necessary condition in the solution such
that at least one observer site should observe τ/k unusual
events before the threshold is reached;

• Each site begins observing events with an initial upper bound
of τ/k;

• Whenever local count ni of unusual event for a site Si has
reached the upper bound τ/k, then Si informs the coordina-
tor;

• The coordinator determines a new upper limit UL for all sites
such that UL = (τ − N)/k where N is cumulative count of
reported events so far;

• The coordinator sends a signal to all sites to reset their local
counts ni’s to a new upper limit UL;

• This process continues until UL is equal to 1 , and in that
case each site starts reporting every unusual event;

• The total number of communications in this method are
O(k2 log τ/k).

Few improvements to above method of distributed monitoring are
also discussed in [56] by modifying the reporting rules and/or
adding some constraints to the basic countdown problem.

5.3. Distributed Monitoring of Cloud SLAs Using Partial Violations 85

5.3 Distributed Monitoring of Cloud SLAs Us-

ing Partial Violations

In this section, a multi-level distributed monitoring approach is
presented for cloud SLAs. As discussed in Chapter 3, an SLA may
contain multiple service level objectives (SLOs) and an SLO may
contain one or more metrics. Moreover, an SLA contains guaran-
tees and obligations to assure the quality of service. Let,
SLOs = {SLO1, SLO2, ...SLOo} be the set of SLOs in an SLA
such that SLOj ∈ SLOs and 1 ≤ j ≤ o.
Ms = {M1,M2, ...Mm} be the set of metrics in an SLA such that
Ml ∈Ms and 1 ≤ l ≤ m.
After successful negotiation process, all SLOs and metrics have
agreed values along with guarantees and obligations. A violation
in the service term is determined by comparing the actual moni-
tored data with the value agreed in an SLA. However, as discussed
in above sections, reporting each violation in real time may choke
the network bandwidth and holding back critical violations may
result in financial, business and/or technical losses. So, it is im-
portant that each critical violation event must be reported imme-
diately and a violation event of lesser significance may be reported
at a later stage to optimize the communications between a site and
the coordinator. To achieve this goal, a partial violation level is
assigned to each metric. Each SLO is assigned a minimum number
of violations Ej that must occur before the information about vi-
olations is communicated to the monitoring coordinator such that
Ej ≥ 1 denotes the minimum number of violations for the SLOj.
Intuitively, an SLOj with higher partial violation value has lesser
Ej and vice versa. Laterally, a violation calculation method is
applied to all monitor-able metrics as described in the following:

• Let Vkw be the unacceptable value of a metric Mk and Vkr
be the routine value of the metric Mj such that Vkr is better
than Vkw. Routine value in this context means the value that
is generally observed for a metric when the cloud service is
running in normal condition.

5.3. Distributed Monitoring of Cloud SLAs Using Partial Violations 86

• The range between Vkw and Vkr for Mk is marked at p num-
ber of distinct points and a partial violation value PVn ∈ PVs
(where PVs = {PV1, PV2, ..., PVp}, 1 ≤ n ≤ p and PVn ∈
[0, 1]) is assigned to each point. PV1 is the value at Vkw and
PVp is the value at Vkr such that PVn < PVn−1 if the metric
is a directly proportional metric. Otherwise PVn > PVn−1,
PV1 = Vkr and PVp = Vkw, i.e. Vkw has higher partial vio-
lation value than Vkr. Semantically, it represents that as we
move closer to the final agreed value of a metric the partial
violation value increases. This mapping of the metric values
to the partial violation values results in a hash table where
each possible value of a metric (key) has its partial violation
value.

• The actual observed value of the metric is compared with the
partial violation values table and a PVn is selected based on
the corresponding value in the table.

• Each new value of PVn is added to the previous cumulative
sum for that metric and when sum is greater than 1 then one
violation is marked for the related SLO.

Above method of assigning the partial violation values to a metric
works as a controllable environment where violations are auto-
mated to be aggregated until Ej is reached.
The number of communications using the partial violation method
is derived as given in the following:

• Let k sites/locations have same number of (total o) SLOs for
one cloud SLA and SLOij represents the j − th SLO at site
Si;

• Let Eij represents the minimum number of violations thresh-
old for j − th SLO at site Si;

• Let Tij represents the total number of times the threshold Eij

is reached for j − th SLO at site Si;

5.3. Distributed Monitoring of Cloud SLAs Using Partial Violations 87

• Then total number of communications from all of the loca-

tions to the monitoring coordinator are O(
k∑
i=1

o∑
j=1

Tij).

Example 5.3.1

A site is monitoring a cloud service and the SLA for that cloud ser-
vice contains three SLOs ({SLO1, SLO2, SLO3}) with minimum
number violations for each SLO being {3, 5, 10}, respectively. The
SLO1 contains one metric M1 with routine value of 99 .9 and worst
value (below agreed value) of 99 .5 . Partial violation values are as-
signed to the M1 as shown in Table 5.1(a). As monitoring starts,

M1 value Partial violation value
99.9 0.00
99.8 0.01
99.7 0.02
99.6 0.08
99.5 1

(a) Metric value to partial violation map-
ping

SLO ID Minimum number of
violations

SLO1 3
SLO2 5
SLO3 10

(b) Minimum number of violations for each
metric

Table 5.1: Example data

the monitored value for M1 is compared with the mapping Table
5.1(a) and a partial violation value PV1 is selected based on the
monitored value. In next monitoring step, a new value for M1

is available which is again compared with the Table 5.1(a) to find
the PV2. The PV2 is added to the previous PV1 value and aggre-
gated in each monitoring step. If the aggregated PV ≥ 1 then one
violation is aggregated to the current total number of violations
for SLO1 as M1 belongs to SLO1 and aggregated partial violation
value is reset to 0. If current total number of violations for SLO1

are greater than or equal to 3 (using Table 5.1(b)) then this site
reports total violations along with the required information to the
coordinator. This process also enables to internally set alerts for a
service with deteriorating performance level by setting appropriate
partial violation values for a metric.

5.4. Implementation and Experimental Verification 88

5.4 Implementation and Experimental Verifi-

cation

The distributed monitoring presented in the above sections is based
on an assumption that monitoring data is readily available at
all distributed sites/locations. A prototype implementation is
achieved including that assumption for the Amazon S3 cloud ser-
vice. As monitoring requirements may vary from user to user
based on the business objectives, so the prototype implementa-
tion includes a custom interface for Amazon S3 rather than the
one provided by the Amazon. This custom implementation (using
the AWS SDK for Java1) enables to include the S3LACC based
automated monitoring as described in the following:

• A final SLA contains the agreed values, guarantees and obliga-
tions that are stored on each site/location using the S3 cloud
service;

• Whenever a user at any distributed location performs a ser-
vice task (e.g. upload, download or delete an object) then
required KPIs are precisely noted in the custom S3 environ-
ment. For example, if a user initiates an object upload request
then start time of the upload transaction, upload time and
confirmation receipt time might be noted by system to use
these values for comparison with the corresponding promised
parameters of the agreed SLA;

• Violations are detected and reported according to the proce-
dure described in the Section 5.3.

5.4.1 Experimental Validation Using Monitoring Simu-
lation

The purpose of this automated monitoring process is to reduce
the number of communications between a site and the monitoring
coordinator. A monitoring simulation program has been written in
Java to perform different experiments. The monitoring simulation

1https://aws.amazon.com/sdk-for-java/

5.4. Implementation and Experimental Verification 89

Figure 5.2: UML representation of monitoring simulation setup

5.4. Implementation and Experimental Verification 90

setup is explained in the following and a UML diagram of this
setup is shown in Figure 5.2:

• A metric contains a variable currentPartialViolationTotal to
hold the total of partial violations which initially set to 0 . As
value of this variable goes beyond 1 , one violation is reported
to the related SLO and variables values is decreased by 1 ;

• An SLO contains a list of one to three metrics (number of
metrics is random), a variable minNumOfViolations (gener-
ated randomly from the interval [1, 10]) to hold a threshold of
minimum number of violations that must occur before com-
municating violations to the monitoring coordinator and cur-
rentViolationsTotal to hold the current number of violations
for the SLO. The variable currentViolationsTotal is reset to
0 after the threshold minNumOfViolations has been reached;

• The method initializeSimulationData() generates a list of SLOs
which includes initialization of metrics list too;

• The simulateMonitoring() method takes an input parame-
ter numOfPartialViolations which indicates the number of
induced partial violations during the monitoring simulation
process;

• In simulateMonitoring() method, the following process is re-
peated numOfPartialViolations number of times:

– A SLO S is selected at random and then a metric M is
selected at random for that SLO;

– A partial violation value is randomly generated from the
interval [0, 1] and added to currentPartialViolationTotal
variable of the metric M selected in previous step;

– If currentPartialViolationTotal of M is greater than 1
then one violation is added to currentViolationsTotal of
S and one communication to the monitoring coordinator
is counted.

The above simulation is repeated for multiple experiments by vary-
ing the following parameters:

5.4. Implementation and Experimental Verification 91

• The variable numOfPartialViolations is changed from 20 to
200 by adding 20 in each experiment which results in total
of 10 experiments.

• A set of ten experiments is repeated for different number of
SLOs, i.e. 4 , 8 and 20

Number of partial violations per interval

SLOs
Total partial
violations

[0,.2[[.2,.4[[.4,.6[[.6,.8[[.8,1]
Number of
communi-
cations

4 20 3 8 1 4 4 0
4 40 5 3 9 8 15 4
4 60 12 16 11 12 9 5
4 80 21 16 16 10 17 6
4 100 18 24 19 19 20 9
4 120 24 16 16 30 34 13
4 140 33 25 27 23 32 11
4 160 28 27 37 28 40 15
4 180 32 36 34 35 43 16
4 200 38 37 37 48 40 19

Table 5.2: Experiment data and results with 4 SLOs

Number of partial violations per interval

SLOs
Total
partial
violations

[0,.2[[.2,.4[[.4,.6[[.6,.8[[.8,1]
Number of
communi-
cations

8 20 4 6 4 2 4 0
8 40 8 6 7 6 13 3
8 60 12 8 13 8 19 6
8 80 18 18 21 12 11 8
8 100 28 13 16 22 21 11
8 120 25 24 24 29 18 12
8 140 35 35 29 23 18 15
8 160 27 30 42 29 32 17
8 180 32 25 42 42 39 23
8 200 33 36 42 43 46 25

Table 5.3: Experiment data and results with 8 SLOs

The Table 5.2, Table 5.3 and Table 5.4 shows the data for three
sets of ten experiments using 4, 8 and 20 SLOs, respectively. The

5.4. Implementation and Experimental Verification 92

0	

30	

60	

90	

120	

150	

180	

210	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Co
un

t	

Experiment	Number	

Number	of	SLOs	=	4	

Total	ParDal	ViolaDons	 0	to	0.2	 0.2	to	0.4	

0.4	to	0.6	 0.6	to	0.8	 0.8	to	1	

	Number	of	CommunicaDons	

Figure 5.3: Experiment to evaluate the proposed method for number of com-
munications for 4 SLOs

0	

30	

60	

90	

120	

150	

180	

210	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Co
un

t	

Experiment	Number	

Number	of	SLOs	=	8	

Total	ParDal	ViolaDons	 0	to	0.2	 0.2	to	0.4	

0.4	to	0.6	 0.6	to	0.8	 0.8	to	1	

	Number	of	CommunicaDons	

Figure 5.4: Experiment to evaluate the proposed method for number of com-
munications for 8 SLOs

5.4. Implementation and Experimental Verification 93

Number of partial violations per interval

SLOs
Total
partial
violations

[0,.2[[.2,.4[[.4,.6[[.6,.8[[.8,1]
Number of
communi-
cations

20 20 3 3 4 4 6 3
20 40 9 10 13 6 2 7
20 60 12 12 5 17 14 9
20 80 16 11 16 15 22 16
20 100 10 20 16 28 26 23
20 120 18 28 34 22 18 27
20 140 27 27 28 28 30 27
20 160 34 37 29 28 32 27
20 180 36 30 29 40 45 36
20 200 35 37 40 47 41 42

Table 5.4: Experiment data and results with 20 SLOs

merged column Number of partial violations per interval in this
table represents the distribution of partial violation values in dis-
tinct equal intervals, e.g. the interval [0, .2[contains the number
partial violation values that range from 0 up to 0.2 (excluding .2).
The Number of communications column in Table 5.2 contains the
total number of communications to the monitoring coordinator as
a result of SLA violations. The data from Table 5.2 is represented
graphically in Figure 5.3. Similarly, Figure 5.4 and Figure 5.5 il-
lustrate the results of two sets of experiments for 8 and 20 number
of SLOs, respectively.
Experimental results validate the usefulness of the monitoring ap-
proach presented in above sections such that total number of com-
munications with the monitoring coordinator are fully customiz-
able to suit the specific functional requirements with respect to
different locations, SLOs and metrics. Increasing the number of
SLOs has an impact on total number of communications as shown
in Figure 5.4 and Figure 5.5. A communication to the monitoring
coordinator at one location is totally independent from commu-
nications from other locations making this approach suitable for
distributed environments. The number of communications are de-
pendent on violation type, i.e. higher partial violation values cause
more communications. This method of controlled service violation

5.5. Summary 94

0	

30	

60	

90	

120	

150	

180	

210	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Co
un

t	

Experiment	Number	

Number	of	SLOs	=	20	

Total	ParDal	ViolaDons	 0	to	0.2	 0.2	to	0.4	

0.4	to	0.6	 0.6	to	0.8	 0.8	to	1	

	Number	of	CommunicaDons	

Figure 5.5: Experiment to evaluate the proposed method for number of com-
munications for 20 SLOs

reporting eliminates the problem of randomness as described in the
basic solution of the countdown problem in Section 5.2 and is based
on the concrete of accurately reporting the service violations that
should be reported.

5.5 Summary

In this chapter, a distributed monitoring method is presented for
cloud SLAs of such cloud services which are used in different lo-
cations and communication of service violations is an important
task with respect to precise total number of communications to the
monitoring coordinator. The method presented in this chapter not
only accurately reports the service violations but also facilitates
the coordinator to set different alert levels for different metrics. A
prototype is implemented in Java for Amazon S3 cloud service to
illustrate the practicability of this method. Experiments enforce
the worthiness of this monitoring model.

5.5. Summary 95

Note: The distributed monitoring of the cloud SLAs presented
in this chapter has been submitted for review at The 11th IEEE
International Symposium on Service-Oriented System Engineering
(SOSE 2017).

Chapter 6

Implementation, Comparative
Analysis and Conclusions

6.1 Introduction

In previous chapters, SLA specification, negotiation, monitoring
and management phases are focused individually. This chapter
provides implementation information of the combined framework
for the complete SLA life cycle automation. Validation of individ-
ual phases is provided along with theoretical description or mod-
eling in their respective chapters, i.e. the presented SLA specifica-
tion (S3LACC given in Chapter 3) is demonstrated with the help
of a use case, usefulness of the negotiation strategy is validated by
multiple experiments and practicality of the monitoring approach
is tested by simulating SLA violations. The SLA management
phase is briefly covered in the monitoring phase where any SLA
violation is combined with a resulting action. The SLA specifi-
cation presented in this work is easily extensible due to core SLA
elements distinctively structured to meet the specific requirements
of the cloud services. Relationship among core elements (i.e. SLA,
SLO and metric) is maintained to accommodate custom require-
ments of different SLAs for the cloud services by extending the
basic structure (S3LACC). In Section 6.2, an implementation of
S3LACC in Java language is given with explanation about extend-
ing the specification for custom requirements. Section 6.3 gives a
comparative analysis of features introduced in this work and ex-
isting approaches. Finally, Section 6.4 concludes this work with

96

6.2. Implementation 97

clear contributions and future directions.

6.2 Implementation

In this section, implementation of S3LACC is given in Java lan-
guage with overall functioning of the complete SLA life cycle imple-
mentation using negotiation and monitoring techniques proposed
in this work. Figure 6.1 and 6.2 give UML (unified modeling lan-
guage) representation of the Java classes using S3LACC. Beside

Figure 6.1: UML diagram of SLA Structure in S3LACC (Metric class is col-
lapsed in this diagram due to space limitation, which is expanded in next Figure)

6.2. Implementation 98

Figure 6.2: UML diagram of SLA Structure in S3LACC with metric and related
classes expanded

basic elements of the SLA and methods (in Figure 6.1) as described
in Chapter 3, the SLA class contains two methods (checkGuaran-
tees() and checkObligations()) which continuously wait for trigger-
ing events based on the monitoring output. The guaranteeAction
method of the related Guarantee object is performed as its related
guarantee condition is evaluated to true. A guaranteeAction can
implement SLA management activities, e.g., collecting required
supporting documents from the specified locations and sending
to the service provider for service credits. The preCondition in
Guarantee and Obligation classes are implemented as Java’s EL

6.2. Implementation 99

(Expression Language) library which evaluate to true or false and
may include input parameters. In Figure 6.2, the QualitativeMet-
ric and QuantitativeMetric classes extend basic Metric class to
implement the required functionality of qualitative and quantita-
tive metrics, respectively. A monitoring schedule is assigned to
each metric so that different metrics may have varying monitoring
frequencies and data sources.

6.2.1 Prototype

A web based prototype is implemented in Java to demonstrate
complete functioning of the proposed specification, negotiation and
monitoring strategies. The prototype implements the following

Figure 6.3: Web interface for the negotiation simulation experiments to compare
the flip-flop negotiation strategy with a simple negotiation strategy.

tasks:

• A secure user login system is maintained to create, store and
retrieve the SLAs for testing purposes only.

• A user (after successful login) is able to create/store an SLA in
the specified structure as described above. The DataHandler
class (in Figure 6.1) is used to store and retrieve SLA objects.
An SLA object is stored in database by serializing it to a byte

6.2. Implementation 100

Figure 6.4: Results of the negotiation simulation based on the parameters pro-
vided in the Figure 6.3.

array and similarly retrieved from the database by converting
the byte array back to an SLA object.

• A random SLA generator helps a user to create and populate
an SLA object completely with random data. This function
helps the user to quickly generate a full SLA with test data.

• A user is able to use an existing SLA to test the presented
SLA negotiation strategy (in Chapter 4). For this purpose,
the user can specify negotiation parameters with the CSU and
the CSP perspective. The CSU parameters are simply defined
using the Metric class (6.2). The user can set the negotiation
parameters for the CSP as given in following:

– Number of CSPs (for concurrent negotiations).

– Number of metrics to be included in the negotiation pro-
cess.

– Minimum round trip time (RTT).

– Maximum RTT.

6.2. Implementation 101

Figure 6.5: Web interface for the monitoring simulation experiments to evaluate
the partial violation monitoring method.

– Minimum CSP greed percentage, which simulates a CSP’s
degree of being greedy during the negotiation process, i.e.
if a CSU increases (flip) the concession value to reach an
early agreement then degree of greediness determines the
chances that a CSP tries to take advantage of the CSU’s
increase in concession by reducing its own concession.

– Maximum CSP greed percentage.

The simulated negotiation service performs the automated ne-
gotiation and returns analytical information to the user. This
information includes the outcome of the negotiation process
with all of the CSPs, comparison of time taken using the
flip-flop negotiation strategy with simple negotiation strategy
(which includes greedy approach) and comparison of agree-
ment utilities achieved with and without flip-flop negotiation
strategy. This analysis is helpful for a user to evaluate the dif-
ferent settings in negotiation parameters and usefulness of the
flip-flop negotiation strategy. Figure 6.3 shows web interface
to define the negotiation simulation parameters as described
above. Figure 6.4 shows the result of the simulation process
as described in the following:

– First table in the Figure 6.4 shows overall result of the
negotiation simulation process. In that table, the sec-
ond and third columns (Agreement FF and Agreement

6.2. Implementation 102

Figure 6.6: Results of the monitoring simulation based on the parameters pro-
vided in the Figure 6.5.

S) show whether agreement was made or not using the
flip-flop (FF) or simple (S) negotiation strategy respec-
tively. The third column (Greedy %) shows the amount
of greediness selected at random for the flip-flop negoti-
ation simulation. The next column (Tmax) is the maxi-
mum time allowed during the negotiation process. RTT
is round trip time selected at random based on the user’s
input parameters. The next columns (Total Time FF and
Total Time S) represent the time taken to conclude the
negotiation process using flip-flop (FF) and simple (S)
strategy respectively. Utility-FF and Utility-S columns
are the final utilities (for the flip-flop and simple negoti-
ation strategy respectively) computed based on the user
metrics data (second table in Figure 6.4). The data for

6.2. Implementation 103

the negotiation simulation process is generated randomly
and is bound by limits defined by the user. It can be noted
in simulation results that lesser percentage of greediness
by the provider (by CSP2 in first table in the Figure 6.4)
is useful to reduce the overall negotiation process time
(Total Time FF) and also results in a better overall util-
ity for both parties (i.e. CSP and CSU). It can also be
noted that the flip-flop negotiation strategy (Utility-FF)
has better results than the simple negotiation strategy
(Utility-S). In the second table in Figure 6.4, the columns,
Vb, Vw, UC, UMax, Umin, Weight, LambdaT represent
the desired value, worst value, user concession, maximum
utility, minimum utility, weight and depreciation factor
in utility of a metric due to elapsed time respectively.
More detail about these parameters is discussed in pre-
vious chapters. The second table represents the metric
data that is selected in a controlled random way to be
used in the negotiation process. Similarly, in the third
table of Figure 6.4, Vb, Vw and PC represent the best
value, worst value and provider’s concession for each met-
ric respectively. The reason of a better result for the flip-
flop negotiation strategy is due to the fact that earlier
agreement results in a better utility value, i.e. a lesser
percentage of greediness (positive approach) from a CSP
motivates the CSU to keep on applying flip steps to reach
an early agreement.

• The monitoring service is simulated to enable a user to eval-
uate a multi-location and precise monitoring approach. A
user can specify, number SLOs, minimum number of metrics
in each SLO, maximum number of metrics in each SLO and
maximum violation threshold for each SLO as shown in the
Figure 6.5. The result of this simulation is reported as the
number of communications made with the monitoring coor-
dinator as shown in the Figure 6.6. The number of partial
violations per interval (first table in the Figure 6.6) are ran-

6.3. Comparative Analysis 104

domly selected to distribute the partial violations in differ-
ent intervals. The monitoring simulation service executes the
given simulation parameters for different number of partial
violations, e.g. 20, 40 and 60 etc. The last column in the ta-
ble (of Figure 6.6) gives the number of communications made
due to partial violations. This simulation helps the user to
evaluate the presented monitoring strategy for its custom re-
quirements.

A demo of the above prototype is part of the oral presentation of
this thesis work. Implementation detail for the web based proto-
type is out of scope of this work.

6.3 Comparative Analysis

In this section, a comparison of existing approaches for SLA specifi-
cation monitoring and management is described. First, an overall
analysis is given that compares different SLA specification lan-
guages with S3LACC and its features with respect to capabilities
of SLA negotiation, monitoring and description of qualitative met-
rics. Qualitative metrics play an important role in cloud SLAs
specifically e.g. reliability is a major factor while selecting a cloud
service which is a qualitative metric in general and it requires a
different method of specification and negotiation than quantitative
metric. Table 6.1 shows a brief feature based comparison of WSLA
[12], WS-Agreement [15], SLAng [57], SLA* [16], SLALOM [58],
Stamou et al. [59], Joshi et al. [60], CSLA [61], Kotsokalis et al.
[62] and S3LACC.
In second column of the Table 6.1, target domain (original domain
for which the specification was given) is mentioned, next columns
show if SLA negotiation, monitoring, management and qualitative
parameters are supported by the specification or not. The word
Partial in the negotiation column represents that either negoti-
ation parameters are partially definable or negotiation strategy
is not integrated within the specification. S3LACC enables com-
plete integration of the static and dynamic negotiation parameters.

6.3. Comparative Analysis 105

Source Original domain Negotiation
Monitoring/
Management

Qualitative

WSLA Web services Yes (static) Yes No
WS-
Agreement

Web services Yes (static) Partial No

SLAng
Internet/web
services

No
Only
monitoring

No

SLA*
Domain
independent

Partial No No

SLALOM IT services No No No
Stamou
et al.

Cloud data
services

No No No

Joshi
et al.

Cloud services Partial Yes No

CSLA Cloud services No Yes No
SLAC Cloud services Partial Yes No
Kotsokalis
et al.

IT services Yes Yes No

S3LACC Cloud services Yes Yes Yes

Table 6.1: Comparative analysis of S3LACC framework with other approaches

Also, S3LACC enables a user to include any custom negotiation
strategy within SLA template. Another feature of S3LACC adds
the capability of merging the SLA template and the final SLA as a
single document. Partial in monitoring/management column rep-
resents that either full SLA monitoring is not supported by the
specification or a customizable SLA monitoring technique is not
possible to integrate using the specification. In the following sec-
tions, a detailed comparative analysis is given for the S3LACC
specification and also for the presented SLA negotiation strategy
(flip-flop negotiation) with other approaches.

6.3.1 Comparative Analysis of S3LACC with Related
Work

Different languages and specifications have been proposed to rep-
resent an SLA in a machine readable format, however, as discussed
by SLAC authors [18], most of these specifications are not defined
specifically for the cloud services and do not fulfill specific require-

6.3. Comparative Analysis 106

ments of SLAs for the cloud services e.g. scenarios involving a
broker during negotiation process [18]. In [18] a comparison of dif-
ferent SLA specification models and languages is presented with
respect to different features such as cloud domain, multi-party,
broker support, business metrics, price schemes, syntax, seman-
tics, verification, evaluation and open-source availability. S3LACC
includes all of these features except verification. Apart from these
features, the S3LACC extends the SLA specification with addi-
tional capabilities such as a common template for the CSU and
the CSP, static/dynamic negotiation support in the SLA and au-
tomated monitoring facilitation. Moreover, S3LACC is designed
according to the latest available cloud SLA standards and defini-
tions to support the complete SLA life cycle rather than its isolated
phases. All information of the complete SLA life cycle is efficiently
bundled in a single SLA. The quantitative and qualitative SLA pa-
rameters are possible to be grouped in a single SLO using S3LACC.
Another closer approach is presented by Stamou et al. [59] which
describes SLAs for data services as a directed graph to represent
dependencies in SLA data management flow. The SLA directed
graph model by Stamou et al. is based on WSLA Framework.
The structure defined as the graph model in [59] is different from
the S3LACC structure, i.e. an SLO and a service object are dif-
ferent entities in their model. According to [59], a service object
contains SLA parameters like transaction time or average execu-
tion time, whereas, SLOs define limits for these SLA parameters
through guarantees or obligations. Kotsokalis et al. [62] model
SLAs for service computing as binary decision diagrams (BDDs)
to automate the SLA negotiation, subcontracting, optimizing the
utility and SLA management. An SLA in [62] is defined in terms of
facts, conditions and clauses which evaluate to true or false, hence
an SLA is represented as a boolean function. This boolean func-
tion is represented as BDD to eliminate redundancies. However,
as discussed in the [62], the proper recognition of facts requires
additional attention.

6.3. Comparative Analysis 107

6.3.2 Comparative Analysis of Flip-Flop Negotiation with
Related Work

Bilateral and multilateral negotiations in context of IT services
is a widely studied topic including autonomous agents for media-
tion and non-agent based approaches [63]. From web services [64]
to auction based resource allocation systems [65], different nego-
tiation approaches have been presented based on the negotiation
protocols altered to suit the negotiation scenario [66]. The re-
quirements for achieving an equilibrium among all participating
parties and optimizing the overall utility for each participant are
influenced by the negotiation model, deadline, available resources
and system domain [67]. Different techniques have been applied to
optimize the negotiation results including game theory (e.g. [68])
and machine learning [69]. The automated SLA negotiation for
the cloud services is also an instance of general negotiation model,
however with additional constraints and requirements e.g. trust
among participants, information sharing about negotiation pref-
erences and level of available resources. In practical scenarios of
cloud environments, participating parties (i.e. CSU and CSPs)
may not adapt a single negotiation strategy to optimize the social
utility (utility level for all participants). Each participant usually
strives to optimize its own utility level and negotiation strategies
are not disclosed among participants. At a maximum level of in-
formation sharing, all CSPs may have same SLA template, SLOs,
metrics and negotiation protocol. The same negotiation param-
eters (negotiation deadline, minimum concession in each negotia-
tion round or maximum time to conclude the negotiation process)
can not be enforced to all CSPs in realistic cases. The negotia-
tion strategy presented in this work makes no assumption about
the CSPs’ negotiation parameters. We use polynomial interpola-
tion to formulate the opponent’s concession pattern and then use
polynomial extrapolation to estimate the opponent’s future offers.
Many approaches has been presented to automate negotiation for
SLAs, e.g. [28, 29, 31, 32, 33, 27], we discuss a few that are very
close to our approach with analytical comparison.

6.3. Comparative Analysis 108

A similar approach presented in [70] uses Gaussian Processes to
estimate opponent’s future behavior in the negotiation process. A
time based function then estimates the best time in future when
opponent’s offer has maximum utility. This approach presented
in [70], however, differs with ours with respect to computation
of user’s (agent) concession and offer generation. In our work,
offer is generated based on the flip-flop process, opponent’s reac-
tion, opponent’s concession and remaining time whereas in [70],
offers are generated based on the target utility (calculated using
time based function). A price-and-time-slot negotiation mecha-
nism is presented in [30] to facilitate negotiations for time-slot
and prices based on a utility function. Different utility functions
are presented in [30] to calculate the price utility of a provider
and of an agent (user). Provider’s time-slot preferences are based
on service demand, temporal ordering of tasks and fitting tasks
whereas agent’s time-slot preferences are defined using a partial
function (different time slots having different utilities). In [26], an
SLA negotiation approach is presented for multiple cloud providers
across multiple tiers, i.e. user tier (service user and broker), ser-
vice tier (service provider and service user of other resource service
provider) and resource tier (resource service provider). This ap-
proach enables combining services from multiple providers and ne-
gotiating with them concurrently through different entities. Each
negotiating entity in this architecture [26] is represented in Cloud
Negotiation Support System (CNSS). A user initiates a request of
a single service or combined services (depending on its functional
requirements and business objectives) to the broker’s CNSS. Then
the broker or coordinating entity (CE) evaluates the request, se-
lects appropriate service providers and creates required number
of negotiating entities (NE) to start negotiation process. In ser-
vice tier, a service provider may need infrastructure services from
another service provider (in resource tier) to fulfill needs of its ser-
vice users (in user tier). Each of these negotiation tasks is run
concurrently by responsible NEs and result of concurrent negotia-
tion process is passed to CE. Zheng et al. [34] present an approach
for the cloud services SLA negotiation for a scenario where oppo-

6.3. Comparative Analysis 109

nent’s strategy is not well comprehended. They [34] use a mixed
approach of concession and trade-off (by decreasing the utility of
one issue and increasing the utility of the other issues, by keep-
ing the overall utility same). A time-dependent SLA negotiation
strategy for CSPs is presented in [36] which automatically adjusts
offer depending on the utilization of resources, i.e. conceding more
on free resources and lesser on the resource in demand. This ap-
proach assumes that negotiating parties are unaware of opponent’s
concession tactics and also investigates risk of malicious negotia-
tion attempts under this setup, i.e. a malicious client may submit
arbitrary offers to service provider to gain knowledge of provider’s
concession tactics and resource utilization preferences. The mali-
cious client may use this information to acquire an actual service
from the same provider faster than other clients. This scenario may
cause profit loss for a provider and also deprive other clients from
acquiring scarce resources in a competitive environment. On the
other hand a provider may also use offer information from client’s
NS to maximize its profits in future transactions. The time factor
discussed in our work is linked with the change in utility due to
time. Another closer approach is presented in [35], where a near-
optimal SLA negotiation strategy is presented for cloud computing
environments. The negotiation strategy presented in [35] uses the
utility function based on the weight (priority) of the issue. It is ar-
gued in this work that autonomous negotiation process is complex
and computationally expensive, so a computationally inexpensive
negotiation strategy is proposed in this work [35] termed as ‘Re-
active Exploitation’ (RE). According to this negotiation strategy
(RE), a party generates its bid based on a quasi tit-for-tat policy,
i.e. a concession is given if the opponent is also observed to do
the same. The negotiation process is in RE restricted by the time
constraints. A party using the RE maintains the record of best
counter offer received so far and latest generated bid. The RE
strategy utilizes maximum time in most cases to exploit maximal
possible options. An agreement is made by selecting the best ac-
ceptable bid received in the negotiation process. This approach
is however different than our approach such that, we strive to

6.3. Comparative Analysis 110

make an early agreement by predicting the opponent’s expected
final offer and move faster towards that offer by using the flip-flop
strategy.

6.3.3 Comparative Analysis of the Proposed Monitoring
Approach with Related Work

Monitoring of the cloud services is a task of great importance for
both service provider and service user [38]. Quality assurance is
mandatory for cloud services to realize the underlying business
objectives. Automatic monitoring of QoS parameters and guar-
antees with respect to the SLA is a much needed functionality in
cloud services [39]. Multiple approaches have been presented to
facilitate the automated monitoring task in cloud computing en-
vironments [40][41][42][43][44][45][46]. A detailed review of cloud
service monitoring is presented by Aceto et al. [38] and by Hus-
sain et al. [47]. LoM2HiS (Low-level resource Metrics to High-
level SLAs) framework [40] is presented as a solution to map low
level resource metrics (e.g. system uptime and downtime) to high
level SLA parameters (e.g. availability) for detection of SLA vio-
lation threats. LoM2HiS is developed as part of FoSII (Founda-
tions of Self-governing ICT Infrastructures) infrastructure. FoSII
is divided in two core parts, i) enactor component (self manage-
ment part of the deployed services) and ii) LoM2HiS (monitoring
component which provides information to enactor component). It
is assumed in this approach that negotiation process has already
been completed and SLA is stored in repository for service pro-
visioning. Future SLA violation threats are detected by defining
tighter thresholds than real SLA objective thresholds. However,
threat thresholds are assumed to be predefined in this work and
no particular component is defined for this purpose. An extended
version of this approach is also presented in 2011/2012 [42]. A
cloud application monitoring approach (termed as mOSAIC mon-
itoring) is presented in [41] by extending the mOSAIC API [71].
This approach [41] presents a monitoring API which offers con-
nectors and drivers to abstract resource monitoring and acquire

6.4. Conclusions and Scientific Contributions 111

monitoring data, respectively. The mOSAIC monitoring also pro-
vides tools for developers to build a custom monitoring system.
Oliveira et al. [44] present an approach to detect deviations in
network SLAs named as network traffic anomaly detection engine
(TADE). This approach [44] defines different components as part
of the architecture to detect and communicate the SLA violations
to the related systems. The important issue in SLA monitoring
is the number of communications to the coordinator which is ig-
nored in most of the available SLA monitoring approaches. Our
approach for distributed SLA monitoring is developed with a main
focus on reducing the number of communications in such a way
that essential reporting of SLA violations is ensured.

6.4 Conclusions and Scientific Contributions

In this work, we have presented an SLA specification which is
specifically designed for the cloud service. The proposed specifi-
cation considers the latest available standards and specification
guidelines to standardize the cloud SLAs. It has been argued
by several authors that cloud SLAs require additional features to
accommodate the specific requirements e.g., pricing, monitoring
and qualitative parameters. The proposed specification (S3LACC)
consists a core structure (with most suitable relationship among
SLA elements) which is easily extensible to meet the customer
specific requirements and it can also be easily modified for future
changes. The S3LACC specification targets the complete SLA life
cycle whereas most of the specifications lack one or other critical
phase of the SLA life cycle. An SLA specification is not very bene-
ficial if one of the SLA life cycle phase is not supported or complete
features of the cloud service specific SLAs are not supported. The
negotiation strategy presented in this work (flip-flop negotiation)
enables a CSU and a CSP to conclude the negotiation process in
lesser time, hence efficient use of cloud resources is ensured which
is an essence of cloud computing. The flip-flop negotiation strat-
egy can be easily integrated in the SLA using S3LACC and a CSU
can make use of this efficient negotiation strategy without mak-

6.4. Conclusions and Scientific Contributions 112

ing any changes to the SLA template. Similarly, the monitoring
strategy presented in this work enables distributed and continu-
ous monitoring which can be integrated with the S3LACC easily as
well. The presented monitoring approach decreases the number of
communications made from different service locations towards the
monitoring coordinator. Also, this monitoring approach helps a
monitoring coordinator to define different monitoring parameters
for different locations rather than a global monitoring strategy.
The implementation of S3LACC is provided in Java language with
a simulation of the flip-flop negotiation strategy and a prototype
for analytical testing of the presented monitoring approach. The
future directions of this work include the extension of S3LACC for
CSP perspective and to design a negotiation strategy that enables
off-line negotiations to reduce the number of round trips between a
CSU and a CSP during the negotiation process. These extensions
require special considerations with respect to security and privacy
issues as well.

References

[1] H. Takabi, J. B. D. Joshi, and G. J. Ahn, “Security and pri-
vacy challenges in cloud computing environments,” IEEE Se-
curity and Privacy, vol. 8, pp. 24–31, Nov 2010.

[2] L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer,
and W. Karl, “Scientific cloud computing: Early definition
and experience,” in 10th IEEE International Conference on
High Performance Computing and Communications, pp. 825–
830, Sept 2008.

[3] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lind-
ner, “A break in the clouds: Towards a cloud definition,”
ACM SIGCOMM Computer Communication Review, vol. 39,
pp. 50–55, Jan 2009.

[4] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented
cloud computing: Vision, hype, and reality for delivering it
services as computing utilities,” in 10th IEEE International
Conference on High Performance Computing and Communi-
cations, pp. 5–13, Sept 2008.

[5] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing
and grid computing 360-degree compared,” in Grid Comput-
ing Environments Workshop, pp. 1–10, Nov 2008.

[6] E. Walker, “Benchmarking amazon ec2 for high-performance
scientific computing,” The Magazine of USENIX and SAGE,
vol. 33, no. 5, pp. 18–23, 2008.

[7] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey,
B. Berriman, and J. Good, “On the use of cloud computing

113

References 114

for scientific workflows,” in IEEE Fourth International Con-
ference on eScience, pp. 640–645, Dec 2008.

[8] P. M. Mell and T. Grance, “SP 800-145. The NIST definition
of cloud computing,” tech. rep., National Institute of Stan-
dards & Technology, Gaithersburg, MD, United States, Oct
2011.

[9] P. Bianco, G. Lewis, and P. Merson, “Service level agree-
ments in service-oriented architecture environments,” tech.
rep., Software Engineering Institute, Carnegie Mellon Uni-
versity, 2008.

[10] L. Wu and R. Buyya, “Service level agreement (SLA) in util-
ity computing systems,” Performance and Dependability in
Service Computing: Concepts, Techniques and Research Di-
rections, IGI Global, pp. 1–25, July 2011.

[11] G. Conway and E. Curry, “Managing cloud computing-a life
cycle approach,” in CLOSER, pp. 198–207, Apr 2012.

[12] A. Keller and H. Ludwig, “The WSLA framework: Specify-
ing and monitoring service level agreements for web services,”
Journal of Network and Systems Management, vol. 11, pp. 57–
81, Mar 2003.

[13] D. D. Lamanna, J. Skene, and W. Emmerich, “SLAng: a
language for defining Service Level Agreements,” in The Ninth
IEEE Workshop on Future Trends of Distributed Computing
Systems, 2003. FTDCS 2003. Proceedings., pp. 100–106, May
2003.

[14] J. Skene, D. D. Lamanna, and W. Emmerich, “Precise ser-
vice level agreements,” in 26th International Conference on
Software Engineering, pp. 179–188, May 2004.

[15] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,
T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu,
“Web services agreement specification (Ws-Agreement),” in
Open Grid Forum, vol. 128, p. 216, 2007.

References 115

[16] K. T. Kearney, F. Torelli, and C. Kotsokalis, “SLA*: An
abstract syntax for Service Level Agreements,” in 11th
IEEE/ACM International Conference on Grid Computing,
pp. 217–224, Oct 2010.

[17] Y. Kouki, F. A. d. Oliveira, S. Dupont, and T. Ledoux, “A
language support for cloud elasticity management,” in 14th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, pp. 206–215, May 2014.

[18] R. B. Uriarte, F. Tiezzi, and R. D. Nicola, “SLAC: A formal
Service-Level-Agreement language for cloud computing,” in
Proceedings of the IEEE/ACM 7th International Conference
on Utility and Cloud Computing, pp. 419–426, Dec 2014.

[19] A. Maarouf, A. Marzouk, and A. Haqiq, “A review of SLA
specification languages in the cloud computing,” in 10th In-
ternational Conference on Intelligent Systems: Theories and
Applications, Oct 2015.

[20] D. Battr, F. M. T. Brazier, K. P. Clark, M. Oey, A. Papaspy-
rou, O. Wldrich, P. Wieder, and W. Ziegler, “A proposal for
ws-agreement negotiation,” in 11th IEEE/ACM International
Conference on Grid Computing, pp. 233–241, Oct 2010.

[21] A. E. Thijs Metsch, “Open cloud computing interface-
infrastructure,” in Standards Track, no. GFD-R in The Open
Grid Forum Document Series, Open Cloud Computing Inter-
face (OCCI) Working Group, Muncie (IN), Apr 2010.

[22] R. B. Bohn, J. Messina, F. Liu, J. Tong, and J. Mao, “Nist
cloud computing reference architecture,” in 2011 IEEE World
Congress on Services, pp. 594–596, Jul 2011.

[23] R. B. Uriarte, Supporting Autonomic Management of Clouds:
Service-Level-Agreement, Cloud Monitoring and Similarity
Learning. PhD thesis, IMT Institute for Advanced Studies,
Lucca, Italy, Mar 2015.

References 116

[24] A. Rubinstein, “Perfect equilibrium in a bargaining model,”
Econometrica, vol. 50, pp. 97–109, Jan 1982.

[25] N. Matos, C. Sierra, and N. R. Jennings, “Determining suc-
cessful negotiation strategies: an evolutionary approach,” in
International Conference on Multi Agent Systems, pp. 182–
189, Jul 1998.

[26] M. Siebenhaar, T. A. B. Nguyen, U. Lampe, D. Schuller, and
R. Steinmetz, 8th International Workshop on Economics of
Grids, Clouds, Systems, and Services (Revised Selected Pa-
pers), ch. Concurrent Negotiations in Cloud-Based Systems,
pp. 17–31. Nov 2012.

[27] A. F. M. Hani, I. V. Paputungan, and M. F. Hassan, “Rene-
gotiation in service level agreement management for a cloud-
based system,” ACM Computing Surveys, vol. 47, pp. 51:1–
51:21, Apr 2015.

[28] V. Stantchev, C. Schröpfer, and D. Petcu, “Negotiating and
enforcing qos and SLAs in grid and cloud computing,” in 4th
International Conference on Advances in Grid and Pervasive
Computing, pp. 25–35, May 2009.

[29] A. V. Dastjerdi and R. Buyya, “An autonomous reliability-
aware negotiation strategy for cloud computing environ-
ments,” in 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pp. 284–291, May 2012.

[30] S. Son and K. M. Sim, “A price- and-time-slot-negotiation
mechanism for cloud service reservations,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernet-
ics), vol. 42, pp. 713–728, June 2012.

[31] S. Son and S. C. Jun, “Negotiation-based flexible sla establish-
ment with SLA-driven resource allocation in cloud comput-
ing,” in 13th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing, pp. 168–171, May 2013.

References 117

[32] L. Wu, S. K. Garg, R. Buyya, C. Chen, and S. Versteeg, “Au-
tomated SLA negotiation framework for cloud computing,” in
13th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, pp. 235–244, May 2013.

[33] A. Cuomo, G. Di Modica, S. Distefano, A. Puliafito, M. Rak,
O. Tomarchio, S. Venticinque, and U. Villano, “An SLA-based
broker for cloud infrastructures,” Journal of Grid Computing,
vol. 11, pp. 1–25, Oct 2013.

[34] X. Zheng, P. Martin, K. Brohman, and L. D. Xu, “Cloud
service negotiation in internet of things environment: A
mixed approach,” IEEE Transactions on Industrial Informat-
ics, vol. 10, pp. 1506–1515, May 2014.

[35] E. Yaqub, R. Yahyapour, P. Wieder, C. Kotsokalis, K. Lu, and
A. I. Jehangiri, “Optimal negotiation of service level agree-
ments for cloud-based services through autonomous agents,”
in IEEE International Conference on Services Computing,
pp. 59–66, June 2014.

[36] A. V. Dastjerdi and R. Buyya, “An autonomous time-
dependent SLA negotiation strategy for cloud computing,”
The Computer Journal, pp. 1–15, July 2015.

[37] A. S. Y. Dirkzwager, M. J. C. Hendrikx, and J. R. De Ruiter,
Complex Automated Negotiations: Theories, Models, and
Software Competitions, ch. TheNegotiator: A Dynamic Strat-
egy for Bilateral Negotiations with Time-Based Discounts,
pp. 217–221. Springer Berlin Heidelberg, Apr 2013.

[38] G. Aceto, A. Botta, W. de Donato, and A. Pescapè, “Cloud
monitoring: A survey,” Computer Networks, vol. 57, no. 9,
pp. 2093–2115, 2013.

[39] P. Wieder, J. M. Butler, W. Theilmann, and R. Yahyapour,
Service level agreements for cloud computing. Springer Science
& Business Media, 2011.

References 118

[40] V. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar,
“Low level metrics to high level SLAs - LoM2HiS frame-
work: Bridging the gap between monitored metrics and SLA
parameters in cloud environments,” in 2010 International
Conference on High Performance Computing and Simulation,
pp. 48–54, June 2010.

[41] M. Rak, S. Venticinque, T. Máhr, G. Echevarria, and G. Es-
nal, “Cloud application monitoring: The mOSAIC approach,”
in IEEE Third International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 758–763, Nov 2011.

[42] V. C. Emeakaroha, M. A. Netto, R. N. Calheiros, I. Brandic,
R. Buyya, and C. A. D. Rose, “Towards autonomic detection
of SLA violations in cloud infrastructures,” Future Genera-
tion Computer Systems, vol. 28, no. 7, pp. 1017–1029, 2012.
Special section: Quality of Service in Grid and Cloud Com-
puting.

[43] A. A. Falasi, M. A. Serhani, and R. Dssouli, “A model for
multi-levels sla monitoring in federated cloud environment,”
in IEEE 10th International Conference on Ubiquitous Intelli-
gence & Computing and IEEE 10th International Conference
on Autonomic & Trusted Computing, pp. 363–370, Dec 2013.

[44] A. C. Oliveira, H. Chagas, M. Spohn, R. Gomes, and B. J.
Duarte, “Efficient network service level agreement monitoring
for cloud computing systems,” in 2014 IEEE Symposium on
Computers and Communications (ISCC), pp. 1–6, June 2014.

[45] A. G. Garćıa, I. B. Espert, and V. H. Garćıa, “SLA-driven dy-
namic cloud resource management,” Future Generation Com-
puter Systems, vol. 31, pp. 1–11, Feb 2014. Special Section:
Advances in Computer Supported Collaboration: Systems
and Technologies.

[46] H. Ludwig, K. Stamou, M. Mohamed, N. Mandagere,
B. Langston, G. Alatorre, H. Nakamura, O. Anya, and

References 119

A. Keller, “rSLA: Monitoring SLAs in dynamic service en-
vironments,” in 13th International Conference on Service-
Oriented Computing, pp. 139–153, Nov 2015.

[47] W. Hussain, F. K. Hussain, and O. K. Hussain, “Maintaining
trust in cloud computing through SLA monitoring,” in 21st
International Conference on Neural Information Processing,
pp. 690–697, Nov 2014.

[48] S. Zhang and M. Song, “An architecture design of life cycle
based SLA management,” in Proceedings of the 12th Interna-
tional Conference on Advanced Communication Technology,
pp. 1351–1355, Feb 2010.

[49] F. Faniyi and R. Bahsoon, “A systematic review of service
level management in the cloud,” ACM Comput. Surveys,
vol. 48, pp. 43:1–43:27, Dec. 2015.

[50] F. Moscato, R. Aversa, B. D. Martino, T. F. Forti, and
V. Munteanu, “An analysis of mOSAIC ontology for cloud
resources annotation,” in Federated Conference on Computer
Science and Information Systems, pp. 973–980, Sept 2011.

[51] M. Rak, R. Aversa, S. Venticinque, and B. Di Martino, User
Centric Service Level Management in mOSAIC Applications,
pp. 106–115. 2012.

[52] A. Maarouf, A. Marzouk, and A. Haqiq, “Practical model-
ing of the sla life cycle in cloud computing,” in 2015 15th
International Conference on Intelligent Systems Design and
Applications (ISDA), pp. 52–58, Dec 2015.

[53] R. Sturm, W. Morris, and M. Jander, Foundations of Service
Level Management. Sams publishing, Apr 2000.

[54] S. Frey, C. Reich, and C. Lüthje, “Key performance indica-
tors for cloud computing SLAs,” in The Fifth International
Conference on Emerging Network Intelligence, pp. 60–64, Sep
2013.

References 120

[55] J. Dang and M. N. Huhns, “An extended protocol for
multiple-issue concurrent negotiation,” in The National Con-
ference on Artificial Intelligent, vol. 20, pp. 65–70, July 2005.

[56] G. Cormode, “The continuous distributed monitoring model,”
SIGMOD Record, vol. 42, pp. 5–14, May 2013.

[57] D. D. Lamanna, J. Skene, and W. Emmerich, “Specification
language for service level agreements,” EU IST, vol. 34069,
2003.

[58] A. Correia, V. Amaral, et al., “Slalom: a language
for SLA specification and monitoring,” arXiv preprint
arXiv:1109.6740, 2011.

[59] K. Stamou, V. Kantere, J.-H. Morin, and M. Georgiou, “A
SLA graph model for data services,” in Proceedings of the
Fifth International Workshop on Cloud Data Management,
pp. 27–34, Oct 2013.

[60] K. P. Joshi and C. Pearce, “Automating cloud service level
agreements using semantic technologies,” in Cloud Engineer-
ing (IC2E), 2015 IEEE International Conference on, pp. 416–
421, IEEE, 2015.

[61] Y. Kouki and T. Ledoux, “Csla: a language for improving
cloud sla management,” in International Conference on Cloud
Computing and Services Science, CLOSER 2012, pp. 586–591,
2012.

[62] C. Kotsokalis, R. Yahyapour, and M. A. Rojas Gonzalez,
“Modeling service level agreements with binary decision di-
agrams,” in Service-Oriented Computing: 7th International
Joint Conference, ICSOC-ServiceWave Proceedings, pp. 190–
204, Nov 2009.

[63] X. Zheng, P. Martin, and K. Brohman, “Cloud service
negotiation: Concession vs. tradeoff approaches,” in 12th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, CCGRID ’12, pp. 515–522, May 2012.

References 121

[64] S. Paurobally, V. Tamma, and M. Wooldrdige, “A frame-
work for web service negotiation,” ACM Transactions on Au-
tonomous and Adaptive Systems, vol. 2, pp. 14:01–14:23, Nov
2007.

[65] “Efficient mechanisms for the supply of services in multi-agent
environments,” Decision Support Systems, vol. 28, no. 12,
pp. 5–19, 2000.

[66] N. Jennings, P. Faratin, A. Lomuscio, S. Parsons,
M. Wooldridge, and C. Sierra, “Automated negotiation:
Prospects, methods and challenges,” Group Decision and Ne-
gotiation, vol. 10, no. 2, pp. 199–215, 2001.

[67] J. S. Rosenschein and G. Zlotkin, “Designing conventions for
automated negotiation,” AI magazine, vol. 15, no. 3, pp. 29–
46, 1994.

[68] K. Binmore and N. Vulkan, “Applying game theory to au-
tomated negotiation,” NETNOMICS, vol. 1, no. 1, pp. 1–9,
1999.

[69] J. R. Oliver, “A machine-learning approach to automated ne-
gotiation and prospects for electronic commerce,” Journal of
Management Information Systems, vol. 13, no. 3, pp. 83–112,
1996.

[70] C. R. Williams, V. Robu, E. H. Gerding, and N. R. Jennings,
“Using gaussian processes to optimise concession in complex
negotiations against unknown opponents,” 2011.

[71] D. Petcu, C. Craciun, and M. Rak, “Towards a cross platform
cloud api,” in 1st International Conference on Cloud Comput-
ing and Services Science, pp. 166–169, 2011.

	List of Tables
	List of Figures/Illustrations
	1 Introduction
	1.1 Cloud Computing
	1.1.1 Essential Characteristics
	1.1.2 Service Models

	1.2 Service Level Agreements and Legal Contracts
	1.3 SLA Life Cycle
	1.4 Motivation
	1.5 Thesis Vision, Objectives and Scope
	1.5.1 Vision and Objectives
	1.5.2 Scope

	1.6 Summary and Thesis Structure

	2 State of The Art
	2.1 SLA Specifications and Languages
	2.1.1 WSLA, Keller & Ludwig, 2003
	2.1.2 SLAng, Lamanna et al., 2003 & 2004
	2.1.3 WS-Agreement, Andrieux et al., 2007
	2.1.4 SLA*, Kearney et al., 2010
	2.1.5 CSLA, Kouki et al., 2014
	2.1.6 SLAC, Uriarte et al., 2014

	2.2 Negotiation Techniques and Preliminaries
	2.3 SLA Negotiations
	2.3.1 SLA Negotiation Model Setups
	2.3.2 Concurrent Negotiations in Cloud-Based Systems, Siebenhaar et al., 2012
	2.3.3 Optimal Negotiation of Service Level Agreements for Cloud-Based Services through Autonomous Agents, Yaqub et al., 2014
	2.3.4 An Autonomous Time-Dependent SLA Negotiation Strategy for Cloud Computing, Dastjerdi & Buyya, 2015

	2.4 SLA Monitoring, Management and SLA Life Cycle
	2.4.1 Low Level Metrics to High Level SLAs - LoM2HiS Framework: Bridging the Gap Between Monitored Metrics and SLA Parameters in Cloud Environments, Emeakaroha et al., 2010, 2012
	2.4.2 SLA Management and SLA Life Cycle in General

	2.5 Summary

	3 Structural Specification of SLAs in Cloud Computing (S3LACC)
	3.1 Preliminaries, SLOs and Metrics
	3.2 Requirements for SLA Specification
	3.2.1 Composition
	3.2.2 Common Template for Service User and Service Provider
	3.2.3 Dependency
	3.2.4 Scope of The SLA Specification

	3.3 Proposed SLA Specification - S3LACC
	3.3.1 S3LACC Overview

	3.4 Service Description
	3.5 Service Level Objectives (SLOs)
	3.5.1 Metrics

	3.6 Guarantees / Obligations
	3.7 S3LACC Framework
	3.8 Use Case
	3.9 Summary

	4 Automated SLA Negotiation
	4.1 Negotiation Protocol
	4.2 The Flip-Flop Negotiation Strategy and its Building Blocks
	4.2.1 Time Based 3D Linear Utility Function
	4.2.2 Concession Computation using Polynomial Interpolation
	4.2.3 Flip-Flop Negotiation Strategy

	4.3 Multi-Provider Concurrent Negotiations
	4.4 Experimental Verification
	4.5 Summary

	5 Automated SLA Monitoring
	5.1 Introduction and Motivation
	5.2 Distributed Monitoring of the Cloud SLAs
	5.3 Distributed Monitoring of Cloud SLAs Using Partial Violations
	5.4 Implementation and Experimental Verification
	5.4.1 Experimental Validation Using Monitoring Simulation

	5.5 Summary

	6 Implementation, Comparative Analysis and Conclusions
	6.1 Introduction
	6.2 Implementation
	6.2.1 Prototype

	6.3 Comparative Analysis
	6.3.1 Comparative Analysis of S3LACC with Related Work
	6.3.2 Comparative Analysis of Flip-Flop Negotiation with Related Work
	6.3.3 Comparative Analysis of the Proposed Monitoring Approach with Related Work

	6.4 Conclusions and Scientific Contributions

	References

