9 research outputs found

    GREEND: An Energy Consumption Dataset of Households in Italy and Austria

    Full text link
    Home energy management systems can be used to monitor and optimize consumption and local production from renewable energy. To assess solutions before their deployment, researchers and designers of those systems demand for energy consumption datasets. In this paper, we present the GREEND dataset, containing detailed power usage information obtained through a measurement campaign in households in Austria and Italy. We provide a description of consumption scenarios and discuss design choices for the sensing infrastructure. Finally, we benchmark the dataset with state-of-the-art techniques in load disaggregation, occupancy detection and appliance usage mining

    Application of supervised learning methods to better predict building energy performance

    Get PDF
    Building energy consumption is shaped by a variety of factors which prompts a challenge of accurately predicting the building energy performance. Research findings disclosed a significant gap between the building’s predicted and actual energy performance. One of the key factors behind this gap is the occupant’s behavior during operation which includes a set of dependent and independent parameters generating a greater level of uncertainties. To accurately estimate the energy performance, we need to quantify the impact of any observed parameters and further detect its correlation with other parameters. Human behaviors are complex and quantifying the impact of all its interconnected parameters can be error prone and costly. To minimize the performance gap, more scalable and accurate prediction approaches, such as supervised machine learning methods, should be considered. This paper is devoted to investigate the most commonly used supervised learning methods which, when intertwined with conventional building energy performance prediction model, could potentially provide more accurate and reliable estimates. The paper will pinpoint the best use of each studied method in the relation to energy prediction in general and occupant’s behavior in specific and how it can be implemented to better predict building energy performance

    Exploration of the Bayesian Network framework for modelling window control behaviour

    Get PDF
    © 2017 Elsevier Ltd Extended literature reviews confirm that the accurate evaluation of energy-related occupant behaviour is a key factor for bridging the gap between predicted and actual energy performance of buildings. One of the key energy-related human behaviours is window control behaviour that has been modelled by different probabilistic modelling approaches. In recent years, Bayesian Networks (BNs) have become a popular representation based on graphical models for modelling stochastic processes with consideration of uncertainty in various fields, from computational biology to complex engineering problems. This study investigates the potential applicability of BNs to capture underlying complicated relationships between various influencing factors and energy-related behavioural actions of occupants in buildings: in particular, window opening/closing behaviour of occupants in residential buildings is investigated. This study addresses five key research questions related to modelling window control behaviour: (A) variable selection for identifying key drivers impacting window control behaviour, (B) correlations between key variables for structuring a statistical model, (C) target definition for finding the most suitable target variable, (D) BN model with capabilities to treat mixed data, and (E) validation of a stochastic BN model. A case study on the basis of measured data in one residential apartment located in Copenhagen, Denmark provides key findings associated with the five research questions through the modelling process of developing the BN model

    Intelligent Decision Support System for Energy Management in Demand Response Programs and Residential and Industrial Sectors of the Smart Grid

    Get PDF
    This PhD thesis addresses the complexity of the energy efficiency control problem in residential and industrial customers of Smart electrical Grid, and examines the main factors that affect energy demand, and proposes an intelligent decision support system for applications of demand response. A multi criteria decision making algorithm is combined with a combinatorial optimization technique to assist energy managers to decide whether to participate in demand response programs or obtain energy from distributed energy resources

    Energy adaptive buildings:From sensor data to being aware of users

    Get PDF
    Energie besparen is fundamenteel voor het realiseren van een duurzame energievoorziening. Het besparen van energie draagt bij aan milieudoelstellingen, verbetert de zakelijke positie van landen, en levert werkgelegenheid. Er zijn tal van mogelijkheden voor het behalen van aanzienlijke energiebesparingen in gebouwen gezien individuen en bedrijven gebaat zijn bij energiebesparingen en daardoor zelf de verantwoordelijkheid nemen. Het is bewezen dat het gedrag van gebouwgebruikers een grote impact heeft op de verwarming en ventilatie van ruimtes, en op het energieverbruik van verlichting en huishoudelijke apparaten. Huidige gebouwautomatiseringssystemen kunnen niet overweg met veranderingen in het gedrag van gebruikers en zijn daardoor niet in staat om het energieverbruik terug te dringen met behoud van gebruikerscomfort. Mijn promotieonderzoek wordt gedreven door het doel om een dergelijk energy adaptive building te realiseren dat intelligent systemen aanstuurt en zich aanpast aan de gebruiker en gebruikersactiviteiten door deze te leren, terwijl energieverspilling wordt teruggedrongen. Mijn focus ligt op het ontwikkelen van een framework, beginnende bij de hardware infrastructuur voor sensoren en actuatoren, het verwerken en analyseren van de sensordata, en de nodige informatie over de omgeving en gebruikersactiviteiten verkrijgen zodat het gebouw aangestuurd kan worden. Onze oplossing kan 35% besparen op het totale energieverbruik van een gebouw. Als een succesverhaal, besparen de software systemen zelfs 80% op het energieverbruik van de verlichting in het restaurant van de Bernoulliborg. Wij commercialiseren de resultaten verkregen in ons onderzoek door het oprichten van de start-up SustainableBuildings, een spin-off bedrijf van onze universiteit, om onze oplossing aan te bieden aan kantoorgebouwen.Saving energy is the foundation for achieving a sustainable energy supply. Saving energy contributes to environmental objectives, improves the competitiveness of a country’s businesses, and boosts employment. There are numerous opportunities for achieving significant energy savings in buildings since individuals and businesses have an interest themselves in saving energy and will shoulder the responsibility for doing so.Occupant behaviour has shown to have large impact on space heating and cooling demand, energy consumption of lighting and appliances. Current building automation systems are unable to cope with changes caused by occupants’ behaviour and interaction with the environment, therefore they fail to reduce unnecessary energy consumption while preserving user comfort.My PhD research is driven by the aim of realising such energy adaptive buildings that facilitate intelligent control, that learn and adapt to the building users and their activities, while reducing energy waste. My particular focus is on a framework, going from the hardware infrastructure for sensing and actuating, to processing and analysing sensor data, providing necessary information about the environment and occupants’ activities for the system to produce adaptive control strategies, regulating the environment accordingly.Our solution can save 35% of energy for a single building. As a success story, the software system saves 80 percent on energy spent for lighting in the restaurant of the Bernoulliborg.We are commercialising the results of our research by creating the SustainableBuildings start-up, a spin-off from our university, to offer the solutions to non-residential buildings, first in the Netherlands, and later extending wider
    corecore