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Abstract 

Extended literature reviews confirm that the accurate evaluation of occupant energy-related behaviour is a 

key factor for bridging the gap between predicted and actual energy performance of buildings. One of key 

energy-related human behaviour is window control actions that have been modelled by different probabilistic 

modelling approaches. In recent years, Bayesian Networks (BNs) have become a popular representation 

based on graphical models for modelling stochastic processes with consideration of uncertainty in various 

fields, from computational biology to complex engineering problems. This study investigates the potential 

applicability of BNs to capture underlying complicated relationships between various influencing factors and 

energy-related behavioural actions of occupants in residential buildings: in particular, window 

opening/closing behaviour of occupants in residential buildings is investigated. This study addresses five key 

research questions related to modelling window control behaviour: (A) variable selection for identifying key 

drivers impacting window control behaviour, (B) correlations between key variables for structuring a 

statistical model, (C) target definition for finding the most suitable target variable, (D) BN model with 

capabilities to treat mixed data, and (E) validation of a stochastic BN model. A case study on the basis of 

measured data in one residential apartment located in Copenhagen, Denmark provides key findings 

associated with the five research questions through the modelling process of developing the BN model.  

Key words: Occupant behaviour; Bayesian Networks; window control behaviour; stochastic modelling  

 

1. Introduction  

Accounting for uncertainty has become a crucial aspect in the domain of building energy simulation for 

incorporating human behaviour that impacts building energy performance and comfort expectations. Human 

behaviour such as occupancy, control of energy systems, occupants’ interaction with the building envelope 

and other comfort criteria settings are considered as key sources of uncertainty in the prediction of building 

energy use. Indeed, occupant behaviour varies significantly between individuals, which results in large 

variation of the indoor environmental quality and energy consumptions of the buildings [1][2][3]. Extended 

literature reviews and state-of-the-art analyses confirm that an accurate modelling of occupant behaviour is a 

key factor to bridging the gap between predicted and actual energy performance of buildings [4][5][6][7][8]. 
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Frequently, simulation-based design analysis relies on standard use and operation conditions such as fixed 

schedules for occupancy levels, light switching, ventilation rates and temperature setting. These assumptions 

often lead to an oversimplification of the human-related variables creating discrepancies between predicted 

and real energy use of the building. Thus, in recent years, probabilistic modelling approaches have been 

applied to capture the stochastic nature of energy-related human behaviour when predicting building energy 

consumptions in dynamic simulation programs [9].  

Occupant’s action of window opening/closing has an important impact on building energy use and indoor 

environmental quality (IEQ) by changing the amount of fresh air to the building. Several studies have been 

carried out to develop stochastic models for predicting the occupant’s interaction with the windows. These 

models are based on statistical algorithms to predict the probability of a specific condition or event, such as 

the window state or the window opening/closing action, given a set of environmental or other influential 

factors. Most popularly used methods include logit analysis, probit analysis, and Markov chain processes. 

Nicol [10] developed a logit regression model to predict the state of windows in a probabilistic manner as the 

function of indoor and outdoor temperatures. Andersen et al. [11] also used a logistic regression model based 

on a more comprehensive set of indoor and outdoor environmental variables to infer the probability of 

opening and closing a window. The study on the basis of the field measurements from 15 Danish dwellings 

defines four separate models of occupants’ window action behaviour patterns for different ownerships and 

ventilation types. Logit regression models have been also applied in other studies for modelling window 

control behaviour [12][13][14]. Zhang and Barret [15] developed a probit model for predicting window 

opening/closing actions in a naturally ventilated office building considering the outdoor temperature as the 

only independent variable. Haldi and Robinson [16][17] tested different modelling approaches and 

demonstrated that a discrete-time Markov process approach, which takes into account real dynamic 

processes, leads to a higher predictive power compared with the logit regression approach. Modelling 

approaches based on Markov chain processes are used in [18] and [19] to predict window states based on 

their previous states in office buildings and houses, respectively. As these models consider real dynamic 

processes by providing transition probabilities between the states of a window, they are limited to capture the 

dynamic effect of changes in indoor and outdoor environmental conditions on window opening and closing 

actions.  

This paper investigates the capabilities of the Bayesian Network framework to model occupant behaviour in 

the context of thermal comfort and building energy analyses in order to bridge the gap between simulations’ 

outcomes and reality. Bayesian Networks (BNs), or rather graphical belief networks, are widely applicable 

and have become a popular representation for encoding uncertainty in decision-making processes based on 

incomplete datasets [20]. In recent years, BNs have been used in many fields, from On-line Analytical 

Processing (OLAP) [21], cancer prognosis and epidemiology [22], the modelling of dwelling fire 

development and occupancy escape [23], to speech recognition [24]. In the buildings domain, BNs have been 

introduced to estimate the effects of the indoor climate on the productivity of occupants [25], to investigate 
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the relationship between indoor environmental parameters, measurements from body sensors and self-

reported activities by the occupants [26], to predict occupancy patterns in buildings [27][28], to model 

energy-related user behaviour for building energy management [29][30], and to predict indoor environmental 

conditions [31]. So far, these studies based on BN models treat either discrete variables only or continuous 

variables only.  

In comparison to the above-mentioned regression-based models, BN-based approaches are able to flexibly 

model complex relationships between diverse explanatory variables and window control behaviour by 

constructing a joint probability distribution over different combinations of the domain variables. Indeed, the 

BN model permits to easily model joint conditional dependencies of the entire set of variables through a 

graphical representation of the model structure [32]. The BN model also allows for structuring a variety of 

explanatory variables and multiple target variables in a hierarchical manner. In addition, BNs are 

demonstrated to yield good prediction accuracy even with small datasets [33]. They also have capabilities to 

handle incomplete datasets by using Expectation-Maximization (EM) algorithms [34] in which missing data 

can be marginalized by integrating over all the possibilities of the missing values. Furthermore, the BN 

model provides a clear semantic representation of relationships between variables, which facilitates flexibly 

structuring a model and training it against available data in wider and interdisciplinary research communities. 

This paper demonstrates the applicability of the Bayesian Network (BN) framework for predicting window 

opening/closing behaviour of building occupants based on the measurements in a residential apartment 

located in Copenhagen, Denmark. In particular, the paper addresses five key research questions related to 

developing a BN model for predicting window-use patterns. The first set of three research questions 

addresses general issues relevant to modelling window control behaviour:   

A. Which variables are key drivers that determine window control behaviour? 

B. What level of correlations resides between variables and should they be captured in the BN 

model?  

C. What is the most suitable target variable of window control behaviour?  

Regarding the first question, the Kolmogorov-Smirnov Test (K-S Test) is applied to evaluate which variables 

are main drivers for window control actions. For the second question, the Kendall Tau correlation coefficient 

is used to investigate correlations between identified variables and accordingly model them in the BN. The 

third question (C) investigates different target variables commonly used in the literature (i.e., window 

opening/closing event and window state) in terms of the modelling accuracy.  

The second set of research questions addresses modelling challenges related to the applicability of the BN 

framework for modelling occupants’ window control behaviour:  

D. How to handle mixed data in the BN framework? 

E. How to validate stochastic BN models? 
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A key question of this paper addresses how to handle mixed data in the BN framework. Traditional BN 

approaches to treat either discrete variables or continuous variables are not suited to modelling window 

control behaviour as datasets typically consist of both continuous variables (e.g., indoor temperature, CO2 

concentration) and non-continuous variables (e.g., binary control actions, time of the day). This study tries to 

overcome this problem by proposing a modelling procedure that allows for handling mixed data, particularly 

with use of the bnlearn package [35] in the statistical software R environment [36]. The prediction accuracy 

of the model is evaluated through a series of methods suitable to validate stochastic models.  

 

2. The Bayesian Network Framework 

2.1 Bayesian Networks 

Bayesian Networks are graphical models that represent probabilistic dependencies between discrete or 

continuous variables (Xi) [37]. In the models, variables are presented by nodes and their relationships are 

represented by arcs. The direction of arcs determines a hierarchical structure of nodes. Figure 1 shows an 

example of a Bayesian Network that represents the probabilistic dependencies between an occupant’s action 

and a set of variables (VAR) that potentially impact the action.  

A network structure is often explained with a family metaphor; if there is an arc starting from one node to 

another, the former is a parent of a child (the latter). Extending the metaphor, in a directed chain of nodes, 

one node is an ancestor of another if it appears earlier in the chain, whereas a node is a descendant of another 

node if it comes later in the chain. For instance, as shown in Figure 1, as there is an arc from X1 to X3, node 

X1 is a parent of node X3. The graphical structure of a Bayesian network, denoted as G=(V,A), is a Directed 

Acyclic Graph (DAG), where V is the node (or vertex) set and A is the arc (or edge) set. The DAG defines a 

factorization of the joint probability distribution of V = {X 1,X2,…,Xn}, often called the global probability 

distribution, into a set of local probability distributions, one for each variable [36]. This factorization is based 

on the assumption that Bayesian Networks have a Markov property [37], which indicates that the state of a 

random variable Xi depends only on its parents ∏X i. In general, Bayesian network modelling requires the 

assumption of the Markov property.  

Figure 1. Example of a BN: Probabilistic dependencies between occupant behaviour and possible 

explanatory variables (VAR)/drivers. 
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In principle, BN models flexibly represent different typologies and handle a mix of various data types. Yet, 

so far, BN models used in most existing studies are limited to either a discrete case or a continuous case. 

This limitation is mostly due to the fact that, unfortunately, most software available for developing BN 

models are applicable to either discrete or continuous data and, thus, do not permit yet to handle a mix of 

continuous and  

discrete datasets in one BN model, particularly when discrete variables are conditional on continuous 

variables. Equations 1 and 2 define a joint probability distribution for a discrete case and continuous case, 

respectively: 

																				����, … , ��	 = �����|����������		
�

���
 

																				����, … , ��	 = �����|����������		
�

���
 

In the discrete case, conditional joint probabilities are represented by the so-called Conditional Probability 

Tables (CPTs) since all variables are characterized by discrete data. In this case, all intervals for each 

discrete variable are treated as independent variables, and there is no mechanism to capture the effect of 

continuous variables such as temperature and relative humidity as a continuous trend. On the other hand, the 

continuous case assigns each variable �� with a Gaussian probability density function f (��) conditional on 

the values of its parent nodes. As datasets collected for model development often consist of different data 

types, many existing studies discretize continuous data for obtaining homogeneous datasets [38][39][28][25]. 

A key limitation of discretization is a significant loss of information, which has a big impact on the 

predictive power of resulting BN models and the interpretability of BN models to understand relationships 

between variables. In fact, data collected for occupant behaviour modelling typically includes both 

categorical or binary variables (such as window control actions and time-of-day) and continuous variables 

(such as the indoor/outdoor environmental variables). Hence, it is important to develop a BN framework that 

(for discrete variables)                       (1) 

 

(for continuous variables)                  (2) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 

 

allows for appropriately handling mixed data for occupant behaviour modelling, which will be carefully 

investigated in Section 4.1.   

 

2.2 Structuring and learning Bayesian Networks 

Approaches for developing a BN model can be categorized into two groups. The first group, called as 

“elicitation”, is based on domain experts that rely on expertise to structure a network and quantify probability 

distributions associated with arcs [40]. This approach can be useful for cases in which field survey data or 

measurements are not available. The second group is solely based on machine learning algorithms that 

extract a structure and estimate probability distributions from the dataset [41]. This approach may lead to the 

model best fit to the training dataset, but whether causal relations between variables derived from the dataset 

alone are correct needs to be carefully inspected. Alternatively, these two approaches can be combined to 

fully utilise both expert knowledge and available data; for example, defining the structure of the network 

based on expert knowledge and learning probability distributions in the BN model from the dataset (Figure 

2). 

Figure 2. Learning the structure of BNs. 

 

Several machine learning algorithms have been developed to extract a BN structure directly from the dataset. 

Constraint-based algorithms (conditional independence learners) are all optimized derivatives of the 

Inductive Causation algorithm [42]. These algorithms use the conditional independence tests to detect the 

Markov blankets of the variables and accordingly identify causal relationships among variables in a BN 

network. The main drawback of constraint-based algorithms is that they are not robust to correctly define 

independencies among variables when they are highly correlated. Another group of algorithms, called 

search-and-score searches over possible Bayesian Network structures to find the best factorization of the 

joint distribution [21]. These score-based learning algorithms are general purpose heuristic optimization 

algorithms which rank testing network structures with respect to a goodness-of-fit score. One of the most 

commonly used measures in this process is Bayesian Information Criterion score (BIC score) [36], which 
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measures the model predictability with evaluation of the value of adding more variables into the model. This 

measure defined in Equations 3 and 4 for the discrete and continuous cases represents a useful tool for 

optimizing the model in terms of both its predictive power and complexity.  

																				��� = �������	 ���|	��� 
�

���
− "

2 log�	 

 

																			��� = �������	 ���|	��� 
�

���
− "
2 log� 

where d is the number of variables included in the BN network and n is the sample size.  

Hybrid algorithms are developed to determine a BN network based on both conditional independence tests 

and network scores. Several commercial software such as Hugin [43], BayesiaLab [44] and Netica [45] 

provide these algorithms for users to obtain a BN structure directly from a given dataset. These algorithms 

are also available in statistical computing environments such as R (bnlearn, deal, catnet, pcalg, gRbase, 

gRain) [36], Matlab (Bayes Net Toolbox) [46], Java [47] or Python [48].  

 

2.3 Reasoning with Bayesian Networks 
 

Bayesian Networks provide full representations of probability distributions over their variables and 

supporting different types of reasoning. Figure 3 summarizes the main directions of reasoning with BNs in 

the context of occupant behaviour analysis. BN models permit to perform diagnostic reasoning to understand 

which variables (VARs) influence occupants’ actions (OB) and in which manner: for example, “What 

specific environmental conditions trigger occupants to open windows?”. This type of reasoning occurs in the 

opposite direction to network arcs to understand what causes certain actions. Another type of reasoning is 

predictive reasoning, which is typically the major objective of developing occupant behaviour models: for 

example, “If the outdoor temperature is around 21°C, what is the probability that occupants will open 

windows?”. In this case reasoning follows the direction of the network arcs to predict occupant’s action 

given expected environmental conditions. Another form of reasoning is called as intercausal reasoning that 

involves reasoning about mutual causes of a common effect [37]: for instance, reasoning about the 

relationships between several response variables, such as indoor and outdoor environmental variables. Since 

any nodes in BNs may be query nodes (target variables) and any may be evidence nodes (explanatory 

variables), sometimes the reasoning does not fit neatly into one of the types described above, and these types 

of reasoning can be combined in any way. Further detailed information about BNs can be found in 

[37][49][50][51].  

Figure 3. Types of reasoning with Bayesian Networks. 

(for continuous variables)                  (4) 
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3. Structuring a statistical model for predicting window opening behaviour 

This section address the first set of key research questions associated with the process of modelling the 

window control behaviour introduced in Section 1: 

A. Variable selection 

B. Correlation between variables  

C. Target definition 

The modelling process is based on measurements of one natural-ventilated, rented two-persons apartment 

located in Copenhagen, Denmark [11]. Table 1 summarises measurements related to the indoor and outdoor 

environment conditions, occupants’ interaction with the windows, and time-related factors such as the time 

of the day or the day of the week. These measurements were collected in 10-minutes intervals continuously 

for approximately 3 months (February–May). The outdoor environmental measurements were acquired from 

a meteorological measuring station located near the apartment. The same time resolution was used for 

analysis.   

Table 1. Available target* and explanatory variables. 

Potential VARs Abbreviation Unit Min Max Mean Median St. Dev. 

Indoor Environment 

Dry bulb temperature  Tin °C 12.1 25 21 21 3 

Relative humidity RHin % 26 66 38 38 5 

Illuminance Lux lux 1 8360 95 43 171 

CO2 concentration CO2,in ppm 101 2261 608 580 161 

Outdoor Environment 

Air Temperature Tout °C -5 24 7 6 5 

Relative humidity RHout % 25 100 73 74 18 

Wind speed Wind m/s 0 13 3 2 2 

Global solar radiation SR W/m2 0 904 184 63 230 
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Occupant Behaviour Range of values  

Window position/state WS* 0/1 (closed/open) 

Window opening/closing action WOA*/WCA* 0/1 (no action/action) 

Other Range of values 

Time of the day Hour 1-24 

Weekday WD Monday-Sunday 

 

Figure 4 shows the measured window opening actions throughout the monitoring period (vertical black 

dotted lines), plotted against measured indoor temperatures (blue) and outdoor temperatures (red) in the 

living room and the sleeping room. One thing to point out is that this study treats window states as a binary 

variable (0=closed, 1=open) and does not take into account the degree of opening (angle of the shutter with 

respect to the window frame). Windows are a two-wing window type, manually controlled by the building 

occupants. Detailed information on window types and measurement instruments can be found in [11]. In 

total, the occupants performed 215 window opening actions during the monitoring phase.  

 

Figure 4. Window opening actions (black dotted lines) and indoor (blue line) and outdoor (red line) 
temperature in the living room (a) and the sleeping room (b). 

(a) 

 

(b) 
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3.1 Question A: Variable selection    

The first question addresses a variable selection step that identifies key explanatory variables that influence 

window opening/closing behaviour (Figure 5). Borgeson and Brager [52] provide an extensive summary of 

the literature on modelling studies for predicting occupants’ window control behaviour. In most models 

studied by [52], temperature is considered as the most important driver [53][54], although there is no 

consensus about whether indoor or outdoor temperature is dominant in determining the behaviour. Other 

models use time-related factors such as the time of the day and season or the current window state as key 

variables to predict window control actions [55][17][14]. Review of the existing literature confirmed that the 

dataset used for this study include key explanatory variables that are found to impact window control 

behaviour. 

Figure 5. Definition of explanatory variables.  
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As the next step, a two-sample Kolmogorov-Smirnov test (K-S test) was used to test which variables are 

main drivers that trigger window control actions. The two-sample K-S statistic quantifies a distance between 

the empirical distribution functions of two samples to evaluate whether two samples come from the same 

probability distribution function [56]. This method is useful to test whether a certain explanatory variable 

impacts window control actions by comparing the distribution of variable values when window opening or 

closing actions is different from that in the entire dataset. First, the entire dataset, including all explanatory 

variables and window control variable, was generated as a baseline. Then, from (i) the entire dataset, two 

subsets were generated depending on the window control action: (ii) data only when window opening actions 

were monitored and (iii) only data when window closing actions were monitored. Hence, (i) provides the 

distribution of explanatory variable values regardless the window control action, while (ii) and (iii) provide 

the specific distribution depending on the window control action (opening and closing, respectively). Then, 

the two-sample K-S test was applied to a pair of samples – (i) and (ii) for the window opening behaviour and 

(i) and (iii) for the window closing behaviour - for each environmental and time-related variable to examine 

how different the two samples are. For instance, if the distribution of the indoor air temperature substantially 

differs between the samples (i) and (ii), it indicates that the indoor air temperature has a significant impact on 

window opening actions. The statistical significance of differences between the two samples is represented 

by the p-value; the lower the p-value is, the more the two samples differ. The significance threshold of the p-

value is typically 0.05, which is also used in this study to exclude unimportant variables from further 

analysis.  

 

Figure 6. K-S test: Definition of the samples.   
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Table 2 shows the K-S test results used to rank the most influencing variables for the window opening and 

closing behaviour. For the window action behaviour, the results highlight that the six most influencing 

variables in the case study analysed are the time of the day, CO2 concentration, solar radiation, indoor and 

outdoor air temperature and indoor relative humidity. All the variables with a p-value higher than 0.05 were 

excluded from the analysis (darker grey boxes). One thing to note is that the day of the week (WD) does not 

influence the window opening action (WOA) at all (p-value =1). Furthermore, the K-S test results reveal that 

the six most influencing variables are identical for the window opening and window closing actions, while 

their ranking varies slightly. The most important variable is the time of the day for both actions. Indeed, 

exploratory data analyses also showed that the windows were opened and closed in certain times of the day 

(morning and late afternoon hours). The window closing actions were also influenced by the wind speed and 

the illuminance level.  

Table 2. K-S test: Variable selection.   

  WINDOW OPENING ACTION (WOA) WINDOW CLOSING ACTION (WCA) 

Rank  VAR p-value  VAR p-value  

1 Hour 5.754 x 10
-12

 Hour 2.2 x 10
-16

 

2 CO2,in 8.668 x 10
-11

 SR 2.2 x 10
-16

 

3 SR  3.226 x 10
-6

 CO2,in 0.000102 

4 Tin 0.0001399 Tin 0.0001399 

5 Tout 0.005 Tout 0.003193 

6 RHin 0.008602 RHin 0.008602 

7 Lux 0.15 Wind 0.01012 

8 Wind  0.2212 Lux 0.03478 

9 RHout 0.335 RHout 0.335 

10 WD 1 WD 1 

 

3.2 Question B: Correlations between variables    
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The second question investigates correlations between the explanatory variables identified in section 3.1 as 

correlations between the variables need to be carefully treated in development of statistical models to 

correctly quantify the effect of individual variables on occupants’ actions. This study uses the Kendall rank 

correlation coefficient to relatively evaluate the importance of correlations between the measured variables 

and accordingly structure the arcs between the explanatory variables in the BN model in an efficient manner. 

In particular, The Kendall rank correlation coefficient, commonly referred to as Kendall's tau coefficient, is a 

statistic used to measure the ordinal association between two measured quantities [57].  

Kendall τ coefficient is calculated as follows; let (VARx1, VARy1), (VARx2, VARy2), …, (VARxn, VARyn) be 

a set of observations of the joint random variables VARX and VARY respectively, such that all the values of 

(VARxi) and (VARyi) are unique. Any pair of observations (VARxi, VARyi) and (VARxj, VARyj) are said to 

be concordant if the ranks of both variables agree; that is, if both VARxi > VARxj and VARyi > VARyj or if 

both VARxi < VARxj and VARyi < VARyj. Otherwise, they are said to be discordant. Equation 4 defines the 

Kendall τ coefficient and n is the total number of combinations: 

τ = �number	of	concordant	pairs	 − �number	of	discordant	pairs	
n�n − 1	/2  

Table 3 shows the ranking of the most correlated variables with the six important drivers and associated 

Kendall coefficient values. Overall, highly strong correlations between the selected variables are not 

observed.  Mild correlations are observed among the indoor air temperature (Tin), the outdoor air temperature 

(Tout), and the solar radiation (SR). As expected, correlations are found between the indoor temperature and 

relative humidity (Tin and RHin) and the outdoor temperature and relative humidity (Tout and RHout). 

Furthermore, minor correlations are found between the time of the day (Hour), the outdoor air temperature 

(Tout), and the solar radiation (SR). These correlations between the selected variables will be represented in 

the BN model by adding arcs between the identified pairs with correlations. It is worth noting that this 

analysis intends to evaluate all the correlations between the variables in a relative manner without specific 

numerical thresholds to define the importance of correlation. 

 

 

 

 

 

 

Table 3. Kendall’s Tau: Nonlinear correlation between the most influencing variables on window action 
behaviour and the other variables.    

 (5) 
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Ranking  Hour  CO2
in

 SR T
in

 T
out

 RH
in

 

1 T
out

 0.16 T
out

 0.17 Luxin 0.38 RH
in
 0.39 RH

out
 0.40 T

in
 0.39 

2 SR 0.16 Hour 0.13 T
out

 0.36 T
out

 0.36 T
in
 0.36 RH

out
 0.25 

3 CO
2,in

 0.13 RH
in
 0.10 T

in
 0.21 RH

out
 0.23 SR 0.36 CO

2,in
 0.10 

4 T
in
 0.11 Lux

in
 0.08 Wind 0.20 SR 0.21 CO

2,in
 0.17 SR 0.09 

5 Wind 0.10 WD 0.02 Hour 0.16 Hour 0.11 Hour 0.16 Wind 0.09 

6 RH
in
 0.06 SR 0.02 CO

2,in
 0.02 Lux

in
 0.03 Wind 0.09 Lux

in
 0.07 

7 Lux
in
 0.03 Wind 0.02 WD -0.01 Wind 0.02 RH

in
 0.06 WD 0.06 

8 WD 0.01 T
in
 0.02 RH

in
 -0.09 CO

2,in
 0.02 WD 0.04 T

out
 0.06 

9 RH
out

 -0.22 RH
out

 0.02 RH
out

 -0.45 WD 0.01 Lux
in
 0.00 Hour 0.06 

 

3.3 Question C: Target definition  

The third question examines the suitability of different target variables to predict occupants’ window control 

actions. Previous models compute the probability of windows being open or closed [16] or to the probability 

of occupants taking window opening or closing actions [11][13]. Figures 7 and 8 show results from using 

these two variables as a target variable predicted as the function of the indoor air temperature. Figure 7 

depicts the counterintuitive trend of the probability of windows being open increasing as the indoor air 

temperature decreases. This misrepresentation is due to strong bi-directional interactions between the indoor 

environmental variables and the window state. When the window state is 1 (open window), cool air flows 

into the room, lowering the indoor air temperature and the CO2 concentration. Hence, using the window state 

as a target variable may lead to unreliable outcomes indoor environmental variables are used as explanatory 

variables. Andersen et al. [11] also pointed out that it is problematic to infer the window state based on 

indoor environment conditions (e.g. indoor temperature) since these are directly influenced by the state of the 

window. Figure 8 highlights that using the window opening action (WOA) as a target variable instead of the 

window state overcomes this problem by taking into account the values of the indoor environmental 

variables only when the window is actually being opened (or closed). It is worth mentioning that using the 

WOA rather than the WS may lead to weaker arc strengths in the BN model since much less data is used for 

training the model (e.g., 215 data points when WOA took place out of the entire set of 65335 data points).  
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Figure 7. Probability of an open window (WS) depending on the indoor air temperature. 

 

Figure 8. Probability of an open window action (WOA) depending on the indoor air temperature. 

.  

4. BN modelling for predicting window opening behaviour 

Figure 9 shows the proposed Bayesian Network for predicting window opening actions developed on the 

basis of the analysis results in Section 3. As outlined in Section 3.1 (Question A), the key variables that most 

influence the window control behaviour are the time of the day, indoor CO2 concentration, solar radiation, 

indoor air temperature, indoor relative humidity, and outdoor air temperature. We highlight that this study is 

based on measurements from one residential unit with the four-month of measurements and consequently the 

proposed model may not include potentially significant drivers that impact window opening actions. such as 

the season, ventilation type, room type, occupants (e.g., age, gender, smoker/non-smoker), building 

characteristics, noise level, and security issues. On the basis of the outcomes in Section 3.2 (Question B), the 

pairs of the variables with stronger correlations are linked by arcs. As the correlation results do not provide 

causal relationships between the variables, the directions of the arcs are determined based on building 

physics. Following the findings in Section 3.3 (Question C), the target variable is the window opening action 
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instead of the window state. As an extension, the window closing action (WCAs) can be included in the 

same model. 

Figure 9. Proposal of a Bayesian Network for window opening behaviour. 

 

With the determined BN structure, parameter learning is carried out to train unknown parameters associated 

with conditional distributions in the BN against the dataset. Typically, in this process, the usability of the 

model is evaluated by the BIC score , and the importance of the variables is evaluated by the strengths of the 

arcs connected between the variables [35][36]. The BIC score is a criterion used to select the best model 

among a given set of models in terms of the predication accuracy and the model complexity; the lower the 

BIC score is, the better the model is. The arc strength measures the importance of individual parent nodes on 

predicting the state of their child node. The strength is measured by the score gain or loss as the result of 

removing one arc while keeping the rest of the network fixed. Negative strength values indicate decreases in 

the network score due to the arc’s removal, and positive values indicate increases in the network score; the 

lower the arc strength is, the stronger the relationship between the two variables linked by the arc is. As the 

proposed BN structure can be applied for both discrete and continuous cases, this paper compares the BN 

model based on a fully discrete dataset (Models A, C and E) and on a fully continuous dataset (Models B, D 

and F). Furthermore, the proposed BN structure (Models E and F) is compared against the structure derived 

only by machine learning (Models A and B) and the Naïve BN where WOA is the only child node and there 

is no arc between the other variables (Models C and D). For the discrete case, the continuous data is 

discretised into equal intervals of values based on logical reasoning as shown in Table 4. 

Table 4. Discretization of the continuous VARs. 

VAR Discrete values  
Tin <14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 
Tout -5-0, 1-5, 6-10, 11-15, 16-20, 21-25,  
SR 0-250, 251-500, 501-750, 751-1000  
RHin  <35, 35-40, 41-45, 46-50, 51-55 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 

 

CO2,in 0-500,501-1000, 1001-1500, 1501-2000, 2001-2500 
 

Figure 10 summarises the BIC score and arc strengths of different BN models. The BNs were modelled with 

the R bnlearn package [35] and the structure of the variables was established by a search-and-score-based 

algorithm (Hill-Climbing algorithm) [36]. Models A and B show that the learning algorithm alone is not able 

to derive the BN structure that correctly captures relationships between the physical variables. The arcs 

automatically created by the learning algorithm do not represent the real physical dynamics beyond 

correlations between the variables. In addition, comparison between Models D and F highlights that the 

correlations between the explanatory variables are very high but the effect of modelling correlations between 

the variables on the model predictive power is very minor as the BIC score of Model F does not change 

much from that of Model D. The models based on the discrete data (Models C and E) are not able to quantify 

probabilistic dependencies between the explanatory variables and the WOA, while the continuous data 

(Models D and F) allows for identifying probabilistic dependencies between them. Indeed, the discretization 

of the dataset leads to a significant loss of information. Different discretization techniques have been 

developed to maintain substantial information embedded in the continuous dataset in the discretisation 

process. Suzuki [58], for instance, proposed a scoring method that incrementally discretises the continuous 

data at finer resolution and evaluates the predictive power of the resulting models. On the other hand, the 

continuous data cases hold all information, but they do not appropriately handle categorical variables (e.g., 

time of the day) and binary variables (e.g., window control actions). Recent studies, such as [59] developed 

methods for learning BNs from datasets joining continuous and discrete variables, but they are not readily 

available for the wider research community.  

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 

 

 

 

Figure 10. Exploitation of BNs for modelling window opening behaviour. 
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4.1 Question D: Treatment of mixed data  
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This section proposes a BN modelling procedure that properly treats mixed data. This capability is crucial 

especially for the context of window control behaviour in which the main target variable is often binary 

(open/close) and key response variables are continuous. In particular, the target node “WOA” and time of the 

day are discrete variables while all the indoor and outdoor environmental variables are continuous. 

Currently, most available statistical analysis packages, including the bnlearn package, support either discrete 

or continuous variables. The bnlearn package offers more flexibility as it does not support the dependence of 

discrete variables on continuous variables but support the other way around. Hence, it is possible to build a 

bottom-up model in which the arcs are reversely connected from the discrete target variable to the 

continuous response variables (Figure 11). The semantic representation of this model might seem less 

intuitive, but since the BN model supports any direction of reasoning, it still can correctly infer the window 

opening action given the set of variable values.  

Figure 11. Treatment of mixed data: Bottom-up (BU) model  

 

The BIC score of the model suggests that appropriately handling the mixed data improves the predictive 

power of the model in comparison to Models C and D. Furthermore, Model G yields the ranking of the 

response variables that well aligns with the outcomes of the K-S test described in section 3.1. In contrast, the 

continuous case (Model D) results in a much lower arc strength value for the time of the day as it does not 

correctly treat this variable as a categorical variable and instead expects a consistent trend between this 

variable and its child node. This comparison clearly illustrates the importance of appropriately treating mixed 

data to yield a reliable BN model and correctly analyse the effect of different variables on control actions.  

Figure 12 depicts the outcomes of the queries related to the probability of a window opening action given the 

main key response variables (Model G). As regards the main influencing driver, the time of the day (Fig. 

12a), the results show that the probability of performing a window opening action is higher during the 

morning and late afternoon/evening hours. Furthermore, also found in the existing literature [11][14], the 

results indicate that the probability of opening a window increases in correspondence of a higher CO2 

concentration (Fig. 12b), indoor air temperature (Fig. 12c), and outdoor air temperature (Fig. 12d).  
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Figure 12. Probability of a window opening action given (a) time of the day (b) CO2 concentration, (c) 

indoor temperature, (d) outdoor temperature, (e) solar radiation, and (f) indoor relative humidity 

   

(a)                                                                              (b) 

           

(c)                                                                             (d) 

      

(e)                                                                             (f) 
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4.2 Question E: Model validation  

This section investigates validation approaches, which is a crucial step to test the predictive power of 

stochastic models. In particular, this research step validates and tests the predictive power of the final BN 

model described in Section 4.1. For model validation, cross-validation is a standard way to obtain unbiased 

estimates of a model’s goodness of fit by partitioning the dataset into training and testing subsets. K-fold 

cross-validation in the bnlearn package is applied to randomly partition the entire dataset into k equally sized 

subsamples. Out of the k subsamples, a single subsample is retained as the validation data for testing the 

accuracy of the trained model, and the remaining k-1 subsamples are used as training data. In this case study, 

the dataset was split into 10 subsets, and the BN model was trained against 9 subsets and tested against 1 

subset. 

In cross-validation for classification problems similar to the context of predicting binary control actions, the 

prediction error of a stochastic model is commonly calculated by a loss function that compares the predicted 

label of the target variable against measurements through the testing dataset. The expected loss value of the 

final BN model (Model G) is 0.5% (k=10). Although this indicates that predictions are wrong only 5 times 

out of 1000, it is worth mentioning that as the original dataset is very unbalanced (0.3% of the dataset 

corresponding to "window opening = TRUE" events and 99.7% of the dataset corresponding to "window 

opening = FALSE" events), the low classification error does not guarantee that the model reliably predicts 

the window opening action. 

A tailored approach for model validation is applied to examine the model predictability in detail with 

considering the imbalance of the dataset. This approach consisted of the following steps: 

1. Creation of a testing dataset containing 215 samples of “window opening = TRUE” and 215 samples 

of “window opening = FALSE”; 

2. Computation of model predictions by the BN model for given response variable values in the testing 

dataset; 

3. Creation of a confusion matrix of observed and predicted WOAs and NOAs. 

Steps 1 and 2 were repeated approximately 100 times to obtain the probabilistic distribution of prediction 

accuracy. The confusion matrix in Figure 13 indicates the model yields in average correct predictions 410 

times out of 430. In detail, the accuracy of the model to predict the window opening action and no opening 

action is in average 93% and 98%, respectively. The expected loss value obtained with the balanced data is 

5%, which also confirms the strong predictive power of the BN model. 
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Figure 13. Confusion matrix of observed and predicted WOAs and NOAs.  

 

5. Discussion   

As the case study in this study is based on measurements from one Danish residential apartment, statistical 

results from the case study are limited to draw generalizable findings due to the small sample size. 

Nevertheless, the case study serves as an adequate and useful testbed to investigate the applicability of the 

BN framework for modelling window control behaviour and demonstrate the statistical methods used for 

variable selection and model validation in the modelling process. A next step is to use an extensive dataset 

from a large number of residential buildings to develop a generalizable model. We highlight that the case 

study in this paper focused on environment- and time-related variables for predicting window control 

actions. In the further work, it is necessary to investigate other building-related factors that may yield 

different patterns of window control behaviour, such as different ventilation strategies (i.e., presence of 

controlled mechanical ventilation), room type, and building design characteristics. More importantly, as 

substantial variation is observed in the window control behaviour due to individual users [60], further work 

is needed to include contextual information such as occupant types (e.g. age, gender, smokers/non-smokers), 

social factors (energy-related knowledge and attitudes), and psychological and physiological factors.  

The case study demonstrated that the proposed BN approach yields a probabilistic prediction model with 

higher confidence and better interpretability by fully exploiting information from the mixed dataset in 

comparison to the typical BN approaches. In all BN models, however, the joint distribution of all variables 

(global distribution) is factorised into local probability distributions, which reduces computational 

requirements for complex networks and increases power for parameter learning [61]. On the other hand, this 

also means that the local probability distribution between two nodes only explain the effect of the parent 

node on the child node, but does not take into account parameter interaction effects [61]. Although the case 

study in this paper showed the high predictive power of the BN model without accounting for parameter 
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interactions, it is not sufficient to conclude the effect of parameter interactions on the model predictive 

power. Further investigation is necessary to test the importance of parameter interactions in the context of 

window control behaviour modelling with Bayesian Networks.  

The BN-based approach, in principle, allows for modelling complex hierarchical relationships between a 

large number of continuous and discrete variables through a clear semantic graphical representation. 

Moreover, the graphical representation is a valuable conceptual benefit since the structure and its underlying 

probabilistic dimension are easily interpretable for modellers in the building simulation community. 

However, owing to the limitation of the existing statistical packages, BN approaches used in existing studies 

with mixed data are based on discretized data of continuous and discrete variables, which may likely result in 

a significant loss of information [59]. As the first step to overcome this limitation, this paper proposed the 

bottom-up modelling approach that handles mixed data when the target node is discrete and depends on 

continuous and/or discrete explanatory variables. However, the proposed approach is not extendible to model 

a hierarchical complex structure that links continuous and discrete explanatory variables in multiple layers. 

In fact, occupants take a specific action or combination of actions among many control actions, such as 

thermostat settings, light dimming, blind control, to maintain their thermal and visual comfort level, and 

modelling a series of control actions has been identified as one of the future needs for occupant behaviour 

modelling [5]. A Bayesian hierarchical network model can provide a mathematical framework for 

holistically modelling such adaptive actions in relation to environmental and contextual variables.  

This study mainly validated the technical performance of the BN model for predicting occupant control 

actions through the case study of a single residential unit. In addition, comparison of the BN approach 

against the existing statistical methods, such as logistic regression and Markov chain processes, is essential 

to test whether the BN approach offers improvement in prediction accuracy. Further work is underway to 

compare the BN model against the above-mentioned existing statistical methods through the same case 

study. Future research steps for improving and validating the model include further developing the model 

with the extensive dataset and evaluating the applicability of the model to other residential buildings.  

 

6. Conclusions 

This paper proposed a Bayesian Network modelling as a methodology to model window opening behaviour 

of occupants in residential buildings. The case study on the basis of measured data in a residential apartment 

located in Copenhagen, Denmark demonstrated the potential benefits of using the Bayesian network 

framework for modelling stochastic processes of energy-related behaviour with consideration of various 

factors that drive final control actions. The key research questions related to modelling stochastic window 

control behaviour were addressed through the case study and key findings are summarised below:   

(A) The Kolmogorov-Smirnov (K-S) two sample test allows for identifying key variables that impact 

window control actions regardless the data type (i.e., continuous, categorical) and underlying trend between 
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variables. The K-S two sample test ranked the following variables with respect to their influence on 

triggering window opening actions: time of the day, CO2 concentration, indoor and outdoor temperature, and 

indoor relative humidity.  

(B) Correlation analysis was performed to identify strong correlations between dominant variables that 

impact window opening behaviour. Adding correlations between the variables in the BN model by linking 

them with arcs did not increase the BIC score as it increases the model complexity but does not substantially 

increase the predictive power of the BN model.  

(C) This study showed that the window opening action is more suitable as a target variable to model window 

control behaviour than the window open/close state. Indoor environment variables such as indoor CO2 

concentration level and indoor temperature were identified as key variables that change the window state, but 

at the same time, the indoor environment conditions are directly influenced immediately after a window 

control action takes place. Hence, when the window state was used as a target variable, the statistical model 

with using indoor environment variables as predictors did not correctly represent relationships between the 

indoor variables and window control behaviour.  

(D) The study demonstrated the most BN models used for only discrete or continuous datasets are not suited 

to fully exploiting information embedded in the mixed dataset. A reversed BN model was proposed to 

appropriately handle mixed data in the bnlearn environment. The proposed model was structured to predict 

the probability of a window opening action given the identified key environmental and time variables. In line 

with existing studies and the K-S two sample test results, arc strengths in the BN model also indicated that 

the time of the day, CO2 concentration and indoor/outdoor temperature are the most important variables.  

(E) The BN model was validated in terms of the expected loss value and the confusion matrix through the 

classical cross-validation procedure. As the data points with WOAs are much smaller than those with NOAs, 

a tailored validation approach was applied to select the same number of data points for each case and 

compute the confusion matrix. The validation measures confirmed the high predictive power of the model 

and its successful application for modelling window control behaviour.  

In summary, Bayesian network modelling well represents the stochastic nature of window control behaviour 

in relation to a variety of explanatory variables and consequently provides predictions with high confidence. 

However, steps involved in the modelling process, specifically variable selection and validation, need to be 

carefully set up to correctly reflect the stochastic nature in the analysis process. 
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Highlights: 

• The applicability of the Bayesian Network Framework to model window control behaviour is 

demonstrated 

• A procedure for developing a BN model with full exploitation of mixed data is presented 

• Key variables that mostly impact window control actions are highlighted 

• The window opening action is more suitable as a target variable to model window control 

behaviour  


