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Abstract

Extended literature reviews confirm that the actuevaluation of occupant energy-related behaviear
key factor for bridging the gap between predictad actual energy performance of buildings. Oneeyf k
energy-related human behaviour is window contrtibas that have been modelled by different prolistil
modelling approaches. In recent years, Bayesianvdtks (BNs) have become a popular representation
based on graphical models for modelling stochgsticesses with consideration of uncertainty inousi
fields, from computational biology to complex enggning problems. This study investigates the piatent
applicability of BNs to capture underlying complied relationships between various influencing feceond
energy-related behavioural actions of occupants résidential buildings: in particular, window
opening/closing behaviour of occupants in resideitiildings is investigated. This study addre$seskey
research questions related to modelling windowrobiehaviour: (A) variable selection for identifig key
drivers impacting window control behaviour, (B) @ations between key variables for structuring a
statistical model, (C) target definition for findirthe most suitable target variable, (D) BN modéhw
capabilities to treat mixed data, and (E) validatad a stochastic BN model. A case study on theshafs
measured data in one residential apartment locate@openhagen, Denmark provides key findings

associated with the five research questions throligimodelling process of developing the BN model.

Key words: Occupant behaviour; Bayesian Networkapaw control behaviour; stochastic modelling

1. Introduction

Accounting for uncertainty has become a cruciakeaesn the domain of building energy simulation for
incorporating human behaviour that impacts buildingrgy performance and comfort expectations. Human
behaviour such as occupancy, control of energyesyst occupants’ interaction with the building eopel
and other comfort criteria settings are conside®#tey sources of uncertainty in the predictiobuifding
energy use. Indeed, occupant behaviour varies fiignily between individuals, which results in larg
variation of the indoor environmental quality amergy consumptions of the buildings [1][2][3]. Emtid
literature reviews and state-of-the-art analysesicno that an accurate modelling of occupant betavis a

key factor to bridging the gap between predicted actual energy performance of buildings [4][5]/8IB].
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Frequently, simulation-based design analysis raliestandard use and operation conditions sucixed f
schedules for occupancy levels, light switching)tifation rates and temperature setting. Thesenagssons
often lead to an oversimplification of the humalated variables creating discrepancies betweengteed
and real energy use of the building. Thus, in regears, probabilistic modelling approaches havenbe
applied to capture the stochastic nature of ensgtated human behaviour when predicting buildingrgn

consumptions in dynamic simulation programs [9].

Occupant’s action of window opening/closing hasiraportant impact on building energy use and indoor
environmental quality (IEQ) by changing the amoohfresh air to the building. Several studies haeen
carried out to develop stochastic models for ptadjcthe occupant’s interaction with the windowsese
models are based on statistical algorithms to ptdde probability of a specific condition or evestich as
the window state or the window opening/closing @gttigiven a set of environmental or other influainti
factors. Most popularly used methods include legialysis, probit analysis, and Markov chain proegess
Nicol [10] developed a logit regression model tedict the state of windows in a probabilistic maraethe
function of indoor and outdoor temperatures. Aneerst al. [11] also used a logistic regression rmbdsed

on a more comprehensive set of indoor and outdagiranmental variables to infer the probability of
opening and closing a window. The study on thesbakthe field measurements from 15 Danish dwedling
defines four separate models of occupants’ windotiw@a behaviour patterns for different ownershipsl a
ventilation types. Logit regression models havenbaelso applied in other studies for modelling wiwdo
control behaviour [12][13][14]. Zhang and Barre6]1developed a probit model for predicting window
opening/closing actions in a naturally ventilatéfice building considering the outdoor temperatasesthe
only independent variable. Haldi and Robinson [18][ tested different modelling approaches and
demonstrated that a discrete-time Markov procegmoaph, which takes into account real dynamic
processes, leads to a higher predictive power cordpwith the logit regression approach. Modelling
approaches based on Markov chain processes ardrufH| and [19] to predict window states based on
their previous states in office buildings and hagespectively. As these models consider real mima
processes by providing transition probabilitiesNssin the states of a window, they are limited {@wa the
dynamic effect of changes in indoor and outdooriremmental conditions on window opening and closing
actions.

This paper investigates the capabilities of theeB@n Network framework to model occupant behaviour
the context of thermal comfort and building eneagnalyses in order to bridge the gap between simokit
outcomes and reality. Bayesian Networks (BNs),atiner graphical belief networks, are widely apfilea
and have become a popular representation for emgadicertainty in decision-making processes based o
incomplete datasets [20]. In recent years, BNs Hzen used in many fields, from On-line Analytical
Processing (OLAP) [21], cancer prognosis and epidiegy [22], the modelling of dwelling fire
development and occupancy escape [23], to speeofgnition [24]. In the buildings domain, BNs haweh

introduced to estimate the effects of the indoonate on the productivity of occupants [25], toéstigate



the relationship between indoor environmental patans, measurements from body sensors and self-
reported activities by the occupants [26], to prediccupancy patterns in buildings [27][28], to rabd
energy-related user behaviour for building energynagement [29][30], and to predict indoor environtak
conditions [31]. So far, these studies based omiBidels treat either discrete variables only or icooius

variables only.

In comparison to the above-mentioned regressioaebasodels, BN-based approaches are able to flexibly
model complex relationships between diverse expiapavariables and window control behaviour by
constructing a joint probability distribution oveifferent combinations of the domain variables.ded, the

BN model permits to easily model joint conditiorBdpendencies of the entire set of variables thraugh
graphical representation of the model structurd.[BBe BN model also allows for structuring a vayrief
explanatory variables and multiple target variablesa hierarchical manner. In addition, BNs are
demonstrated to yield good prediction accuracy evigm small datasets [33]. They also have capéaslito
handle incomplete datasets by using Expectationiiaation (EM) algorithms [34] in which missing @dat
can be marginalized by integrating over all thespgmbties of the missing values. Furthermore, B
model provides a clear semantic representatioelationships between variables, which facilitategibly

structuring a model and training it against avddatata in wider and interdisciplinary research gamities.

This paper demonstrates the applicability of thgeB&n Network (BN) framework for predicting window
opening/closing behaviour of building occupantseldasn the measurements in a residential apartment
located in Copenhagen, Denmark. In particular,phper addresses five key research questions refated
developing a BN model for predicting window-use tgats. The first set of three research questions

addresses general issues relevant to modellingowiredntrol behaviour:

A. Which variables are key drivers that determine wimaontrol behaviour?

B. What level of correlations resides between varglaad should they be captured in the BN
model?

C. What is the most suitable target variable of windmatrol behaviour?

Regarding the first question, the Kolmogorov-Smirfi@st (K-S Test) is applied to evaluate which aflés
are main drivers for window control actions. Fag 8econd question, the Kendall Tau correlationfimbexft
is used to investigate correlations between identifariables and accordingly model them in the BNe
third question (C) investigates different targetialles commonly used in the literature (i.e., veiwd

opening/closing event and window state) in termghefmodelling accuracy.

The second set of research questions addressedlingpdballenges related to the applicability oetBN

framework for modelling occupants’ window contr@haviour:

D. How to handle mixed data in the BN framework?

E. How to validate stochastic BN models?



A key question of this paper addresses how to leanmdked data in the BN framework. Traditional BN
approaches to treat either discrete variables aotiramus variables are not suited to modelling wind
control behaviour as datasets typically consisbath continuous variables (e.g., indoor temperatG@,
concentration) and non-continuous variables (bigary control actions, time of the day). This sttides to
overcome this problem by proposing a modelling pduce that allows for handling mixed data, paradyl
with use of the bnlearn package [35] in the siaassoftware R environment [36]. The predictiom@acy

of the model is evaluated through a series of nustisnitable to validate stochastic models.

2. TheBayesian Network Framework
2.1 Bayesian Networks

Bayesian Networks are graphical models that reptepeobabilistic dependencies between discrete or
continuous variables (X[37]. In the models, variables are presented tges and their relationships are
represented by arcs. The direction of arcs detesninhierarchical structure of nodes. Figure 1 shamw
example of a Bayesian Network that represents tbieabilistic dependencies between an occupantisract
and a set of variables (VAR) that potentially imipae action.

A network structure is often explained with a fammhetaphor; if there is an arc starting from ondento
another, the former is a parent of a child (theetqt Extending the metaphor, in a directed chéinaales,
one node is an ancestor of another if it appeat®em the chain, whereas a node is a descerafatother
node if it comes later in the chain. For instaraseshown in Figure 1, as there is an arc fronioXX;, node
X is a parent of nodeXThe graphical structure of a Bayesian networkotied as G=(V,A), is a Directed
Acyclic Graph (DAG), where V is the node (or veiteet and A is the arc (or edge) set. The DAG désfia
factorization of the joint probability distributioof V = {X,X,,...,X;}, often called the global probability
distribution, into a set of local probability distntions, one for each variable [36]. This factatian is based
on the assumption that Bayesian Networks have &dlgoroperty [37], which indicates that the stateo
random variable Xdepends only on its parerfX;. In general, Bayesian network modelling requites t

assumption of the Markov property.

Figure 1. Example of a BN: Probabilistic dependesdbetween occupant behaviour and possible

explanatory variables (VAR)/drivers.
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In principle, BN models flexibly represent diffetegpologies and handle a mix of various data tyjyex,
so far, BN models used in most existing studiesliarited to either a discrete case or a continucase.
This limitation is mostly due to the fact that, arttinately, most software available for developBiy
models are applicable to either discrete or contisudata and, thus, do not permit yet to handlaexaom
continuous and
discrete datasets in one BN model, particularly iwidéscrete variables are conditional on continuous
variables. Equations 1 and 2 define a joint prditgldistribution for a discrete case and continsi@ase,
respectively:
n (for discrete variables) D)
P(Xy, .., X,) = HP(XiIParents(Xi))
i=1

(for continuous variables) (2)

F X = | [ FKulParents(x)
i=1

In the discrete case, conditional joint probalafitiare represented by the so-called Conditionda®itity
Tables (CPTs) since all variables are characterinedliscrete data. In this case, all intervals dach
discrete variable are treated as independent Vesiabnd there is no mechanism to capture thetedfec
continuous variables such as temperature andvelatimidity as a continuous trend. On the othedhtre
continuous case assigns each varidbleith a Gaussian probability density functionXt ) conditional on
the values of its parent nodes. As datasets cetleftir model development often consist of differdata
types, many existing studies discretize continuwdata for obtaining homogeneous datasets [38][3YR3R

A key limitation of discretization is a significabss of information, which has a big impact on the
predictive power of resulting BN models and thesiiptetability of BN models to understand relatiapsh
between variables. In fact, data collected for pariw behaviour modelling typically includes both
categorical or binary variables (such as windowtrdractions and time-of-day) and continuous vdeab

(such as the indoor/outdoor environmental varigbldence, it is important to develop a BN framewtirat



allows for appropriately handling mixed data forcogant behaviour modelling, which will be carefully

investigated in Section 4.1.

2.2 Structuring and lear ning Bayesian Networ ks

Approaches for developing a BN model can be caieggrinto two groups. The first group, called as
“elicitation”, is based on domain experts that retyexpertise to structure a network and quantibpability
distributions associated with arcs [40]. This apgtocan be useful for cases in which field survata dr
measurements are not available. The second grosplédy based on machine learning algorithms that
extract a structure and estimate probability distions from the dataset [41]. This approach may ke the
model best fit to the training dataset, but whettersal relations between variables derived fraerdiditaset
alone are correct needs to be carefully inspedéidrnatively, these two approaches can be combined
fully utilise both expert knowledge and availablstaj for example, defining the structure of thewoek
based on expert knowledge and learning probaldlgtributions in the BN model from the dataset (e

2).

Figure 2. Learning the structure of BNs.
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Several machine learning algorithms have been dpedito extract a BN structure directly from théadat.
Constraint-based algorithms (conditional independefearners) are all optimized derivatives of the
Inductive Causation algorithm [42]. These algorishase the conditional independence tests to d#étect
Markov blankets of the variables and accordinglgniify causal relationships among variables in a BN
network. The main drawback of constraint-basedrélyos is that they are not robust to correctlyiref
independencies among variables when they are highiyelated. Another group of algorithms, called
search-and-score searches over possible Bayesiavoikestructures to find the best factorizationtioé
joint distribution [21]. These score-based learnaigorithms are general purpose heuristic optironat
algorithms which rank testing network structureshwiespect to a goodness-of-fit score. One of thstm

commonly used measures in this process is Baydsiarmation Criterion score (BIC score) [36], which
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measures the model predictability with evaluatibthe value of adding more variables into the modals
measure defined in Equations 3 and 4 for the dscaed continuous cases represents a useful tool fo

optimizing the model in terms of both its predietipower and complexity.

- d
BIC = ZIogPXL. (Xl-l l_[Xi) —Elogn
i=1

n
d
BIC = z logfy, (XL-| HXi) _EIOgn (for continuous variables) 4)
i=1

where d is the number of variables included inBhenetwork and n is the sample size.

Hybrid algorithms are developed to determine a Biwvork based on both conditional independence tests
and network scores. Several commercial softwaré ssscHugin [43], BayesialLab [44] and Netica [45]
provide these algorithms for users to obtain a Bicsure directly from a given dataset. These atlgors

are also available in statistical computing enuments such as R (bnlearn, deal, catnet, pcalg, Rba
gRain) [36], Matlab (Bayes Net Toolbox) [46], J44&] or Python [48].

2.3 Reasoning with Bayesian Networ ks

Bayesian Networks provide full representations obbgbility distributions over their variables and
supporting different types of reasoning. FigureuBsiarizes the main directions of reasoning with BiNs
the context of occupant behaviour analysis. BN risogermit to perform diagnostic reasoning to uniders
which variables (VARSs) influence occupants’ actiqi@B) and in which manner: for example, “What
specific environmental conditions trigger occupdantepen windows?”. This type of reasoning occarthe
opposite direction to network arcs to understanatwiauses certain actions. Another type of reagoisin
predictive reasoning, which is typically the magljective of developing occupant behaviour modtls:
example, “If the outdoor temperature is around 21W@at is the probability that occupants will open
windows?”. In this case reasoning follows the dimat of the network arcs to predict occupant’s @tcti
given expected environmental conditions. Anothemfof reasoning is called as intercausal reasottiat
involves reasoning about mutual causes of a comseféect [37]: for instance, reasoning about the
relationships between several response variahleh, & indoor and outdoor environmental varial$asce
any nodes in BNs may be query nodes (target vasaldnd any may be evidence nodes (explanatory
variables), sometimes the reasoning does notditlywéto one of the types described above, ansktliygpes

of reasoning can be combined in any way. Furthd¢ailéd information about BNs can be found in
[37][49][50][51].

Figure 3. Types of reasoning with Bayesian Networks
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3. Structuring a statistical model for predicting window opening behaviour

This section address the first set of key resegrastions associated with the process of modetlieg

window control behaviour introduced in Section 1:

A. Variable selection
B. Correlation between variables

C. Target definition

The modelling process is based on measurementaeohatural-ventilated, rented two-persons apartment
located in Copenhagen, Denmark [11]. Table 1 sunsesmeasurements related to the indoor and outdoor
environment conditions, occupants’ interaction wfie windows, and time-related factors such adithe

of the day or the day of the week. These measursmere collected in 10-minutes intervals contiralpu

for approximately 3 months (February—May). The ootdenvironmental measurements were acquired from

a meteorological measuring station located nearaibertment. The same time resolution was used for

analysis.

Table 1. Available target* and explanatory variable
Potential VARs Abbreviation = Unit Min M ax Mean Median = St. Dev.
Indoor Environment
Dry bulb temperature i °C 12.1 25 21 21 3
Relative humidity RE % 26 66 38 38 5
llluminance Lux lux 1 8360 95 43 171
CGO, concentration Can ppm 101 2261 608 580 161
Outdoor Environment
Air Temperature Tout °C -5 24 7 6 5
Relative humidity REL: % 25 100 73 74 18
Wind speed wind m/s 0 13 3 2 2
Global solar radiation SR wW/m? 0 904 184 63 230



Occupant Behaviour Range of values

Window position/state WS* 0/1 (closed/open)
Window opening/closing actior WOA*WCA*  0/1 (no action/action)
Other Range of values
Time of the day Hour 1-24

Weekday WD Monday-Sunday

Figure 4 shows the measured window opening actibrieughout the monitoring period (vertical black
dotted lines), plotted against measured indoor &ratpres (blue) and outdoor temperatures (redhen t
living room and the sleeping room. One thing tonpaiut is that this study treats window states bsmary
variable (O=closed, 1=open) and does not takeantmunt the degree of opening (angle of the shufiter
respect to the window frame). Windows are a twogmvindow type, manually controlled by the building
occupants. Detailed information on window types amehsurement instruments can be found in [11]. In

total, the occupants performed 215 window openatigpas during the monitoring phase.

Figure 4. Window opening actions (black dotteddin@nd indoor (blue line) and outdoor (red line)
temperature in the living room (a) and the sleepiogm (b).
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3.1 Question A: Variable selection

The first question addresses a variable selectem that identifies key explanatory variables thétience
window opening/closing behaviour (Figure 5). Bomyesind Brager [52] provide an extensive summary of
the literature on modelling studies for predictiogcupants’ window control behaviour. In most models
studied by [52], temperature is considered as thstnimportant driver [53][54], although there is no
consensus about whether indoor or outdoor temperasudominant in determining the behaviour. Other
models use time-related factors such as the timbeoflay and season or the current window stateyas
variables to predict window control actions [55][[14]. Review of the existing literature confirméuht the
dataset used for this study include key explanat@mables that are found to impact window control
behaviour.

Figure 5. Definition of explanatory variables.
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As the next step, a two-sample Kolmogorov-Smirnest {K-S test) was used to test which variables are
main drivers that trigger window control actionfieTtwo-sample K-S statistic quantifies a distanevben

the empirical distribution functions of two samplesevaluate whether two samples come from the same
probability distribution function [56]This method is useful to test whether a certainaggiory variable
impacts window control actions by comparing therttigtion of variable values when window opening or
closing actions is different from that in the emtidtataset. First, the entire dataset, includingxgllanatory
variables and window control variable, was genera@® a baseline. Then, from (i) the entire datdset,
subsets were generated depending on the windowotawtion: (ii) data only when window opening acts
were monitored and (iii) only data when window @hgsactions were monitored. Hence, (i) provides the
distribution of explanatory variable values regasdl the window control action, while (ii) and (jijovide

the specific distribution depending on the windamtrol action (opening and closing, respectiveRen,

the two-sample K-S test was applied to a pair of@as — (i) and (ii) for the window opening behaviand

(1) and (iii) for the window closing behaviour -rfeach environmental and time-related variablexarene
how different the two samples are. For instancthafdistribution of the indoor air temperature fahtially
differs between the samples (i) and (ii), it indésathat the indoor air temperature has a sigmfizapact on
window opening actions. The statistical significarat differences between the two samples is reptede

by the p-value; the lower the p-value is, the ntbheetwo samples differ. The significance threstadlthe p-
value is typically 0.05, which is also used in tkisidy to exclude unimportant variables from furthe

analysis.

Figure 6. K-S test: Definition of the samples.
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Table 2 shows the K-S test results used to ranknibgt influencing variables for the window openargd
closing behaviour. For the window action behavidhe results highlight that the six most influercin
variables in the case study analysed are the tintleeoday, CQ concentration, solar radiation, indoor and
outdoor air temperature and indoor relative hurpidhil the variables with a p-value higher than®wWere
excluded from the analysis (darker grey boxes). thimg to note is that the day of the week (WD)<sloet
influence the window opening action (WOA) at ali@ue =1). Furthermore, the K-S test results retrest
the six most influencing variables are identical tfee window opening and window closing actionsjlevh
their ranking varies slightly. The most importamtriable is the time of the day for both actionsieed,
exploratory data analyses also showed that theomiadvere opened and closed in certain times ofitlye
(morning and late afternoon hours). The window idi@&ctions were also influenced by the wind speaed

the illuminance level.

Table 2. K-S test: Variable selection.

WINDOW OPENING ACTION (WOA) WINDOW CLOSING ACTION (WCA)
Rank VAR p-value VAR p-value
1 Hour 5.754x10 Hour 2210
2 Cin 8.668 x 10 SR 2210
3 SR 3.926 x 10 COn 0.000102
4 T 0.0001399 T 0.0001399
5 Tout 0.005 Tout 0.003193
6 RH, 0.008602 RH 0.008602
7 Lux 0.15 Wind 0.01012
8 Wind 0.2212 Lux 0.03478
9 RHou 0.335 RHou 0.335
10 WD 1 WD 1

3.2 Question B: Correlations between variables

12



The second question investigates correlations lestwiee explanatory variables identified in secoh as
correlations between the variables need to be dbrefreated in development of statistical modeds t
correctly quantify the effect of individual vari&sl on occupants’ actions. This study uses the Hleraaek
correlation coefficient to relatively evaluate tingportance of correlations between the measurechlas
and accordingly structure the arcs between theaespbry variables in the BN model in an efficiersrmer.
In particular, The Kendall rank correlation coeiat, commonly referred to as Kendall's tau cogffit, is a

statistic used to measure the ordinal associattwden two measured quantities [57].

Kendallt coefficient is calculated as follows; let (VARVARy1), (VAR VAR,), ..., (VAR VAR,,) be

a set of observations of the joint random variab&fRy and VAR, respectively, such that all the values of
(VARy) and (VAR)) are unique. Any pair of observations (VAR/ARy;)) and (VAR;, VARy;) are said to
be concordant if the ranks of both variables agtes; is, if both VARX> VARX; and VARY > VARYy; or if
both VARx < VARYX; and VARY < VARYy;. Otherwise, they are said to be discordant. Eqnatidefines the
Kendallt coefficient and n is the total number of combioas:

_ (number of concordant pairs) — (number of discordant pairs) (5)
= n(n—1)/2

Table 3 shows the ranking of the most correlatetiblibes with the six important drivers and assetlat
Kendall coefficient values. Overall, highly strorgrrelations between the selected variables are not
observed. Mild correlations are observed amongrtieor air temperature {J, the outdoor air temperature
(Tow), and the solar radiation (SR). As expected, tatioms are found between the indoor temperatude an
relative humidity (T, and RH,) and the outdoor temperature and relative humidity,; and RH,).
Furthermore, minor correlations are found betwédentime of the day (Hour), the outdoor air tempeeat
(Tow), and the solar radiation (SR). These correlatletsveen the selected variables will be represented
the BN model by adding arcs between the identipads with correlations. It is worth noting thatsth
analysis intends to evaluate all the correlatiogtsvben the variables in a relative manner withpetcsic

numerical thresholds to define the importance ofetation.

Table 3. Kendall's Tau: Nonlinear correlation betvethe most influencing variables on window action
behaviour and the other variables.

13



Ranking Hour coz SR T, Tout RH_
1 Tw 016 | T, 017 | Luxn 038 RH 039 | RH =~ 040 | T 039
2 SR 016 | Hour 0.13| T =~ 0.36 ou 036 | T 036 | RH 025
3 Co,, 013 | RH 0.0 n 021 | RH 023 SR 0.36 | CO,; 0.10
4 T, 011 | Lux_~ 0.08 | Wind 0.20 SR 0.21| €O, 0.17 SR 0.09
5 Wind 0.10 WD 0.02 Hour 0.16 Hour 0.11 Hour 0.16 Win 0.09
6 RH ~ 0.06 SR 002 €O, 002 | Lux 003 | wind 009 | Lux 007
7 Lux, 003 | wind 0.02| WD -001] Wind 002 RH 006 | WD 0.06
8 WD 0.01 T, 002 | RH 009 | CO, ~ 002 | WD 004 | T, 006
9 RH ~ -022 | RH ~ 002 | RH ~ -045 | WD 001 | Lux ~ 000 | Hour 0.06

3.3 Question C: Target definition

The third question examines the suitability of eliéint target variables to predict occupants’ winadawtrol
actions. Previous models compute the probabilitywiodows being open or closed [16] or to the praligb

of occupants taking window opening or closing awi¢11][13]. Figures 7 and 8 show results from gsin
these two variables as a target variable prediagethe function of the indoor air temperature. Féga
depicts the counterintuitive trend of the prob#pibf windows being open increasing as the inddor a
temperature decreases. This misrepresentatioreisodstrong bi-directional interactions betweenitigoor
environmental variables and the window state. Wihenwindow state is 1 (open window), cool air flows
into the room, lowering the indoor air temperatanel the C@concentration. Hence, using the window state
as a target variable may lead to unreliable outsoim#oor environmental variables are used as eafman
variables. Andersen et al. [11] also pointed ouatt ihis problematic to infer the window state lthem
indoor environment conditions (e.g. indoor tempanet since these are directly influenced by theesththe
window. Figure 8 highlights that using the windopeaing action (WOA) as a target variable insteathef
window state overcomes this problem by taking iatxount the values of the indoor environmental
variables only when the window is actually beingiogd (or closed). It is worth mentioning that uding
WOA rather than the WS may lead to weaker arc gthsnin the BN model since much less data is used f
training the model (e.g., 215 data points when W@%k place out of the entire set of 65335 datatspin

14



Figure 7. Probability of an open window (WS) deprgan the indoor air temperature.
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Figure 8. Probability of an open window action (WQ¥epending on the indoor air temperature.
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4. BN modelling for predicting window opening behaviour

Figure 9 shows the proposed Bayesian Network fedipting window opening actions developed on the
basis of the analysis results in Section 3. Asiredl in Section 3.1 (Question A), the key varialthe most
influence the window control behaviour are the tiofighe day, indoor COconcentration, solar radiation,
indoor air temperature, indoor relative humiditgdaoutdoor air temperature. We highlight that gtigdy is
based on measurements from one residential uritthét four-month of measurements and consequdly t
proposed model may not include potentially sigaificdrivers that impact window opening actions hsas
the season, ventilation type, room type, occupdetg., age, gender, smoker/non-smoker), building
characteristics, noise level, and security issOesthe basis of the outcomes in Section 3.2 (Que&), the
pairs of the variables with stronger correlatiors linked by arcs. As the correlation results doprovide
causal relationships between the variables, thectiims of the arcs are determined based on bgildin

physics. Following the findings in Section 3.3 (Gtien C), the target variable is the window operagon
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instead of the window state. As an extension, thedew closing action (WCAs) can be included in the
same model.

Figure 9. Proposal of a Bayesian Network for windmwening behaviour.

Target

With the determined BN structure, parameter legmsncarried out to train unknown parameters assedi
with conditional distributions in the BN againsetdataset. Typically, in this process, the usgbdit the
model is evaluated by the BIC score , and the itapae of the variables is evaluated by the strengtlthe
arcs connected between the variables [35][36]. Bl&& score is a criterion used to select the besteho
among a given set of models in terms of the préidicaaccuracy and the model complexity; the lovier t
BIC score is, the better the model is. The ar;mgtitemeasures the importance of individual paredes on
predicting the state of their child node. The gthris measured by the score gain or loss as gt ref
removing one arc while keeping the rest of the pétviixed. Negative strength values indicate desesdn
the network score due to the arc’s removal, andtipessalues indicate increases in the network sctre
lower the arc strength is, the stronger the relatigp between the two variables linked by the sarés the
proposed BN structure can be applied for both ditecand continuous cases, this paper comparesNhe B
model based on a fully discrete dataset (Model€ And E) and on a fully continuous dataset (MoBel®

and F). Furthermore, the proposed BN structure @l and F) is compared against the structureetbri
only by machine learning (Models A and B) and tlegJe BN where WOA is the only child node and there
is no arc between the other variables (Models C @hdFor the discrete case, the continuous data is

discretised into equal intervals of values basetbgital reasoning as shown in Table 4.

Table 4. Discretization of the continuous VARS.

VAR Discrete values

Tin <14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Tout -5-0, 1-5, 6-10, 11-15, 16-20, 21-25,

SR 0-250, 251-500, 501-750, 751-1000

RH;, <35, 35-40, 41-45, 46-50, 51-55
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COzjin 0-500,501-1000, 1001-1500, 1501-2000, 2001-2500

Figure 10 summarises the BIC score and arc stremgttifferent BN models. The BNs were modellechwit
the R bnlearn package [35] and the structure ofvir@ables was established by a search-and-sceesba
algorithm (Hill-Climbing algorithm) [36]. Models &and B show that the learning algorithm alone isaiibé¢

to derive the BN structure that correctly capturelationships between the physical variables. Tios a
automatically created by the learning algorithm miat represent the real physical dynamics beyond
correlations between the variables. In additiormparison between Models D and F highlights that the
correlations between the explanatory variablesrarg high but the effect of modelling correlatidretween

the variables on the model predictive power is vaigor as the BIC score of Model F does not change
much from that of Model D. The models based ordikerete data (Models C and E) are not able totgfyan
probabilistic dependencies between the explanatariables and the WOA, while the continuous data
(Models D and F) allows for identifying probabilstdependencies between them. Indeed, the disatietiz

of the dataset leads to a significant loss of mifmtion. Different discretization techniques havesrbe
developed to maintain substantial information endleeldin the continuous dataset in the discretisation
process. Suzuki [58], for instance, proposed aisganethod that incrementally discretises the caaus
data at finer resolution and evaluates the predigbower of the resulting models. On the other hame
continuous data cases hold all information, buy tthe@ not appropriately handle categorical varialfesg.,
time of the day) and binary variables (e.g., windmatrol actions). Recent studies, such as [59¢ibged
methods for learning BNs from datasets joining twus and discrete variables, but they are natilsea

available for the wider research community.
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ACCEPTED MANUSCRIPT

Figure 10. Exploitation of BNs for modelling windoywening behaviour.
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DISCRETE DATASET CONTINUOUS DATASET
BIC Score BIC Score
Model A -443 240 Model B -1,495,630
Arc strengths
Arc strengths Arc from to Strength
Arc  from to Strength 1 Tin RHin -15,880
o 1  Hour SolRad -20,141 2 Tout SolRad  -8,824
z 2 Tin  Rhin -21,944 3 Tout  Tin -8,745
Z 3 Tin  Tout -17,647 4  CO2in RHin  -2917
5 4 Rhin Tout -7,618 5 Tout RHin  -2,674
= 5  Tout SolRad -6,550 6  CO2n Hour  -1,587
2 6 Tow Houwr -4274 7 Tow How  -1,402
T 7 Tin CO2in  -6379 8  CO2in Tout  -1331
§ 8  Tout CO2in -4,034 9 RHin SolRad  -1,041
9  Tin Hour  -3,675 10  CO2in Tin -548
» 10 Touw WOA -1410 11 CO2n SolRad  -279
g 12 RHin Hour  -264
13 Tin  SolRad  -194
14 Tin Hour -149
15 Hour SolRad -26
16  WOA CO2in -20
17 WOA  Tout =5
BIC Score BIC Score
Model C -INF Model D -1,539,440
Arec strengths Arec strengths
from to Strength Arc from to Strength
Tin  WOA -Inf 1 Tin  WOA 5
zZ Tout WOA -Inf 2 Hour WOA 5
: SolRad  WOA -Inf 3 RHin WOA 5
> Hour WOA -Inf 4 SolRad WOA 3
= CO2in WOA  -Inf 5 Tow WOA -5
< RHin  WOA -Inf 6  CO2in WOA -25
(m; BIC Score BIC Score
= Model E -INF Model F -1,503,114
=
z
(e} Arec strengths Arec strengths
5 Arc  from to Strength Arc from to Strength
[E 1 Hour SolRad -21,959 1 RHin Tin  -13,788
= 2 Tin RHin -21,944 2 SolRad Tout -10,524
> 3 Tout Tin  -14,487 3 Tout  Tin 7,618
T 4 SolRad Tout -6,550 4 Tout CO2in -1,325
&) 5 Hour Tempout -4,130 5 Hour  Tout -1,028
E 6 SolRad Tin -2,423 6 Hour SolRad -700
& 7 Tout CO2in  -1,602 7  SolRad Tin -74
§ 8 Tin WOA -Inf 8  CO2in WOA -24
: 9  Rhin WOA -Inf 9 Tout WOA -3
Z 10 CO2in WOA -Inf 10 SolRad WOA 3
5 Il How WOA  -Inf Il How WOA 5
§ 11 SolRad WOA -Inf 11 Tin  WOA 5
13 Tout WOA -Inf 12 RHin WOA 5

4.1 Question D: Treatment of mixed data
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This section proposes a BN modelling procedure pnaperly treats mixed data. This capability isctal
especially for the context of window control befwawi in which the main target variable is often Ipyna
(open/close) and key response variables are cantudn particular, the target node “WOA” and tinfeéhe
day are discrete variables while all the indoor anddoor environmental variables are continuous.
Currently, most available statistical analysis @aygs, including the bnlearn package, support ediserete

or continuous variables. The bnlearn package offene flexibility as it does not support the depamze of
discrete variables on continuous variables but sugpe other way around. Hence, it is possibleud a
bottom-up model in which the arcs are reverselynested from the discrete target variable to the
continuous response variables (Figure 11). The sgmaepresentation of this model might seem less
intuitive, but since the BN model supports any dimn of reasoning, it still can correctly inferetivindow

opening action given the set of variable values.

Figure 11. Treatment of mixed data: Bottom-up (Btddel

BIC Score

Model G -1625971
Arc strengths

= TN Arc  from to Strength
g B e SR_J) B 1 WOA Hour  -470
g / WOA\.‘_/ . o ) 2 WOA CO2in 284
= ‘\‘_(,\{-\l R 3 WOA SR -1.0
2 FAN e 4  WOA RHin 05
s ; 4&\ "\ \ T R 5 WOA Tempout 0.8
= ( )\ g THur) 6 WOA  Tin 2.9
=) Vit \ A
=) \ N

The BIC score of the model suggests that apprabyidtandling the mixed data improves the predictive
power of the model in comparison to Models C andFDrthermore, Model G yields the ranking of the
response variables that well aligns with the oueswf the K-S test described in section 3.1. Irtrest, the
continuous case (Model D) results in a much lowersrength value for the time of the day as itspnet
correctly treat this variable as a categorical alZld and instead expects a consistent trend betiieen
variable and its child node. This comparison clegitistrates the importance of appropriately tregimixed

data to yield a reliable BN model and correctlylgsathe effect of different variables on contrdiians.

Figure 12 depicts the outcomes of the queriesagltat the probability of a window opening actionegi the
main key response variables (Model G). As regandsnhain influencing driver, the time of the dayg(Fi
12a), the results show that the probability of pering a window opening action is higher during the
morning and late afternoon/evening hours. Furtheemalso found in the existing literature [11][1he
results indicate that the probability of openingvendow increases in correspondence of a highep CO

concentration (Fig. 12b), indoor air temperaturig.(E2c), and outdoor air temperature (Fig. 12d).
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Figure 12. Probability of a window opening actioiven (a) time of the day (b) G@oncentration, (c)

indoor temperature, (d) outdoor temperature, (dasoadiation, and (f) indoor relative humidity
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4.2 Question E: Modd validation

This section investigates validation approacheschwviis a crucial step to test the predictive powér
stochastic models. In particular, this research stdidates and tests the predictive power of thal BN
model described in Section 4.1. For model validataross-validation is a standard way to obtainiasdd
estimates of a model’'s goodness of fit by partitigrnthe dataset into training and testing subgétald
cross-validation in the bnlearn package is apphedndomly partition the entire dataset iktequally sized
subsamples. Out of tHesubsamples, a single subsample is retained agattltation data for testing the
accuracy of the trained model, and the remaikiigsubsamples are used as training data. In this stady,
the dataset was split into 10 subsets, and the BiNeimwas trained against 9 subsets and testedsadain
subset.

In cross-validation for classification problems Banto the context of predicting binary controkiaas, the
prediction error of a stochastic model is commardiculated by a loss function that compares thdipied
label of the target variable against measureméntaigh the testing dataset. The expected loss iltiee
final BN model (Model G) is 0.5% (k=10). Althoughis indicates that predictions are wrong only 5em
out of 1000, it is worth mentioning that as thegomal dataset is very unbalanced (0.3% of the éatas
corresponding to "window opening = TRUE" events &38d7% of the dataset corresponding to "window
opening = FALSE" events), the low classificationoerdoes not guarantee that the model reliablyipted

the window opening action.

A tailored approach for model validation is applied examine the model predictability in detail with

considering the imbalance of the dataset. Thisagubr consisted of the following steps:

1. Creation of a testing dataset containing 215 sasmiéwindow opening = TRUE” and 215 samples
of “window opening = FALSE”;

2. Computation of model predictions by the BN modeldven response variable values in the testing
dataset;

3. Creation of a confusion matrix of observed and joted WOAs and NOAs.

Steps 1 and 2 were repeated approximately 100 timebtain the probabilistic distribution of pretion
accuracy. The confusion matrix in Figure 13 indisathe model yields in average correct predictidi®
times out of 430. In detail, the accuracy of thedeido predict the window opening action and nonimpg
action is in average 93% and 98%, respectively. ¥pected loss value obtained with the balancea idat

5%, which also confirms the strong predictive poafthe BN model.
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Figure 13. Confusion matrix of observed and presidtVOAs and NOAs.
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5. Discussion

As the case study in this study is based on meamumnts from one Danish residential apartment, $idls
results from the case study are limited to draweggizable findings due to the small sample size.
Nevertheless, the case study serves as an ademehteseful testbed to investigate the applicabdityhe

BN framework for modelling window control behavioand demonstrate the statistical methods used for
variable selection and model validation in the ntlaate process. A next step is to use an extensatasget
from a large number of residential buildings to €lep a generalizable model. We highlight that theec
study in this paper focused on environment- ancetiatated variables for predicting window control
actions. In the further work, it is necessary toestigate other building-related factors that magidy
different patterns of window control behaviour, lsugs different ventilation strategies (i.e., preseof
controlled mechanical ventilation), room type, andglding design characteristics. More importanthg
substantial variation is observed in the windowtamrbehaviour due to individual users [60], furtiveork

is needed to include contextual information sucb@ipant types (e.g. age, gender, smokers/nonessjok

social factors (energy-related knowledge and alis), and psychological and physiological factors.

The case study demonstrated that the proposed Bhvagh yields a probabilistic prediction model with
higher confidence and better interpretability bylyfiexploiting information from the mixed dataset i
comparison to the typical BN approaches. In all Bbdels, however, the joint distribution of all \aries
(global distribution) is factorised into local padtlity distributions, which reduces computational
requirements for complex networks and increasespdéw parameter learning [61]. On the other hahd,
also means that the local probability distributlmetween two nodes only explain the effect of theepia
node on the child node, but does not take intowticparameter interaction effects [61]. Although tiase

study in this paper showed the high predictive goafethe BN model without accounting for parameter
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interactions, it is not sufficient to conclude thHect of parameter interactions on the model ted
power. Further investigation is necessary to testitnportance of parameter interactions in the ecxdanof

window control behaviour modelling with Bayesiantierks.

The BN-based approach, in principle, allows for elidg complex hierarchical relationships between a
large number of continuous and discrete variablegsugh a clear semantic graphical representation.
Moreover, the graphical representation is a vakiabhceptual benefit since the structure and itledying
probabilistic dimension are easily interpretable foodellers in the building simulation community.
However, owing to the limitation of the existin@tstical packages, BN approaches used in existingjes
with mixed data are based on discretized data mtirioous and discrete variables, which may likelguit in

a significant loss of information [59]. As the firstep to overcome this limitation, this paper megd the
bottom-up modelling approach that handles mixed daten the target node is discrete and depends on
continuous and/or discrete explanatory variablesvéver, the proposed approach is not extendibheadel

a hierarchical complex structure that links contimel and discrete explanatory variables in multiglers.

In fact, occupants take a specific action or comtiam of actions among many control actions, sugh a
thermostat settings, light dimming, blind contrta, maintain their thermal and visual comfort levahd
modelling a series of control actions has beentifieth as one of the future needs for occupant iela
modelling [5]. A Bayesian hierarchical network mbdman provide a mathematical framework for

holistically modelling such adaptive actions inat@n to environmental and contextual variables.

This study mainly validated the technical perforoerof the BN model for predicting occupant control
actions through the case study of a single resmlennit. In addition, comparison of the BN apprbac
against the existing statistical methods, suclogsstic regression and Markov chain processessserdial

to test whether the BN approach offers improvenierngrediction accuracy. Further work is underway to
compare the BN model against the above-mentionéstirex statistical methods through the same case
study. Future research steps for improving anddatiig the model include further developing the elod

with the extensive dataset and evaluating the egpility of the model to other residential building

6. Conclusions

This paper proposed a Bayesian Network modelling amthodology to model window opening behaviour
of occupants in residential buildings. The caseystun the basis of measured data in a residengatment
located in Copenhagen, Denmark demonstrated thenimit benefits of using the Bayesian network
framework for modelling stochastic processes ofrgyneeclated behaviour with consideration of various
factors that drive final control actions. The kegearch questions related to modelling stochastidow

control behaviour were addressed through the ¢adg and key findings are summarised below:

(A) The Kolmogorov-Smirnov (K-S) two sample testowmls for identifying key variables that impact

window control actions regardless the data type, (Continuous, categorical) and underlying treativieen
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variables. The K-S two sample test ranked the Votlg variables with respect to their influence on
triggering window opening actions: time of the d@{), concentration, indoor and outdoor temperature, and

indoor relative humidity.

(B) Correlation analysis was performed to idenstyong correlations between dominant variables that
impact window opening behaviour. Adding correlasidsetween the variables in the BN model by linking
them with arcs did not increase the BIC score axitases the model complexity but does not saotiatly

increase the predictive power of the BN model.

(C) This study showed that the window opening &ctsomore suitable as a target variable to modetoiv
control behaviour than the window open/close statdoor environment variables such as indoor, CO
concentration level and indoor temperature weratifled as key variables that change the windowestaut
at the same time, the indoor environment conditiares directly influenced immediately after a window
control action takes place. Hence, when the windtate was used as a target variable, the statistmael
with using indoor environment variables as predgidid not correctly represent relationships betwie

indoor variables and window control behaviour.

(D) The study demonstrated the most BN models tmeonly discrete or continuous datasets are nibédu

to fully exploiting information embedded in the ratk dataset. A reversed BN model was proposed to
appropriately handle mixed data in the bnlearnremvhent. The proposed model was structured to gredi
the probability of a window opening action gives identified key environmental and time variabladine

with existing studies and the K-S two sample testits, arc strengths in the BN model also inditabat

the time of the day, C{roncentration and indoor/outdoor temperaturefaartost important variables.

(E) The BN model was validated in terms of the exp@ loss value and the confusion matrix through th
classical cross-validation procedure. As the datatp with WOAs are much smaller than those withA$O

a tailored validation approach was applied to setflbe same number of data points for each case and
compute the confusion matrix. The validation measwonfirmed the high predictive power of the model

and its successful application for modelling windoantrol behaviour.

In summary, Bayesian network modelling well repr¢ésehe stochastic nature of window control behawvio
in relation to a variety of explanatory variablesla&onsequently provides predictions with high wierice.
However, steps involved in the modelling procepgcHically variable selection and validation, neede

carefully set up to correctly reflect the stochagtture in the analysis process.
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