729 research outputs found

    Comparison of Conventional and Maskless Lithographic Techniques for More than Moore Post-processing of Foundry CMOS Chips

    Get PDF
    This article details and compares the technology options for post-processing foundry produced CMOS at chip-scale to enable More than Moore functionality. In many cases there are attractions in using chip-based processing through the Multi-Project Wafer route that is frequently employed in research, early-stage development and low-volume production. This article identifies that spray-based photoresist deposition combined with optical maskless lithography demonstrates sufficient performance combined with low cost and operational convenience to offer an attractive alternative to conventional optical lithography, where spin-coated photoresist is exposed through a patterned photomask. [2020-0249

    Workshops at IMS2023

    Get PDF
    Lists future events that should be of interest to practitioners and researchers.Peer ReviewedPostprint (published version

    Study of the impact of lithography techniques and the current fabrication processes on the design rules of tridimensional fabrication technologies

    Get PDF
    Working for the photolithography tool manufacturer leader sometimes gives me the impression of how complex and specific is the sector I am working on. This master thesis topic came with the goal of getting the overall picture of the state-of-the-art: stepping out and trying to get a helicopter view usually helps to understand where a process is in the productive chain, or what other firms and markets are doing to continue improvingUniversidad de sevilla.Máster Universitario en Microelectrónica: Diseño y Aplicaciones de Sistemas Micro/Nanométrico

    US Microelectronics Packaging Ecosystem: Challenges and Opportunities

    Full text link
    The semiconductor industry is experiencing a significant shift from traditional methods of shrinking devices and reducing costs. Chip designers actively seek new technological solutions to enhance cost-effectiveness while incorporating more features into the silicon footprint. One promising approach is Heterogeneous Integration (HI), which involves advanced packaging techniques to integrate independently designed and manufactured components using the most suitable process technology. However, adopting HI introduces design and security challenges. To enable HI, research and development of advanced packaging is crucial. The existing research raises the possible security threats in the advanced packaging supply chain, as most of the Outsourced Semiconductor Assembly and Test (OSAT) facilities/vendors are offshore. To deal with the increasing demand for semiconductors and to ensure a secure semiconductor supply chain, there are sizable efforts from the United States (US) government to bring semiconductor fabrication facilities onshore. However, the US-based advanced packaging capabilities must also be ramped up to fully realize the vision of establishing a secure, efficient, resilient semiconductor supply chain. Our effort was motivated to identify the possible bottlenecks and weak links in the advanced packaging supply chain based in the US.Comment: 22 pages, 8 figure

    A Review on Key Issues and Challenges in Devices Level MEMS Testing

    Get PDF
    The present review provides information relevant to issues and challenges in MEMS testing techniques that are implemented to analyze the microelectromechanical systems (MEMS) behavior for specific application and operating conditions. MEMS devices are more complex and extremely diverse due to the immersion of multidomains. Their failure modes are distinctive under different circumstances. Therefore, testing of these systems at device level as well as at mass production level, that is, parallel testing, is becoming very challenging as compared to the IC test, because MEMS respond to electrical, physical, chemical, and optical stimuli. Currently, test systems developed for MEMS devices have to be customized due to their nondeterministic behavior and complexity. The accurate measurement of test systems for MEMS is difficult to quantify in the production phase. The complexity of the device to be tested required maturity in the test technique which increases the cost of test development; this practice is directly imposed on the device cost. This factor causes a delay in time-to-market

    A Review on Key Issues and Challenges in Devices Level MEMS Testing

    Get PDF
    The present review provides information relevant to issues and challenges in MEMS testing techniques that are implemented to analyze the microelectromechanical systems (MEMS) behavior for specific application and operating conditions. MEMS devices are more complex and extremely diverse due to the immersion of multidomains. Their failure modes are distinctive under different circumstances. Therefore, testing of these systems at device level as well as at mass production level, that is, parallel testing, is becoming very challenging as compared to the IC test, because MEMS respond to electrical, physical, chemical, and optical stimuli. Currently, test systems developed for MEMS devices have to be customized due to their nondeterministic behavior and complexity. The accurate measurement of test systems for MEMS is difficult to quantify in the production phase. The complexity of the device to be tested required maturity in the test technique which increases the cost of test development; this practice is directly imposed on the device cost. This factor causes a delay in time-to-market

    SETEC/Semiconductor Manufacturing Technologies Program: 1999 Annual and Final Report

    Full text link

    Nanoelectromechanical Sensors based on Suspended 2D Materials

    Full text link
    The unique properties and atomic thickness of two-dimensional (2D) materials enable smaller and better nanoelectromechanical sensors with novel functionalities. During the last decade, many studies have successfully shown the feasibility of using suspended membranes of 2D materials in pressure sensors, microphones, accelerometers, and mass and gas sensors. In this review, we explain the different sensing concepts and give an overview of the relevant material properties, fabrication routes, and device operation principles. Finally, we discuss sensor readout and integration methods and provide comparisons against the state of the art to show both the challenges and promises of 2D material-based nanoelectromechanical sensing.Comment: Review pape
    corecore