1,261 research outputs found

    Language modeling and transcription of the TED corpus lectures

    Get PDF
    Transcribing lectures is a challenging task, both in acoustic and in language modeling. In this work, we present our first results on the automatic transcription of lectures from the TED corpus, recently released by ELRA and LDC. In particular, we concentrated our effort on language modeling. Baseline acoustic and language models were developed using respectively 8 hours of TED transcripts and various types of texts: conference proceedings, lecture transcripts, and conversational speech transcripts. Then, adaptation of the language model to single speakers was investigated by exploiting different kinds of information: automatic transcripts of the talk, the title of the talk, the abstract and, finally, the paper. In the last case, a 39.2% WER was achieved

    POLYPHONIC PIANO TRANSCRIPTION USING NON-NEGATIVE MATRIX FACTORISATION WITH GROUP SPARSITY

    Get PDF
    (c)2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Published in: Proc IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2014), Florence, Italy, 5-9 May 2014. pp.3136-3140

    Single-channel source separation using non-negative matrix factorization

    Get PDF

    Non-negative mixtures

    Get PDF
    This is the author's accepted pre-print of the article, first published as M. D. Plumbley, A. Cichocki and R. Bro. Non-negative mixtures. In P. Comon and C. Jutten (Ed), Handbook of Blind Source Separation: Independent Component Analysis and Applications. Chapter 13, pp. 515-547. Academic Press, Feb 2010. ISBN 978-0-12-374726-6 DOI: 10.1016/B978-0-12-374726-6.00018-7file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.26file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.2

    An review of automatic drum transcription

    Get PDF
    In Western popular music, drums and percussion are an important means to emphasize and shape the rhythm, often defining the musical style. If computers were able to analyze the drum part in recorded music, it would enable a variety of rhythm-related music processing tasks. Especially the detection and classification of drum sound events by computational methods is considered to be an important and challenging research problem in the broader field of Music Information Retrieval. Over the last two decades, several authors have attempted to tackle this problem under the umbrella term Automatic Drum Transcription(ADT).This paper presents a comprehensive review of ADT research, including a thorough discussion of the task-specific challenges, categorization of existing techniques, and evaluation of several state-of-the-art systems. To provide more insights on the practice of ADT systems, we focus on two families of ADT techniques, namely methods based on Nonnegative Matrix Factorization and Recurrent Neural Networks. We explain the methods’ technical details and drum-specific variations and evaluate these approaches on publicly available datasets with a consistent experimental setup. Finally, the open issues and under-explored areas in ADT research are identified and discussed, providing future directions in this fiel

    Polyphonic piano transcription using non-negative Matrix Factorisation with group sparsity

    Get PDF
    Non-negative Matrix Factorisation (NMF) is a popular tool in musical signal processing. However, problems using this methodology in the context of Automatic Music Transcription (AMT) have been noted resulting in the proposal of supervised and constrained variants of NMF for this purpose. Group sparsity has previously been seen to be effective for AMT when used with stepwise methods. In this paper group sparsity is introduced to supervised NMF decompositions and a dictionary tuning approach to AMT is proposed based upon group sparse NMF using the β-divergence. Experimental results are given showing improved AMT results over the state-of-the-art NMF-based AMT system

    Audio source separation for music in low-latency and high-latency scenarios

    Get PDF
    Aquesta tesi proposa mètodes per tractar les limitacions de les tècniques existents de separació de fonts musicals en condicions de baixa i alta latència. En primer lloc, ens centrem en els mètodes amb un baix cost computacional i baixa latència. Proposem l'ús de la regularització de Tikhonov com a mètode de descomposició de l'espectre en el context de baixa latència. El comparem amb les tècniques existents en tasques d'estimació i seguiment dels tons, que són passos crucials en molts mètodes de separació. A continuació utilitzem i avaluem el mètode de descomposició de l'espectre en tasques de separació de veu cantada, baix i percussió. En segon lloc, proposem diversos mètodes d'alta latència que milloren la separació de la veu cantada, gràcies al modelatge de components específics, com la respiració i les consonants. Finalment, explorem l'ús de correlacions temporals i anotacions manuals per millorar la separació dels instruments de percussió i dels senyals musicals polifònics complexes.Esta tesis propone métodos para tratar las limitaciones de las técnicas existentes de separación de fuentes musicales en condiciones de baja y alta latencia. En primer lugar, nos centramos en los métodos con un bajo coste computacional y baja latencia. Proponemos el uso de la regularización de Tikhonov como método de descomposición del espectro en el contexto de baja latencia. Lo comparamos con las técnicas existentes en tareas de estimación y seguimiento de los tonos, que son pasos cruciales en muchos métodos de separación. A continuación utilizamos y evaluamos el método de descomposición del espectro en tareas de separación de voz cantada, bajo y percusión. En segundo lugar, proponemos varios métodos de alta latencia que mejoran la separación de la voz cantada, gracias al modelado de componentes que a menudo no se toman en cuenta, como la respiración y las consonantes. Finalmente, exploramos el uso de correlaciones temporales y anotaciones manuales para mejorar la separación de los instrumentos de percusión y señales musicales polifónicas complejas.This thesis proposes specific methods to address the limitations of current music source separation methods in low-latency and high-latency scenarios. First, we focus on methods with low computational cost and low latency. We propose the use of Tikhonov regularization as a method for spectrum decomposition in the low-latency context. We compare it to existing techniques in pitch estimation and tracking tasks, crucial steps in many separation methods. We then use the proposed spectrum decomposition method in low-latency separation tasks targeting singing voice, bass and drums. Second, we propose several high-latency methods that improve the separation of singing voice by modeling components that are often not accounted for, such as breathiness and consonants. Finally, we explore using temporal correlations and human annotations to enhance the separation of drums and complex polyphonic music signals

    Modeling DNN as human learner

    Get PDF
    In previous experiments, human listeners demonstrated that they had the ability to adapt to unheard, ambiguous phonemes after some initial, relatively short exposures. At the same time, previous work in the speech community has shown that pre-trained deep neural network-based (DNN) ASR systems, like humans, also have the ability to adapt to unseen, ambiguous phonemes after retuning their parameters on a relatively small set. In the first part of this thesis, the time-course of phoneme category adaptation in a DNN is investigated in more detail. By retuning the DNNs with more and more tokens with ambiguous sounds and comparing classification accuracy of the ambiguous phonemes in a held-out test across the time-course, we found out that DNNs, like human listeners, also demonstrated fast adaptation: the accuracy curves were step-like in almost all cases, showing very little adaptation after seeing only one (out of ten) training bins. However, unlike our experimental setup mentioned above, in a typical lexically guided perceptual learning experiment, listeners are trained with individual words instead of individual phones, and thus to truly model such a scenario, we would require a model that could take the context of a whole utterance into account. Traditional speech recognition systems accomplish this through the use of hidden Markov models (HMM) and WFST decoding. In recent years, bidirectional long short-term memory (Bi-LSTM) trained under connectionist temporal classification (CTC) criterion has also attracted much attention. In the second part of this thesis, previous experiments on ambiguous phoneme recognition were carried out again on a new Bi-LSTM model, and phonetic transcriptions of words ending with ambiguous phonemes were used as training targets, instead of individual sounds that consisted of a single phoneme. We found out that despite the vastly different architecture, the new model showed highly similar behavior in terms of classification rate over the time course of incremental retuning. This indicated that ambiguous phonemes in a continuous context could also be quickly adapted by neural network-based models. In the last part of this thesis, our pre-trained Dutch Bi-LSTM from the previous part was treated as a Dutch second language learner and was asked to transcribe English utterances in a self-adaptation scheme. In other words, we used the Dutch model to generate phonetic transcriptions directly and retune the model on the transcriptions it generated, although ground truth transcriptions were used to choose a subset of all self-labeled transcriptions. Self-adaptation is of interest as a model of human second language learning, but also has great practical engineering value, e.g., it could be used to adapt speech recognition to a lowr-resource language. We investigated two ways to improve the adaptation scheme, with the first being multi-task learning with articulatory feature detection during training the model on Dutch and self-labeled adaptation, and the second being first letting the model adapt to isolated short words before feeding it with longer utterances.Ope
    corecore