6 research outputs found

    Clinical Trial of the Virtual Integration Environment to Treat Phantom Limb Pain With Upper Extremity Amputation

    Get PDF
    Background: Phantom limb pain (PLP) is commonly seen following upper extremity (UE) amputation. Use of both mirror therapy, which utilizes limb reflection in a mirror, and virtual reality therapy, which utilizes computer limb simulation, has been used to relieve PLP. We explored whether the Virtual Integration Environment (VIE), a virtual reality UE simulator, could be used as a therapy device to effectively treat PLP in individuals with UE amputation.Methods: Participants with UE amputation and PLP were recruited at Walter Reed National Military Medical Center (WRNMMC) and instructed to follow the limb movements of a virtual avatar within the VIE system across a series of study sessions. At the end of each session, participants drove virtual avatar limb movements during a period of “free-play” utilizing surface electromyography recordings collected from their residual limbs. PLP and phantom limb sensations were assessed at baseline and following each session using the Visual Analog Scale (VAS) and Short Form McGill Pain Questionnaire (SF-MPQ), respectively. In addition, both measures were used to assess residual limb pain (RLP) at baseline and at each study session. In total, 14 male, active duty military personnel were recruited for the study.Results: Of the 14 individuals recruited to the study, nine reported PLP at the time of screening. Eight of these individuals completed the study, while one withdrew after three sessions and thus is not included in the final analysis. Five of these eight individuals noted RLP at baseline. Participants completed an average of 18, 30-min sessions with the VIE leading to a significant reduction in PLP in seven of the eight (88%) affected limbs and a reduction in RLP in four of the five (80%) affected limbs. The same user reported an increase in PLP and RLP across sessions. All participants who denied RLP at baseline (n = 3) continued to deny RLP at each study session.Conclusions: Success with the VIE system confirms its application as a non-invasive and low-cost therapy option for PLP and phantom limb symptoms for individuals with upper limb loss

    Virtual Integration Environment as an Advanced Prosthetic Limb Training Platform

    Get PDF
    Background: Despite advances in prosthetic development and neurorehabilitation, individuals with upper extremity (UE) loss continue to face functional and psychosocial challenges following amputation. Recent advanced myoelectric prostheses offer intuitive control over multiple, simultaneous degrees of motion and promise sensory feedback integration, but require complex training to effectively manipulate. We explored whether a virtual reality simulator could be used to teach dexterous prosthetic control paradigms to individuals with UE loss.Methods: Thirteen active-duty military personnel with UE loss (14 limbs) completed twenty, 30-min passive motor training sessions over 1–2 months. Participants were asked to follow the motions of a virtual avatar using residual and phantom limbs, and electrical activity from the residual limb was recorded using surface electromyography. Eight participants (nine limbs), also completed twenty, 30-min active motor training sessions. Participants controlled a virtual avatar through three motion sets of increasing complexity (Basic, Advanced, and Digit) and were scored on how accurately they performed requested motions. Score trajectory was assessed as a function of time using longitudinal mixed effects linear regression.Results: Mean classification accuracy for passive motor training was 43.8 ± 10.7% (14 limbs, 277 passive sessions). In active motor sessions, >95% classification accuracy (which we used as the threshold for prosthetic acceptance) was achieved by all participants for Basic sets and by 50% of participants in Advanced and Digit sets. Significant improvement in active motor scores over time was observed in Basic and Advanced sets (per additional session: β-coefficient 0.125, p = 0.022; β-coefficient 0.45, p = 0.001, respectively), and trended toward significance for Digit sets (β-coefficient 0.594, p = 0.077).Conclusions: These results offer robust evidence that a virtual reality training platform can be used to quickly and efficiently train individuals with UE loss to operate advanced prosthetic control paradigms. Participants can be trained to generate muscle contraction patterns in residual limbs that are interpreted with high accuracy by computer software as distinct active motion commands. These results support the potential viability of advanced myoelectric prostheses relying on pattern recognition feedback or similar controls systems

    Virtual Body Ownership Illusions for Mental Health: A Narrative Review.

    Get PDF
    Over the last 20 years, virtual reality (VR) has been widely used to promote mental health in populations presenting different clinical conditions. Mental health does not refer only to the absence of psychiatric disorders but to the absence of a wide range of clinical conditions that influence people\u2019s general and social well-being such as chronic pain, neurological disorders that lead to motor o perceptual impairments, psychological disorders that alter behaviour and social cognition, or physical conditions like eating disorders or present in amputees. It is known that an accurate perception of oneself and of the surrounding environment are both key elements to enjoy mental health and well-being, and that both can be distorted in patients suffering from the clinical conditions mentioned above. In the past few years, multiple studies have shown the effectiveness of VR to modulate such perceptual distortions of oneself and of the surrounding environment through virtual body ownership illusions. This narrative review aims to review clinical studies that have explored the manipulation of embodied virtual bodies in VR for improving mental health, and to discuss the current state of the art and the challenges for future research in the context of clinical care

    Neurological Basis of Bodily Self-Consciousness and Related Psychopathologies

    Get PDF
    The change in the body awareness of people depending on the dynamic processing of the multisensory signals from the body has been revealed the bodily self-consciousness approach. Recent studies have proposed that the processing and integration of multisensory signals (i.e. vestibular, somatosensory) are fundamental requirement for bodily self-consciousness. Perception of body-parts and global aspect of whole body can dynamically change depending on the congruency between signals from multiple modalities (i.e. vestibular, somatosensory). The basic assumption of the studies investigating bodily self-consciousness is that the bodily experiences are related with the multisensory signal processing. The aim of the present article is to review how the bodily self-consciousness is studied experimentally and discuss the underlying sensory processes. In addition to that, we discussed the limitations of the previous experimental studies

    Comparison between low-cost and high-end sEMG sensors for the control of a transradial myoelectric prosthesis

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2017A amputação é algo pode mudar completamente a vida de qualquer indivíduo. A autonomia para executar tarefas do quotidiano, que a maioria de nós toma como garantidas, é drasticamente diminuída. Para além da dificuldade acrescida neste tipo de tarefas, a autoconfiança do individuo também sofre um duro decréscimo, podendo até originar situações de depressão. Por todas estas razões, a qualidade de vida de um amputado transradial é severamente afetada de forma negativa. Felizmente, atualmente já existem vários tipos de soluções prostéticas para tentar lidar com todos os obstáculos consequentes de uma amputação. Entre estas, encontram-se as próteses mioelétricas. Este tipo de próteses pode recorrer ao uso de algoritmos de reconhecimento de padrões para associar certos padrões observados em sinais de sEMG provenientes do coto a diferentes gestos de mão, oferecendo a possibilidade ao amputado transradial de restaurar alguma da sua autonomia utilizando um dispositivo com funcionalidades semelhantes à mão humana. Porém, existem alguns obstáculos relacionados com a acessibilidade destes dispositivos, mais especificamente, o preço. Atualmente, os preços das próteses mioelétricas comercialmente disponíveis são demasiados elevados, o que constitui um grande contratempo para indivíduos economicamente desfavorecidos que vivem com amputação transradial. Existe, portanto, a necessidade de diminuir os custos de produção e, consequentemente, o preço de mercado. No entanto, já existem alguns esforços a serem efetuados para tentar diminuir estes valores, tal como a impressão de algumas componentes em 3D. Para atingir este fim, também pode ser possível o uso de sensores de sEMG de baixo custo, ao invés de sensores sEMG de ponta. Porém, é necessário assegurar que a performance de controlo de uma prótese mioelétrica atingida pelo uso de sensores de baixo custo possa ser tão boa, ou superior à atingida pelo uso de sensores de ponta. Este é precisamente o grande foco desta dissertação. Para efetuar esta comparação, recorreu-se ao uso do Myo Armband e sensores da marca OttoBock. O Myo Armband é uma bracelete comercial de baixo custo que permite o controlo de aplicações multimédia e contém oito sensores de sEMG. Por outro lado, os sensores da OttoBock são os elétrodos de eleição para aplicações prostéticas. Estes dois tipos de sensores foram aplicados em dois sistemas sEMG distintos e duas experiências foram efetuadas de modo a avaliar a performance de cada um. Na primeira experiência foram efetuadas medições de sEMG nos antebraços de nove sujeitos saudáveis, com uso de ambos os sistemas. Foram usados diferentes algoritmos de reconhecimento de padrões para classificar segmentos do sinal sEMG correspondente a quatro gestos de mão diferentes. Em cada um dos sistemas foram usados cinco sensores. A experiência foi dividida em duas sessões. O protocolo seguido em cada uma das sessões foi exatamente o mesmo e a aquisição de dados foi realizada de forma contínua. Foi pedido a cada um dos sujeitos para visualizarem um vídeo e replicar cada um dos gestos mostrados neste mesmo. Cada um dos quatro gestos selecionados foi repetido 10 vezes, durante 10 segundos. Este procedimento foi repetido para cada um dos sistemas em cada uma das sessões. Embora cada gesto tenha sido registrado durante 10 segundos, apenas os últimos 6 segundos foram usados para classificação. Isto foi feito com o intuito de usar apenas o sinal de sEMG estável e não o transiente, que é originado pelo movimento do sujeito entre diferentes gestos. Diferentes técnicas de processamento de sinal e de extração de features foram aplicadas aos sinais adquiridos. Os dados obtidos, por sua vez, foram classificados por seis algoritmos diferentes, incluindo Linear Discriminant Analysis, Naïve Bayes, k Nearest Neighbours e três variações de Support Vector Machines. Esta experiência teve, portanto, o propósito de avaliar quais poderiam ser as combinações mais favoráveis entre diferentes técnicas de processamento de sinal e classificadores, de forma a obter a máxima precisão de classificação possível. Para avaliar as precisões calculadas, foram utilizados dois métodos de avaliação: 10-fold cross-validation e treino-teste. Os testes estatísticos efetuados aos resultados adquiridos demonstraram a inexistência de quaisquer diferenças significativas entre ambos os sistemas, o que valida a hipótese principal proposta por esta dissertação. No entanto, é necessário validar esta mesma hipótese com dados extraídos de amputados transradiais, os utilizadores finais deste tipo de sistemas. Na segunda experiência, as medições de sEMG foram efetuadas a doze amputados transradiais e a doze sujeitos saudáveis. Nesta experiência, em semelhança à primeira, também se realizaram duas sessões com protocolo igual. Contundo, comparativamente à experiência anterior, o protocolo usado sofreu algumas alterações. O número de sensores usados em cada um dos sistemas foi incrementado para oito e o número de gestos de mão foi aumentado para cinco. Os dados foram adquiridos de forma descontínua e a duração de cada aquisição realizada para cada gesto foi alterada para 2 segundos, de forma a obter apenas o sinal sEMG estável. Foram feitas 15 aquisições para cada um dos cinco gestos de mão, o que perfaz um total de 75 aquisições. As combinações de técnicas de processamento de sinal e classificadores usados nesta experiência foram selecionados de acordo com os resultados da primeira. No total, foram usadas quatro diferentes combinações de técnicas de processamento de sinal, retiradas das seis usadas na experiência anterior, e dois classificadores, uma das variações da Support Vector Machine e k Nearest Neighbours. As precisões calculadas voltaram a ser avaliadas novamente por meio de 10-fold cross-validation e de avaliação treino-teste. Os resultados obtidos demonstraram a inexistência de diferenças significativas entre as precisões adquiridas para cada um dos sistemas, exceto segundo os resultados da cross-validation. Neste caso, o sistema da OttoBock permitiu o cálculo de precisões superiores às obtidas pelo sistema da Myo Armband. Contundo, as precisões deste último demonstraram ser bastante competitivas. Nos resultados adquiridos, verificaram-se valores de precisão mais elevados no caso dos sujeitos saudáveis, em ambos os sistemas. Isto seria algo previsível, já que a não utilização diária do membro fantasma (a sensação de que membro amputado está ainda presente) leva a que o amputado se “esqueça” de como efetuava certos gestos com a mão que foi amputada. De um modo geral, pode-se afirmar que não se verificaram diferenças significativas entre os resultados obtidos em ambos os sistemas, o que valida a hipótese principal proposta por esta dissertação. De facto, os sensores de baixo custo usados permitiram resultados de classificação tão bons como os obtidos com o uso de sensores de ponta. Contudo, é de notar que isto é apenas possível com uso de algumas técnicas de processamento ao sinal aos dados obtidos pelos sensores da Myo, nomeadamente a aplicação de um envelope e de um filtro passa-baixo com uma frequência de corte de 1 Hz. Sem qualquer tipo de processamento, os resultados obtidos com estes sensores foram bastante fracos. Por outro lado, os sensores da OttoBock, mesmo sem qualquer tipo de processamento de sinal, permitiram resultados bastante elevados, o que se deve ao facto de produzirem um sinal previamente filtrado, com envelope e amplificado, ou seja, um sinal de alta qualidade. Considerando os resultados obtidos, é de facto possível que a aplicação de sensores de baixo custo a um sistema de controlo de uma prótese mioelétrica possa permitir uma performance tão boa como a oferecida por sensores de ponta. Contudo, isto é apenas possível se o processamento de sinal usado for apropriado, assim como o classificador escolhido. Em suma, é possível a substituição dos sensores atualmente usados em aplicações prostéticas por sensores com um custo mais reduzido, de modo a obter dispositivos mais económicos sem comprometer a qualidade do seu funcionamento. No entanto, antes destes sensores serem aplicados numa prótese mioelétrica, é necessário testar o sistema em tempo real e desenhar uma estratégia de controlo robusta, que permita uma boa comunicação entre as intenções do utilizador e as funcionalidades inerentes da prótese.The loss of a hand due to amputation can completely change anyone’s life. The autonomy to perform daily life tasks, which most of us take for granted, is drastically reduced, as well as one’s quality of life. Fortunately, the use of a myoelectric prosthesis can help in overcoming such problems a transradial amputee must face every day. However, the current cost of such devices can limit its accessibility to economically less favored people. In this dissertation, it is hypothesized that low-cost sensors can have a performance in controlling a myoelectric prosthesis as good as, or even better than the high-end sensors that are currently used in such applications. If this hypothesis can be validated, it may help in decreasing the costs of a myoelectric prosthesis and making it more accessible for the final user, the transradial amputee. To compare both types of sensors, two experimental sessions were performed. The first one was performed only on able-bodied subjects and it had the objective of selecting the best combination of signal processing techniques and classifiers in order to use on the obtained sEMG signals. In the second experiment, sEMG measurements were performed on both able-bodied and transradial amputated subjects. The signal processing techniques and classifiers that allowed to obtain the best results in the first experiment were used to classify the acquired data from all the subjects. Overall, the accuracies calculated with the usage of the low-cost sensors, using some of the signal processing techniques, proved not to be significantly different from the ones obtained with the usage of the high-end sensors. This indicates that the usage of low-cost sensors in systems to control a myoelectrical prosthesis might indeed provide a performance as efficient as high-end sensor. Besides, it may provide the possibility to lower the overall cost of the currently available devices

    Prototypical Arm Motions from Human Demonstration for Upper-Limb Prosthetic Device Control

    Get PDF
    Controlling a complex upper limb prosthesis, akin to a healthy arm, is still an open challenge due to the inadequate number of inputs available to amputees. Designs have therefore largely focused on a limited number of controllable degrees of freedom, developing a complex hand and grasp functionality rather than the wrist. This thesis investigates joint coordination based on human demonstrations that aims to vastly simplify the controls of wrist, elbow-wrist, and shoulder-elbow wrist devices.The wide range of motions performed by the human arm during daily tasks makes it desirable to find representative subsets to reduce the dimensionality of these movements for a variety of applications, including the design and control of robotic and prosthetic devices. Here I present the results of an extensive human subjects study and two methods that were used to obtain representative categories of arm use that span naturalistic motions during activities of daily living. First, I sought to identify sets of prototypical upper-limb motions that are functions of a single variable, allowing, for instance, an entire prosthetic or robotic arm to be controlled with a single input from a user, along with a means to select between motions for different tasks. Second, I decouple the orientation from the location of the hand and analyze the hand location in three ways and orientation in three reference frames. Both of these analyses are an application of data driven approaches that reduce the wide range of hand and arm use to a smaller representative set. Together these provide insight into our arm usage in daily life and inform an implementation in prosthetic or robotic devices without the need for additional hardware. To demonstrate the control efficacy of prototypical arm motions in upper-limb prosthetic devices, I developed an immersive virtual reality environment where able-bodied participants tested out different devices and controls. I coined prototypical arm motion control as trajectory control, and I found that as device complexity increased from 3 DOF wrist to 4 DOF elbow-wrist and 7 DOF shoulder-elbow-wrist, it enables users to complete tasks faster with a more intuitive interface without additional body compensation, while featuring better movement cosmesis when compared to standard controls
    corecore