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Abstract 

Prototypical Arm Motions from Human Demonstration for Upper-Limb Prosthetic Device Control 

Yuri Gloumakov 

2021 

Controlling a complex upper limb prosthesis, akin to a healthy arm, is still an open challenge due to the inadequate 

number of inputs available to amputees. Designs have therefore largely focused on a limited number of controllable 

degrees of freedom, developing a complex hand and grasp functionality rather than the wrist. This thesis investigates 

joint coordination based on human demonstrations that aims to vastly simplify the controls of wrist, elbow-wrist, and 

shoulder-elbow wrist devices. 

The wide range of motions performed by the human arm during daily tasks makes it desirable to find 

representative subsets to reduce the dimensionality of these movements for a variety of applications, including the 

design and control of robotic and prosthetic devices. Here I present the results of an extensive human subjects study 

and two methods that were used to obtain representative categories of arm use that span naturalistic motions during 

activities of daily living. First, I sought to identify sets of prototypical upper-limb motions that are functions of a single 

variable, allowing, for instance, an entire prosthetic or robotic arm to be controlled with a single input from a user, 

along with a means to select between motions for different tasks. Second, I decouple the orientation from the location 

of the hand and analyze the hand location in three ways and orientation in three reference frames. Both of these 

analyses are an application of data driven approaches that reduce the wide range of hand and arm use to a smaller 

representative set. Together these provide insight into our arm usage in daily life and inform an implementation in 

prosthetic or robotic devices without the need for additional hardware. 

To demonstrate the control efficacy of prototypical arm motions in upper-limb prosthetic devices, I developed an 

immersive virtual reality environment where able-bodied participants tested out different devices and controls. I 

coined prototypical arm motion control as trajectory control, and I found that as device complexity increased from 3 

DOF wrist to 4 DOF elbow-wrist and 7 DOF shoulder-elbow-wrist, it enables users to complete tasks faster with a 

more intuitive interface without additional body compensation, while featuring better movement cosmesis when 

compared to standard controls. 
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1 INTRODUCTION 

1.1 Motivation 

In our evolution, the human arm has long shifted away from its primary role of gaiting to becoming a remarkable 

tool that enables us to complete a wide range of manipulation tasks. Unlike gait, the tasks that our arms now 

accomplish are often much more complex, and range from reaching, grasping, and transferring objects and tools [1], 

[2]. In combination, these movements enable us to complete tasks that are often referred to as activities of daily living 

(ADL); these include feeding, dressing, supporting movement, and communicating. Many efforts have therefore been 

placed on preserving functional abilities and healthy arm motions in the elderly, rehabilitating stroke victims, and 

augmenting amputee patients with prosthetic devices. This work, in particular, focuses on the later. 

Enabling upper-limb prosthesis users to effectively position and orient an end-effector is an ongoing challenge, 

often overshadowed by grasping [3]. For transradial amputees, it is arguably as important to be able to have wrist 

rotation as it is to have multiple grasp types when attempting to complete ADL tasks. A lack of proper joint control 

can lead to unnatural movements [4], with many users developing overuse syndromes [5]. The absence of an intuitive 

control interface is part of the reason why 3 degree of freedom (DOF) wrist devices are not mainstream on the market, 

which does nothing to abate the high prosthesis abandonment rates [6]. For more extreme levels of upper-limb 

amputation, namely transhumeral amputation and shoulder disarticulation, 4 DOF (elbow-wrist) and 7 DOF (shoulder-

elbow-wrist) prosthetic devices add an additional level of control complexity that makes the control problem even 

more challenging. This thesis therefore aims to create an intuitive prosthesis control, and to further encourage the 

development and consumer acceptance of a physical device. 

Advancements in prosthetic devices alone are inadequate without an intuitive or practical way for amputees to 

control them [7], and various groups have attempted to bridge the gap. One approach is to determine synergies between 

the residual limb and the device, such as between shoulder or elbow and the wrist in transradial amputees [8]–[11]. 

These methods make use of surface electromyography (sEMG) signals or kinematic data obtained from inertial 

measurement units (IMUs) from the residual limb, and are trained, using artificial neural networks (ANNs), to interpret 
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user intention and activate the proper control response. Although these are robust under certain conditions, aside from 

requiring additional sensing equipment, they are impractical for mass use due to the very involved training and 

retraining phase that is unlikely to reach the majority of potential prosthesis users. 

Synergistic controls have also been proposed without the use of ANNs, such as on-line optimization techniques 

in transhumeral amputees [12]. Wrist or elbow rotation could also be directly coupled to shoulder abduction [13], [14]. 

Bimanual manipulations have also inspired a wrist device control that mirrors the opposing healthy wrist by taking 

advantage of symmetric or anti-symmetric motions [15]. In shoulder disarticulate amputees, directly controlling the 3 

DOF of the device’s shoulder becomes less tractable, and solutions have included controlling the whole arm in the 

end-effector space using a foot interface [16] or, in the case of a wheelchair mounted robotic arm, a joystick [17]. 

These proposed approaches offer users an additional control input beyond the two-site sEMG [18], and while they 

enable users to perform complex arm motions, they also impose a cognitive burden that limits their efficacy. One way 

for a control interface to be successful is to enable the same capabilities afforded by multiple simultaneous inputs that 

are able to complete complex movements while making use of the simplicity of an existing sEMG prosthetic interface. 

Prosthetic cosmesis is the art of making prosthetics appear human-like, and is a priority among amputees [19]. 

Despite many efforts placed on generating human-like motions in robots and robotic arms [20]–[22], prosthetic control 

research has not yet taken this into consideration. I coin the term “movement cosmesis” to refer to how human-like a 

prosthetic control appears, and include it in evaluating different methods. 

1.2 Objective 

The primary aim of this thesis is to generate smart control modes for various prosthetic devices. The approach is 

to reduce the dimensionality of the activities that a prosthetic arm would need to perform and find intuitive ways to 

extract a generalizable subset of motions. The main goal is therefore to identify a data driven analysis pipeline that 

can be verified both heuristically and quantitatively. A robust analysis approach would generalize between different 

arm models, whether analyzing just the wrist or the whole arm. This is particularly important since there is no one 

correct way to analyze the data, and heuristics cannot be relied upon when the motion is unintuitive. Literature suggests 

that whole arm motions are planned around the desired location of the hand rather than the angle positions of the joints 

[16]. Therefore, if a categorization approach is able to generate intuitive and useful arm motion groupings based on 

joint-angles alone, then it will likely generate useful elbow-wrist and wrist groupings as well. 
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Subset of motions for each device should be tested against state of the art approaches. The objective would then 

be verify the choice of analysis methods that generated the motions, and demonstrate the efficacy of the proposed 

prosthesis control approach. The efficacy of virtual reality testing would be evaluated as well.  

1.3 Outline 

This thesis covers a series of extensive human subject studies, investigating both healthy arm and prosthesis use. 

Chapter 2 introduces a study where able-bodied participants completed tasks related to ADL in a controlled laboratory 

environment. The 6 DOF of information of each arm segment was recorded, and included the hand, elbow, shoulder, 

and torso. Shoulder, elbow, and wrist joint angles are then extracted. The dimensionality of arm motion is further 

reduced through a series of data driven approaches that looked to identify natural categorization of arm kinematics, 

while offering insight into categories of ADL.  Prototypical arm motions are then calculated from each cluster, and 

are presented as a template for use in a prosthetic device, coined as trajectory control. Since the primary goal was to 

address inadequacies in prosthesis use, categorization of arm motion included just the wrist data at first as it applies 

to controlling 3 DOF prosthetic wrist device. Analysis was then extended to the 4 DOF elbow-wrist and 7 DOF 

shoulder-elbow-wrist prosthetic devices by considering both the elbow and wrist simultaneously, and the entire 

shoulder, elbow, and wrist complex, respectively. Potential shortcomings of this control approach are also discussed 

and one solution is proposed through the characterization of motion variation within each motion cluster. 

Chapter 3 makes use of the same data, but provides a different analytical perspective. Observations from Chapter 

2 motivated a look at hand use alone, rather than the whole arm. Instead of reducing the dimensionality to joint angle 

trajectories, motion is instead analyzed by decoupling location and orientation information of the hand. Categories of 

hand use are found by analyzing both the Cartesian trajectories of the hand through space, as well as the desired end-

point locations that subjects normally place their hands with respect to their torso. Orientation groups are then found 

within each location category. This provides a verification of the results found in Chapter 2, while also presenting an 

additional control method for prosthetic devices. 

Chapter 4 describes a virtual reality testing platform and a series of pilot tests aimed at evaluating the trajectory 

control method. Virtual reality has been gaining popularity as a low-cost approach to evaluate prosthetic devices [23], 

and the absence of complex prosthetic devices on the market necessitated its use. It also provided a platform to address 

the challenges that prosthesis users will likely face, and therefore motivate the development of physical devices. A 
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virtual 3 DOF prosthetic wrist device is designed and programed to be controlled by able-bodied participants whom 

are offered different types of prosthesis controllers. Preliminary evaluations point to the benefits of trajectory control 

while reaffirming the motivation to pursue more complex prosthetic devices. 

Finally, Chapter 5 presents a comprehensive human subject study that builds upon findings from Chapter 4. 

Improvements are made to the virtual reality testing platform by adding more realistic testing conditions. 4 DOF 

elbow-wrist and 7 DOF shoulder-elbow-wrist devices are included in the experiment as well. Beyond just evaluating 

the efficacy of trajectory control in different prosthetic devices, insight is also made into prosthesis use in general. 

Practical limitations of trajectory control are discussed. 
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2 PROTOTYPICAL ARM MOTIONS 

In this Chapter I present a data driven categorization and identification of prototypical upper-limb motions related 

to ADL. The goal is to identify motions relevant to different degrees of upper-limb disability or amputation, and 

therefore shoulder, elbow, and wrist motions are investigated. In addition, motion variation is established using fPCA 

and results encourage further investigation for use in real-world applications. 

2.1 Background 

Despite the complexity of arm motions that enable us to accomplish many different tasks, there is a degree of 

regularity between individuals that does not impose much cognitive burden [24], [25]. In fact, upper-limb motions 

have been successfully described using dynamic movement primitives [26].This may be surprising since there are 

infinite solutions to position and orient the end-effector with an over-constrained 7 degree of freedom (DOF) arm. 

Mathematical models have even been found to successfully predict certain arm motions,  such as a jerk minimization 

model [27]. I therefore predict that the spectrum of arm motions can be distilled to a small, yet representative, subset 

of motion models. This can be done heuristically, for example, by separating tasks based on ADL categories, such as 

feeding and dressing, or by subdividing whole tasks into reaching and transferring motions. This might lead to 

intuitive, and potentially useful, motion categories for a full 7 DOF arm (shoulder-elbow-wrist), but is an impractical 

approach when looking to obtain categories of motion for a 3 DOF (wrist) and 4 DOF (elbow-wrist) models; hereafter 

“arm motions” refer to any of any of the three arm models. 

Instead, I implement unsupervised learning techniques that use data driven approaches to extract categories of 

motion that minimize the variation within while maximize the variation between them; this is also known as clustering. 

Clustering is a knowledge discovery approach that quantitatively builds a categorization model, as opposed to training 

a classifier with pre-labelled data, and would therefore be most appropriate at identifying motion categories that could 

be quantitatively validated. Obtaining subsets of upper-limb movements can be useful in a variety of domains, 

including operating a semi-autonomous prosthetic device by combining series of sub-motions to accomplish a larger 

set of tasks. Since the goal is to eventually have prostheses users interface with these motion categories, the intuition 



6 

behind the results must play a role. Therefore, I first confirm that the clustering results for the 7 DOF arm align with 

heuristics, and then proceed with examining 4 and 3 DOF motions with more confidence. 

Research groups investigating control of active prosthetic wrists and elbows have previously used joint synergies 

while primarily focusing on a single sub-motion, namely reaching [10], [28]. Our methodology aims not to only 

validate reaching as a unique motion category, but also stratify all sub-motions to a hierarchical structure and formalize 

the sub-motion categories, which include motions related to reaching, transferring, and manipulation. In addition to 

the present focus of developing prosthesis controls, this work enables future efforts to take advantage of and focus on 

demonstrable categories of motion. 

Previous research efforts on upper limb motion have spanned various disciplines and techniques aimed at gaining 

insight into how humans make use of and control their upper limbs. Research methods have included neural networks, 

non-linear control, and musculoskeletal modelling [29]. Some investigations have attempted to control upper-limb 

prosthetic devices by identifying and making use of underlying healthy motion patterns [30], [31]. These include 

performing pattern recognition of simultaneous motion primitives [11] or using artificial neural networks to 

discriminate or predict upper-limb functions [10], [32] in healthy participants. Other groups extracted subsets of arm 

motion primitives from healthy participants using functional principal component analysis (fPCA) [33]–[35]. Instead 

of using a linear combination of movement primitives to perform a complete task, a more straightforward approach to 

controlling an upper-limb device could instead be made up of a sequence of individual sub-motions, as is proposed in 

this paper. Hierarchical description and on-line motion recognition of non-ADL motion segments have been 

performed in [36]. However, efforts were on creating non-deterministic automatic motion recognition technology of 

whole body motions rather than on sequential motion segments. Other relevant fields, including rehabilitation, have 

analyzed the ranges of joint angles as a measure of healthy motion patterns [2], [37], [38]. Although efforts have been 

made to extract underlying motion patterns [10], [33], [36], none have deterministically stratified arm motions related 

to ADL. 

2.2 Experiment Design 

The aim of this experiment was to collect data related to healthy arm motions, specifically time-series information 

of each body segment location in space and joint angles. This required an in-lab set up, where conditions could be 
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highly controlled and where motion could be studied in detail. The protocol was designed to include tasks that 

maximize the range of actions that people normally perform while minimizing fatigue. 

2.2.1 Task Protocol 

Due to the large variety of motions that the human arm can achieve, it was important to focus our clustering 

efforts on motions that are relevant to daily life, i.e. common tasks related to ADLs (Figure 2.1). The selected tasks 

that were included in the present work were largely inspired by standardized ‘outcome measure’ assessment tools of 

arm function, such as AM-ULA [39], and reports that surveyed motion-impaired participants regarding which tasks 

they prioritize [6], [40], [41]. The identified tasks were crucial for independent living, and included food preparation, 

hygiene, dressing, grooming, and eating are listed in Table 2.1 accompanied by task specifications in Figure 2.2; none 

of which are considered physically challenging. Only a subset of AM-ULA tasks were included that had identifiable 

start and end points, such that complex motions that occurred during a task could be segmented into distinct motion 

segments. For example, the drinking task involves distinct sub-motions such as reaching, drinking, and returning the 

cup to the table. Tasks that lacked distinct motion segments were omitted and include folding a towel or donning a 

shirt. Omitted tasks also include small amplitude cyclical tasks, such as stirring with a spoon or cutting with a knife. 

The 24 tasks were segmented to 2 to 6 motion segments, yielding 85 distinct motion segments that were collected 

from each participant.  
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Fig 2.1 – Subject performing an ADL task, drinking from a mug. The subject’s motion capture ‘skeleton’ is 

superimposed in this image. Redundant markers are included to enable the prediction of occluded marker 

locations and maintain the ability to identify joint centers. 
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Table 2.1 – Tasks and corresponding motion segments 

Task Code Standing Tasksa 

t2b (1) reach box on top shelf (2) move box to bottom (3) return hands 

b2t (1) reach box on bottom shelf (2) move box to top (3) return hands 

t2m (1) reach box on top shelf (2) move box to mid (3) return hands 

m2t (1) reach box on mid shelf (2) move box to top (3) return hands 

m2b (1) reach box on mid shelf (2) move box to bottom (3) return hands 

b2m (1) reach box on bottom shelf (2) move box to mid (3) return hands 

ke (1) bring key to keyhole (2) turn key (3) turn back (4) remove key from keyhole and return hand 

kn (1) reach for door knob (2) turn knob (3) turn back (4) return hand 

dh (1) reach for door handle (2) open door (3) return hand 

oh (1) reach for can on top shelf (2) bring can down in front of the body 

mp (1) reach for mug in C1 (2) take a sip (3) return mug (4) return hand 

md (1) reach for mug in C2 (2) take a sip (3) return mug (4) return hand 

mc (1) reach for mug in C3 (2) take a sip (3) return mug (4) return hand 

cp (1) reach for cup in C1 (2) take a sip (3) return mug (4) return hand 

cd (1) reach for cup in C2 (2) take a sip (3) return mug (4) return hand 

cc (1) reach for cup in C3 (2) take a sip (3) return mug (4) return hand 

st (1) reach for suitcase (2) transfer suitcase to table (3) return hands 

ax (1) bring hand to contralateral axilla (2) return hand 

pt (1) bring hand to back pocket (2) return hand 

  

 Sitting tasksa 

sp (1) reach for spoon (2) bring spoon to bowl (3) scoop (4) bring to mouth (5) return spoon (6) return hand 

fr (1) reach for fork (2) stab the middle of the plate (3) bring to mouth (4) return fork (5) return hand 

ms (1) reach for mug (2) take a sip (3) return mug (4) return hand 

cs (1) reach for cup (2) take a sip (3) return cup (4) return hand 

pr (1) reach for cup (2) pour (3) return cup (4) return hand 

aUnless otherwise specified, standing tasks started and ended with the subjects’ hands by their side while for 

sitting tasks the hands were to start and end on the table palm side down. 
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Alternative tasks and protocols were considered but ultimately excluded. This includes the Southampton Hand 

Assessment Procedure (SHAP) and the Box and Blocks, assessment tools that have been used to evaluate rehabilitation 

progress post stroke and prosthetic devices. Since both are timed tests with predefined hand positions, arm motions 

are unlikely to be “natural”. While I steered away from timing the tasks or requiring the completion of tasks to be 

performed in any specific way, the protocol included tasks that were in part inspired by SHAP, such as pouring from 

a cup and using a key. 

Each task was repeated 3 times, providing a way to average and smooth the motions as well as account for outliers 

during analysis. Though participants were instructed to begin and end each task in predefined ‘rest poses’, hands by 

 

Fig 2.2 –   Depictions of several selected protocol tasks: (a) a box object was to be moved from one specified shelf to 

another. The object on the top shelf is the location of the can during overhead reaching tasks. (b) The initial 

and final locations of the suitcase tasks, (c) simulated door opening task, and (d) simulated door knob and 

key tasks. (e) The set up for the sitting tasks: the left and right hand start and end in HL and HR, a utensil 

is placed next to HR, a bowl or plate are placed in P, a cup or mug is placed in C, and a container to collect 

the water during the pouring task is placed in V. (f) The three target locations of the standing cup and mug 

tasks, during which the table is elevated to simulate a countertop, where C2 is 25 cm from C1 and C3 is 45 

cm from C1. The task conditions for left handed participants are mirrored. Table height is 74 cm, and is 

elevated to 92 cm to simulate a counter top for the standing cup and mug tasks. The mug (9.5 cm height, 8 

cm diameter), can (7.5 cm height, cm diameter), box (21x37x19 cm), and suitcase (43x9x30 cm) weigh 

0.36, 0.09, 0.23, and 1.36 kg respectively. The shelves are 80, 140, and 180 cm above the floor. Door knob 

and handle are 90 cm above the floor, and the simulated door swivels with an 84 cm radius. 

a b                                        c                                      e                                                 f

d

end

start

utensil
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the side of the body for standing tasks and with the palms on the table for sitting tasks, minimal instruction was given 

on how the tasks should be completed. Participants were free to complete the tasks in any way that felt “natural”. 

Although many breaks were included throughout the experiment to further avoid physical and mental fatigue, such as 

between tasks, participants were given as many additional breaks as they requested; most opted out, but some took 

one or two additional 5 minute breaks. The tasks was inverted for left-handed participants. 

The protocol was completed by 12 (6 male, 6 female) healthy participants, chosen to uniformly span the age 

groups of 20-70 so as to make the motion analysis results as generalizable as possible (also for prosthesis application); 

this resulted in a  final age range of 24 to 71, mean of 43, and standard deviation of 15. Participants performed 24 

individual tasks over the course of a single 5 hour visit.  

2.2.2 Data Acquisition 

Arm motions were recorded with Vicon Motion Capture System (Oxford Metrics Limited, Oxford) using 12 

infrared ‘Bonita’ model cameras (100 frames/second), 1 video reference camera, and 55 reflective markers placed on 

the body. The video camera was synchronized with the motion capture cameras and was used to help with marker 

identification within the Nexus software. 

2.3 Data Analysis 

The purpose of this analysis is to identify how upper-limb motions related to ADL cluster and obtain a subset of 

representative motions using data driven approaches. The data processing and analysis pipeline is illustrated in Figure 

2.3. The motion data is first converted to joint angle trajectories and manually segmented into sequential reaching and 

manipulation movements. Each sub-movement is then averaged across repetitions. A distance matrix is created and 

used for clustering. Clusters are evaluated twice: first to decide on the number of clusters, then against alternative 

algorithms. Finally, representative motions are obtained from each cluster and their respective variances are computed. 

Since the 4 DOF shoulder-elbow model was included solely to compare against the 7 DOF system, this portion of the 

analysis is limited to only obtaining the clusters. 
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2.3.1 Motion Representation 

Recorded human arm motion data can be represented in several different ways, such as joint angles of the 

shoulder, elbow, and wrist, or Cartesian coordinates of each arm segments. Although the joint angle method suffers 

from the unequal impact that different joints have on the end effector trajectory, fewer variables are required to 

reconstruct the upper-limb than Cartesian coordinates. A lower dimensional representation of arm motion is an 

important factor for calculating similarities while joint angle trajectories are easily interpretable and implementable 

prosthetic devices. The simplicity of the joint-angle system was therefore used through the rest the paper. The 

simplicity of the joint-angle system was therefore explored in this chapter, and the Cartesian location of the hand is 

explored in the next. 

The upper-limb joint angle systems are based on 3 DOF wrist, 4 DOF elbow-wrist, and 7 DOF shoulder-elbow-

wrist models, defined according to [42], hereby referred to simply as 3 DOF, 4 DOF, and 7 DOF models, respectively. 

Additional analysis is performed on the 4 DOF shoulder-elbow to verify some of the observations made for the 7 DOF 

model. The shoulder angles consist of plane of elevation, angle of elevation [43], and internal axial rotation, using the 

second option for the humerus coordinate system in [42] and is detailed in Figure 2.4. The elbow angle is formed 

using the forearm and humerus, while wrist angles include supination, wrist flexion, and ulnar deviation. For left-

 

Fig 2.3 –   General framework of the data processing and analysis. (a) Cartesian coordinates of markers tracking 

human motion are converted to arm joint angles, creating a set of feature variables generalizable across 

subjects. (b) Repetitions of different motions and subjects are segmented and averaged. (c) The motions 

are compared using DTW and clustered using agglomerative hierarchical clustering with Ward’s linkage 

distance. (d) The L method is used to select the number of clusters from the dendrogram. (e) Each cluster 

is averaged and (f) within cluster variations are calculated using fPCA. Steps (b-f) are repeated for each of 

the three DOF arm models. Steps (b-d) are repeated once more for the 4 DOF shoulder-elbow model. 
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handed participants, the joint angles were inverted so that they are congruous to right-handed participants for the 

purpose of analysis. 

 

2.3.2 Motion Segmentation 

Hand motions during ADLs, whether reaching or manipulating an object, can be seen as a composite of a series 

of individual sub-motions through which generalized tasks, such as drinking from a cup, are accomplished. Many 

quantitative approaches exist to human motion segmentation and are often based on analyzing various features of 

motion or use statistical and machine learning tools, such as principal component analysis (PCA) or Hidden Markov 

Models (HMM) [44]–[47]. Ultimately, verification of segmentation is performed heuristically by comparing results 

to predefined ground truths. Therefore, instead of implementing an automatic segmentation technique, the start and 

end points of each motion segment were manually defined by identifying when the end effector reached zero velocity, 

when a food item was acquired (analogous to [48]), completed a transfer or task, or returned the object to the table or 

the hand to its ‘rest pose’ (Table 2.1). 

2.3.3 Divergence Measure 

One challenge with comparing time-series data is the difference in duration. Linear resampling of the data fails 

at properly aligning the epochs, and divergences between motions would appear larger than they should. Modeling 

the data on the other hand, for example with polynomials, leads to a loss of information. Dynamic time warping 

(DTW) [49] works by resampling the time-series to equal in length while simultaneously minimizing the sum of 

square Euclidean distances, and given that the interest is in the kinematics of the arm and not the time component, this 

was an appropriate option. It works according to the following equation, 

 

Fig 2.4 –   Humeral elevation and plane of elevation are depicted using the globe system described in [45]. The elbow 

is positioned below the shoulder in the image to depict humeral axial rotation. 
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𝐷(𝑖, 𝑗) = 𝑚𝑖𝑛 {

𝐷(𝑖 − 1, 𝑗) + 𝑑(𝑖, 𝑗)

𝐷(𝑖 − 1, 𝑗 − 1) + 𝑑(𝑖, 𝑗)

𝐷(𝑖, 𝑗 − 1) + 𝑑(𝑖, 𝑗)
} , 𝐷(1,1) = 𝑑(1,1) 

(1) 

where d(i,j) corresponds to the Euclidean distance between the DOF of frame i of one motion segment and the DOF 

of frame j of the second motion segment. The optimal path is then calculated through matrix D(i,j) by starting at the 

last frames of each of the motions and moving backwards through the smallest distance values. 

Because similar motions may be moving in opposite directions, such as bringing the cup to the mouth and 

returning it to the table, it was necessary to calculate DTW twice, once with the original data and once with one of the 

motions moving in reverse; saving the smaller of the two calculations. Divergence values are normalized by dividing 

by the new time duration obtained during DTW. This is done so that the DTW comparison made between longer and 

shorter motions segments are comparable, and I refer to it as normalized-DTW. While this approach may bias longer 

segment comparisons, provided that the arm motion segments are on the same time scale this error is minimized. 

Although more robust DTW normalization methods exist, such as normalizing by the square root of the length [50], 

they did not significantly alter the results, and are therefore excluded from the analysis. 

2.3.4 Averaging Motions 

Averaging of motions was performed during two separate phases throughout the analysis. The first time it was to 

average repetitions to obtain a single representative motion across participants; each final motion segment was an 

average of 36 motions (three from each participant). The second use of averaging was to identify a representative 

prototypical motion for each cluster. There are a variety of ways to computing a time-series average, the simplest one 

entails a linear resampling followed by a frame by frame averaging. DTW barycenter averaging (DBA) algorithm [51] 

is used instead, as it better handles phase shifts in the motions and epoch alignment. This method is based on the idea 

that an average is simply the point that minimizes the summed distances between the data and itself. Same is done in 

DBA, where a consensus segment is identified by minimizing the DTW distance with all other data time-series data. 

One precaution that had to be made during DBA is that it is prone to local minimums, where the consensus 

segment will accentuate the amplitude of certain frames to minimize the DTW distance [51]. Although more complex 

algorithms exist that attempt to deal with such issues, such as [52], I simply limited the amount of frames that can be 

warped to the minimum amount possible when performing DTW between the shortest and the longest motion segment 

pair in each group. 
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2.3.5 Agglomerative Hierarchical Clustering 

In the present study I sought a clustering algorithm that effectively minimizes variation within clusters, 

maximizing the difference between clusters, while depicting the underlying structure of the data. In order to further 

distinguish arm motions, the algorithm would ideally result in clusters that are “spherical” rather than interconnected. 

Agglomerative hierarchical clustering [53], [54] with Ward’s linkage criterion, or simply distance, accomplishes this 

while presenting the data in an easily interpretable dendrogram illustrating the distance relationship between the 

motion segments. The algorithm works by successively merging clusters based on a distance criterion until all but one 

cluster containing all of the data remains. Ward’s linkage criterion, unlike complete linkage (furthest-neighbor) or 

single linkage (nearest-neighbor), creates distinct “spherical” clusters by accounting for both the within and 

cumulative cluster variances according to 

𝑊 =  𝑆𝑆 12– (𝑆𝑆 1 +  𝑆𝑆2) 

(2) 

where W is the calculated Ward’s distance value, SS12 is the sum of squares of the combined cluster, and SS1 and SS2 

are the sum of squares of each of the members of the cluster to its respective centroid. Although this method does not 

make adjustments to the clustering once a merge decision has been made, proper outlier and noise handling will 

mitigate this issue; I do so by averaging repetitions, outlined in Section 1.2.4. 

A set number of clusters can be extracted from the dendrograms in a variety of ways. While heuristics can be 

used to select a seemingly reasonable number of clusters for the 7 DOF model, the 4 DOF and 3 DOF models do not 

lend themselves to an easy interpretation. Therefore a data driven approach called the L method [55] wa used to 

identify an “optimal” number of clusters. The method was used with a greedy evaluation approach, as recommended 

in [55], and only considers the Ward’s distance (2) value between the two clusters being merged. Unlike other 

approaches that only evaluate the data locally or are sensitive to noise, the L method makes use of the entire set of 

distance values between each merging pair to determine the point of transition, the “knee”, between the internally 

homogenous and non-homogenous cluster merging phases (Figure 2.5). It works by linearly fitting each phase while 

varying the sequence of points that belong to each and calculating the total error, RMSEtot, according to 

𝑅𝑀𝑆𝐸𝑡𝑜𝑡 =
𝑐 − 1

𝑏 − 1
× 𝑅𝑀𝑆𝐸(𝐿𝑐) +

𝑏 − 𝑐

𝑏 − 1
× 𝑅𝑀𝑆𝐸(𝑅𝑐) 

(2) 

where c and b correspond to the partitions of the distance data belonging to the left and right side, respectively, and 

Lc and Rc are the lines of best-fit, respectively. Lc and Rc must have at least two points, and c and b always add up to 
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the total number of points. A value of c which minimizes RMSEtot corresponds to the “optimal” number of clusters. 

Certain improvements to the L method were additionally recommended by the authors [55], and are implemented in 

the results. These include adjusting the number of mergings that are being evaluated and removing the set of data left 

of the point corresponding to the largest distance. 

 

2.3.6 Cluster Quality 

By re-computing the hierarchical clustering dendrogram using individual motions, rather than the average of each 

motion type, an evaluation score that captures how consistently repetitions cluster can be computed, 

 

The quality score is at its maximum for a single cluster containing all of the motion segments and decreases 

monotonically as the number of clusters increase. The evaluation score could theoretically remain at 100% up to 1020 

 

Fig 2.5 –   Left plot depicts the suggested windowing of the merge distance data, as suggested in [57]. The right plot 

depicts an application of the L method; identifying the “knee” of the graph. 

Table 2.2 - Compute clustering quality pseudocode 

 

Input: vector of cluster membership ID of each motion segment 

Output: evaluation score as a % 

1: Let max_score equal to 3060 // 12 subj.*85 motion segments *3 repetitions 

2: Initialize score to 0 

3: foreach cluster do 

4:  foreach pair of cluster members do 

5:   if cluster members are repetitions then add 1 to score 

6:  end 

7: end 

8: return score / max_score * 100 

 



17 

clusters; 85 unique motions from 12 participants. Common clustering methods are additionally evaluated to validate 

the selection of the primary methodology: K-medoids clustering and Euclidean distance between motions represented 

using coefficients belonging to cubic Bézier fits. 

The algorithm provides an opportunity to compare the selected cluster methodology to alternative motion 

representation and cluster methods. K-medoids clustering is tested using DTW divergences, similar to [38]. Unlike 

K-means, K-medoids identifies a median motion segment instead of calculating a centroid. At each iteration, distances 

between representative cluster medians and the motion segments are calculated, cluster membership is reassigned, and 

new medians are computed. Ten repetitions of this algorithm were performed to account for local minimums. 

An alternative divergence measure was tested; cubic Bézier curves were fit to each joint angle trajectory using 

least squares, yielding a set of Bézier control points that represented each motion segment. Cubic Béziers have been 

shown to accurately represent human motion during data compression [56] and hand trajectories [57]. One benefit to 

using Bézier curves over traditional polynomials is that the first and last control points correspond to the start and end 

locations of a trajectory. Cubic Bézier curves yielded feature vectors of 12, 16, and 28 elements long for the 3 DOF, 

4 DOF, and 7 DOF models, respectively, corresponding to 4 control points. Euclidean distances between the feature 

vectors were calculated and Hierarchical clustering with Ward’s linkage criterion was then used for clustering. 

2.3.7 Within Cluster Average and Variation 

In order to obtain variation within each cluster, an average was first found, motions were resampled to be equal 

in duration, and fPCA [58] was used to extract the principal components (Figure 2.6). Each set of the first n principal 

components then explain some amount of variation. Greater motion variability in a cluster will require more principal 

components to describe the same amount of variation than clusters with homogenous segments. 
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As described in section 2.2.1., each motion within a cluster is an average of 36 individual repeated motion 

segments, therefore a cluster with 2 motions can also be analyzed as a set of 72 individual motion segments. All of 

the individual motions that occur while replacing the object or returning the hand are first reversed. Then, as in section 

2.3.4, DBA is used to identify the average of each cluster, initializing it to have the same number of frames as the 

longest motion. The individual motions are then resampled to equal in length using batch-DTW [59]. Unlike linear 

resampling, batch-DTW is better suited for this application by aligning epochs independently for each motion, thus 

better capturing motion variability. Batch-DTW is an asymmetric DTW algorithm which simultaneously aligns 

multiple time-series data and retains a non-increasing time-duration, something that is impossible to achieve using 

standard DTW. It works by first selecting a reference time-series segment, in our case it is the average motion of a 

cluster, and performing DTW with each of the other time-series data. Each set of frames that are repeated for a single 

frame of the reference segment were averaged. An example would be if the optimal warping path included (i-1,j), (i,j), 

(i+1,j), where the (i-1)th, ith, and (i+1)th frames of motion Mi are aligned with the jth frame of the reference motion Mj. 

Batch-DTW would take the following average of the three frames 

(𝑀𝑖(𝑖 − 1, : ) + 𝑀𝑖(𝑖, : ) + 𝑀𝑖(𝑖 + 1, : ))

3
 

 

Three 3rd order B-Spline [60] elements were fit to each of the newly aligned motion segments (using least 

squares). The coefficients of the curves are used as feature variables when calculating the principal components [58]. 

Since the motion alignment considers only the positions of the joint angles, velocity and acceleration information is 

lost, therefore instead of a 5th order fit as recommended in [27], 3rd order was chosen instead. Three equally spaced 

B-spline elements were primarily used to better capture the start, middle, and end phases of the joint angle trajectories. 

 

Fig 2.6 –  Flowchart depicting the within cluster variation analysis pipeline. Top left panel represents the recorded 

motion segments belonging to a single cluster for one of the DOF, represented using joint angle trajectories. 
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2.4 Results 

Figure 2.7 displays dendrograms obtained for the joint angle 7 DOF full-arm model, 4 DOF elbow-wrist model, 

3 DOF wrist-only model, and the 4 DOF shoulder-elbow model. A horizontal cut is used to segment each of the 

dendrograms to obtain a subset of clusters according to the L method described in [55] using the greedy approach, 

whose results accompany the dendrograms in Figure 2.8. The L method identified the following set of clusters: 5 

clusters for the 3 DOF model, and 11 clusters for the 4 DOF elbow-wrist and 7 DOF models. The 4 DOF shoulder-

elbow trajectory dendrogram is nearly identical to the 7-DOF model barring two motions being placed in difference 

clusters, st-2 (transfer suitcase to table) and fr-2 (use fork). 
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Fig 2.7 –   Dendrograms for the 3, 4, and 7 DOF models. Location of the horizontal cut (dashed line) was chosen 

using results of the L method. An appropriate cluster name accompanies each of the clusters: major axes 

of wrist rotation for the 3 DOF model and generalized description of the motions for the 4 and 7 DOF 

models. Cluster colors are auto-generated and are unrelated between dendrograms. 
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One of the L method adjustments recommended by the authors [55] was to dynamically adjust the number of 

mergings being evaluated down to a minimum of 20 points. In our case, the identified “knee” for 25 merging points 

was equivalent and I therefore left the additional 5 points in. The largest merging distance for each DOF model was 

the first merging and therefore the data being evaluated started with the merging distance between 2 and 3 clusters. 

Evaluation of the chosen methodology is shown against an alternative divergence measure and clustering 

algorithm while varying the number of clusters from 1 to 25 (Figure 2.9). This was done for each DOF model. The 

chosen clustering methodology consistently outperforms the other methods for almost every number of clusters. 

 

 

Fig 2.8 –   L method results for each of the models. An example of the identified “knee” for the Wrist model is included 

in two plots in the left column. 

 

Fig 2.9 –   Quality of clustering for different divergence measures and clustering algorithms across a range of number 

of clusters. Scoring metric assessed how frequently repetitions from the same individuals clustered 

together. 
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Due to practical limitations in representing multi-DOF motion with images or complex equations, all the resulting 

prototypical averaged motions are displayed with only the first principle component in Figures 2.10-2.14. In Figures 

2.10 and 2.12, the start, middle, and end poses of the arm are displayed, while in Figure 2.14 only the start and end 

poses are displayed. The location of the end effector is also traced out throughout the motion. The stick model is 

created using forward kinematics of the average motion’s DOF in MATLAB (MathWorks, US) according to [42], and 

the accompanying skeleton model was created using an online skeletal animation tool, KineMan 

(http://www.kineman.com). The motions for the wrist and elbow-wrist models were depicted using a simulated 

prosthetic hand in Unity. 
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Fig 2.10 – Forward kinematics are used to display the average motion of each of the 11 clusters for the 7 DOF model. 

A skeleton model in the final pose is included for the 8th cluster: reach-to-front-far. Three reference frames 

are displayed with X, Y, and Z axis using subscripts S, E, W, and H for shoulder, elbow, wrist, and hand, 

respectively. The shoulder coordinate frame is fixed throughout the motion. Humerus, forearm, and hand 

lengths correspond to an average adult. 
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Fig 2.11 – Individual joint angle trajectories for the average of each cluster for the 7 DOF model are displayed along 

with the first principal component. α was set to equal the proportion of total variation explained by that 

component. Shoulder1-3 correspond to humeral elevation, plane of elevation, and internal rotation, 

respectively, while Wrist1-3 correspond to supination, flexion, and deviation, respectively. 
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Fig 2.12 – Forward kinematics are used to display the average motion of each of the 11 clusters for the 4 DOF model. 

Three reference frames are displayed with X, Y, and Z axis using subscripts S, E, W, and H for shoulder, 

elbow, wrist, and hand, respectively. The shoulder and elbow coordinate frames are fixed throughout the 

motion, and are only included to provide a reference. Humerus, forearm, and hand lengths correspond to 

an average adult. 
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Fig 2.13 – Individual joint angle trajectories for the average of each cluster for the 4 DOF model are displayed along 

with the first principal component. α was set to equal the proportion of total variation explained by that 

component. In order, joint angles correspond to elbow flexion, wrist supination, wrist flexion, and wrist 

deviation. 
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Variation of the motions within each cluster is captured using fPCA. The percent of the variability explained by 

each set of principal components, i.e. the first n number of principal components, is summarized in Figure 2.15. For 

each cluster the average pair-wise divergence between cluster members is additionally included, calculated using 

normalized-DTW. The analysis indicated that while some clusters needed only 3 principal components to describe 

80% of the variation, others needed as many as 8. 

 

Fig 2.14 – Start and end poses of each cluster for the 3 DOF model are shown at the top along with the average joint 

angle trajectories and the first principal component right below. The three joint angles in order correspond 

to supination, flexion, and deviation. α was set to equal the proportion of total variation explained by the 

principal component. Red arrows indicate the general direction of motion for each of the DOF. 
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2.5 Discussion 

Although the hierarchical tree does not output a specific number of clusters, clustered groups can be obtained by 

transecting the dendrogram at a desired value. The most straightforward method is using a straight line cut as is seen 

in Figure 2.7. The location of this cut was chosen using a data driven approach called the L method with greedy 

evaluation, chosen over global primarily due to greater reliability when selecting the number of clusters [55]. Global 

evaluations have shown only minor deviations and were not considered in the analysis. 

According to the L method, unlike for the 4 DOF elbow-wrist model, 7 DOF and 3 DOF models have a clear 

RMSE minimum suggesting 11 and 5 clusters, respectively. Clusters obtained for the 7 DOF model, consistent with 

the spatial control hypothesis where control of the joints is in the subspace of the hand location [61], can be estimated 

using hand start and end locations while smaller groupings within each cluster are based on other movement 

characteristics. This suggests that either the wrist motion is synergistic with the shoulder and elbow joints along the 

motion path [10], [62], or that its range of motion was not significant enough to influence clustering. Depending on 

the set of motions being studied, it is likely that both are factors. To test this the 4 DOF shoulder-elbow trajectories 

were analyzed, which identified nearly identical clusters to the 7 DOF model, further suggesting that arm motions 

primarily clustered according to task location. Therefore when designing a 7 DOF prosthetic device control scheme, 

priority should be given to the location of the end effector, something that other prosthetists have identified as well 

[16]. The 3 DOF model too created clusters primarily based on starts and ends of the wrist joint angle trajectories. 

 

Fig 2.15 – The variation explained by each set of principal components for each joint angle system’s averages are 

displayed. Note that clusters requiring more principal components to explain the same amount of variation 

is generally consistent with a greater amount of motions they represent. Average pair-wise divergence is 

included at the top of each bar. 
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Although the global minimum is located at 11 clusters, the 4 DOF elbow-wrist model has an additional RMSE 

minimum at 6 clusters, indicating the possibility of a second plausible interpretation: clustering result for the 4 DOF 

model is not a gradual transition between the 7 DOF and 3 DOF models, but rather it exhibits both of their minimums 

simultaneously. I therefore suspect that 11 and 6 cluster minimums correspond to hand location and wrist orientation, 

respectively. Although the dendrogram structure for the 4 DOF model is more difficult to interpret, given that 11 

clusters were ultimately identified despite the absence of shoulder angles, it would appear that task location 

information is largely maintained in the elbow trajectory, consistent with the efforts in [10]. 

3 DOF clusters are summarized as motion types, such as supination or deviation, referring to the most significant 

degree(s) of freedom. The dart-throwing motion (DTM), a hybrid of flexion and ulnar deviation, which has been 

described as a more stable and controllable axis of rotation [63], is re-discovered in our analysis as the prototypical 

motion of the 2nd cluster. Since dendrogram interpretation is limited without animation, and while cluster descriptions 

for all three models are generalized in Figure 2.7, accompanying figures are included that provide more detail. (Figures 

2.10-2.14). 

When it came to clustering quality, the chosen divergence measure and clustering algorithm outperformed Bézier 

and K-medoids methods at almost every number of clusters, reassuring its selection. The performance of K-medoids 

did not monotonically decrease with added clusters due to the algorithm reaching local minimums despite multiple 

iterations. Using Bézier coefficients to measure similarities between motions performed worse than DTW likely due 

to Bézier coefficients merely approximating the data whereas DTW takes the full joint angle trajectories into account 

and thus calculates a more representative divergence value. 

Average pair-wise divergence and fPCA analysis captured the spread of each cluster and the directions of that 

spread, respectively. Although some clusters require as many as 8 fPC’s to describe 80% of the variation, if the average 

pair-wise divergence is small, this does not necessarily mean that all of those fPC’s are required to accurately 

reconstruct the motions for practical use in a prosthetic device. The torso could potentially compensate for the variation 

during reconstruction as well. 

The demonstrated cluster prototypical motions in Figures 2.10, 2.12, and 2.14 are accompanied Figures 2.11, 

2.13, and 2.14 that indicate how these motions vary that could also be used to inform how to dynamically tune the 

trajectories to compensate for the motion variation within the cluster. This may be an indispensable aspect of control 
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when, for example, reaching locations occur in continuous space. Future work should take advantage of fPCA findings 

in implementation of motion control and online adjustments. 

If a common set of feature variables is identified, comparison may potentially be made with cyclical motions as 

well. One challenge is that cyclical motions do not have well defined start and end points, and therefore rely on 

alternative representation methods such as wavelet or discrete Fourier transform [64]. However, these methods would 

not be appropriate for the non-cyclical type of data considered thus far in this study. 

The decision to use joint angle data as the feature vector largely relies on the ability of recorded motions to be 

easily interpreted across individuals and its low dimensional representation when compared to other approaches, an 

important factor when calculating a similarity matrix to be used for clustering. However, this gives each joint angle 

an equal weight when calculating the differences between motions, which deserves consideration since each joint has 

a very different effect on the location of the end effector; while it may have be less of an issue for Cartesian coordinates 

of the upper-limb segments. Additionally, proximity to the discontinuities in two of the shoulder joint angles may 

cause them to have an even larger impact when measuring motion similarity since the angle range is likely to be 

greater than for the other joint angles. Finally, although the decision to analyze the 3, 4, and 7 DOF arm models is 

relevant in a variety of applications, the methodology can be extended to alternative systems, such as to a full body 

kinematic chain. 

2.6 Conclusions 

This chapter described a method that categorizes human arm motion during the performance of ADL tasks. Using 

data driven techniques to measure similarity between motions, average, and cluster, 11 motion categories were 

identified for the 4 DOF elbow-wrist and 7 DOF shoulder-elbow-wrist models and 5 motion categories for the 3 DOF 

wrist model. These clusters can be distinguished primarily based on start and end configurations of motions, further 

differentiated by specific types of manipulation. 

The results align with intuition as well, making the proposed method a good candidate to describe other DOF 

time-series systems. The application of this work is not task specific and is not exhaustive of the full set and complexity 

of motions within each task category, but instead provides a general framework that may be either applied in its current 

form for general use, improved on using fPCA, or could further be adapted to task specific scenarios to increase motion 

specificity. An example includes obtaining a partial hierarchy of motions exclusively for feeding [30]. The proposed 
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approach could also be applied to a subset of the presented data, such as decoupling the reaching location from the 

wrist orientation, as is demonstrated in Chapter 3. 
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3 DECOUPLING LOCATION AND 

ORIENTATION 

In Chapter 2, 7 degree of freedom (DOF) joint angle trajectories of the arm were clustered; 3 DOF for the shoulder, 

1 for the elbow, and 3 for the wrist. One major observation was that clusters seemingly depended strongly on hand 

location, agreeing with the spatial control hypothesis [61]. Thus, in this chapter, I aim to recreate and expand on the 

analysis by decoupling the 7 DOF arm motion into Cartesian coordinates of hand trajectories and orientations, and 

explore alternative prosthesis or robotic arm controls. Extensions include a comparison of the hand trajectory with 

straight-line trajectories and end-point locations, using a data driven approach to identify the number of clusters, and 

a per-cluster analysis of the distribution of hand orientations. The goal of decoupling location from orientation is 

threefold: gain further insight into reaching motions, reduce the ADL hand motion space to representative groups, and 

identify subsets of hand orientations within clusters using data driven approaches. 

3.1 Background 

Upper-limb reaching has been the forefront subject of many research endeavors including balance confidence in 

seniors [65], influence of object presence on motion dynamics [66], developing novel prosthesis control using joint 

synergies [10], evaluating rehabilitation efforts [67], and ergonomics [68]. Whether the research goal is to evaluate 

rehabilitation outcomes across all tasks or analyze arm movement dynamics for specific tasks, a hierarchical 

description of the hand workspace can be leveraged to justify these efforts at every subcategory of ADLs. 

Although in the past the hand has been considered to take a straight-line path with a bell-shaped velocity profile 

that minimizes jerk [27], [61], it was later shown that this is only the case under certain conditions [25], [57]. I suspect 

that by analyzing the deviation of the actual hand trajectories from the straight-line approximations, hereafter simply 

called original paths and straight-line paths, respectively, we will gain insight into why certain motions cluster 

together. For the path analyses, a strictly non-dynamic kinematic model is used, considering only the three-

dimensional coordinate locations of the hand. 
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Given the significance of hand orientation relative to the forearm (commonly also referred to as wrist angles) in 

completing ADLs [3] and avoiding compensatory movements [4], unconstrained hand usage are analyzed, particularly 

orientation, during ADLs within a particular task space as defined by clusters of task location. Previous research on 

wrist orientations include investigating wrist synergies with elbow and shoulder postures [62], [69] and reaching 

direction [70], as well as obtaining a trajectory of wrist poses used in ADLs [71]. 

Desired hand positions and trajectories could alternatively be viewed as inputs to a control system, rather than 

joint positions, as has been neurologically demonstrated [72], and I leverage this to develop a biomechanical analysis 

of human arm motion to inspire a range of technologies, such rehabilitation programs for stroke patients [73], [74]. 

One major application of discretization is in a semi-autonomous sequential control of upper-limbs prosthetic devices 

or wheelchair-mounted robotic arms [17], [75]. In these cases, end-effector locations, trajectories, and orientations 

can be individually selected from a list and executed using conventional velocity control inputs, such as sEMG placed 

on the residual limb of the amputee [18]. While end-point locations of tasks can be used to reliably discretize the 3-

dimensional ADL workspace, path trajectories can be used to recreate motions that appear natural and predictable in 

prosthetic devices and robotic applications. Trajectories could be implemented either instead of or in addition to using 

task locations in controlling arm devices whereby unique lists of trajectories are available to a user depending on the 

current position of the end effector. Hand orientations can subsequently be chosen from one of the available options 

for the location. Iuse the term “hand orientation” instead of “wrist angle” in this chapter given that the wrist is analyzed 

in various reference frames. 

3.2 Data Analysis 

The flowchart of the analysis is summarized in Figure 3.1. Subject data that was collected and prepared in Chapter 

2 was used in for this analysis as well. After task segmentation, which yielded a total of 85 distinct motion segments 

per subject, representative end-point locations and trajectories were obtained by averaging across subjects and 

repetitions. Using the start and end points of each segment, a straight line was generated using the same number of 

time steps as the original path and likewise averaged. For generalizability, locations and trajectories are all described 

using the subject’s torso as the reference frame. 
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Using methods described in Chapter 2, for straight-line path and original-path data, divergences are computed 

using DTW between each pair of average segments followed by a clustering step with hierarchical clustering. For end-

point locations, divergences were calculated using a standard Euclidean distance calculation. For path data, averages 

were found using DBA. Cluster results obtained from the three representations are then evaluated and compared. I 

proceed with analyzing the coordination between task location and hand orientations. All analysis methods used on 

the trajectory path data have been demonstrated to work well with similar data, namely, trajectory data described in 

Chapter 2, and are therefore only briefly summarized. 

3.2.1 Orientation Classification 

An intuitive way to represent the large distribution of hand orientations is via a grid of square faces on a 

rhombicuboctahedron (with eight triangular and eighteen square faces, Figure 3.2a and 3.2b): a spherical like 

geometric object whose facets represent a classification of hand orientations. Each of the 18 main square faces can be 

 

Fig 3.1 –   Flowchart outlines the steps in the analysis. (a) Cartesian marker data is recorded and analyzed using either 

the trajectory or the end-point location of the hand. Additional markers are presented for reference. (b) The 

recorded tasks are then segmented into sub-movements and averaged across repetitions and individuals to 

obtain individual representations of each motion. (c) A distance matrix is obtained for each data 

representation, using either DTW for the trajectory data (top) or a Euclidean distance (bottom) for the end-

point locations, followed by (d) a clustering step using agglomerative hierarchical clustering, in which the 

number of clusters is selected using the L method. (e) Hand orientations are classified to discrete 

orientations using the categorization obtained from end-point location clustering. (f) Subsets of hand poses 

are extracted from the orientation distributions. Steps (a)-(d) are repeated for each of the three motion 

representations, while (e)-(f) are repeated 3 times for each coordinate frame for one of the motion 

representations, namely end-point location. 
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thought of as a palm plane (i.e. the palm of the hand is placed coplanar with the surface), and within each of those 

main squares, the 8 smaller squares represent an orientation of the hand in that plane (with the thumb aligning with 

that square, with the central square of the 3x3 grid empty). This yields 18x8 (144) hand orientation “bins” all in 45° 

increments from the three major hand orientation axes. The number of bins is chosen by balancing coarseness and 

usefulness in control; too few (such as the facets of a cube) and the bins might not be useful, too many and the bins 

lose their visual intuition. 

 

In human-robot collaboration, object manipulation and sensing requires a careful consideration of a reference 

frame, which may simplify computation and improve accuracy [76]. Therefore, hand orientations are analyzed and 

compared in three reference frames: global, torso, and forearm, with each being useful in different applications. While 

the global reference frame is fixed to the room, the torso and forearm reference frames are defined according to [42]. 

In order for the classified distributions to be comparable across reference frames, the axes are aligned such that the 

hand orientation is classified to the same bin as seen in Fig. 4c. Although orientations can be transformed between 

reference frames, each reference frame representation encodes the data differently such that each will yield a different 

number of hand orientation clusters, thus orientations in each reference frame are evaluated independently. 

 

Fig 3.2 –   XH is normal to the palm and always faces the center of the rhombicuboctahedron while the thumb, YH 

indicates the orientation around the palm axis; ZH is aligned with the direction of the fingers. Example hand 

orientations are shown for some of the bins (highlighted). The hedron is displayed in two orientations (a) 

and (b), such that all sides can be visible. A dotted line and a circle are added to aid in visualizing the 

rotation. (c) Reference coordinate axes, global, torso, forearm, and hand, with respective subscripts, are all 

aligned such that the displayed hand is classified to the same bin. 
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3.2.2 Obtaining a Subset of Hand Orientations 

In order to identify a representative set of hand orientations in each set of task locations I evaluate the dispersion 

of hand orientations, divide the distribution into smaller sets until a target dispersion is reached, and calculate an 

average orientation for each set. Dispersion is calculated by averaging the distances between pairs of orientations, 

𝑑𝑖𝑗 = 2 ∗ cos−1(|〈𝑞𝑖 , 𝑞𝑗〉|) 

(3) 

𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 =
∑ 𝑑𝑖𝑗

𝑛
𝑖,𝑗=1

𝑛
 

(4) 

where dij is the distance between a pair of orientations, qi is the quaternion representing a hand pose in an end-point 

location, and n is the number of hand orientations in a location cluster. The dispersion value is reduced by re-clustering 

the set of orientations into smaller groups until a threshold of 22.5° is achieved; such that the cluster average represents 

a dispersion equivalent to a bin on the rhombicuboctahedron, i.e. orientations that exceeded a distance of 22.5° would 

be classified to a different bin. Because calculating the pairwise distance for every splitting permutation is 

computationally infeasible, divisive hierarchical clustering is performed using k-means; k-means was rerun 1000 times 

to avoid local minimums. Cluster averages are computed using a quaternion averaging algorithm developed in [77]. 

The algorithm works by identifying an orientation that minimizes the total rotation from all other orientations. 

Additionally, clustering ensures that the obtained average hand orientations are as distinct as possible. For brevity, 

analysis is performed on end-point location clusters only. Orientation distribution of trajectory clusters and orientation 

trajectories will be explored in future work. 

3.2.2 Orientation Distribution Comparison 

In order to identify similarity between different distributions of hand orientations, histogram distance calculation 

is used [78]. A distance matrix is created by calculating the summed absolute difference between classifications 

normalized by the size of the distribution, 

𝑆𝑖 = ∑ 𝐴𝑖𝑎

𝑛

𝑎=1

 

(5) 

𝐷𝑖𝑗 = ∑ |
𝐴𝑖𝑎

𝑆𝑖

−
𝐴𝑗𝑎

𝑆𝑗

|

𝑛

𝑎=1

 

(6) 
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where A is a vector representing the results of the classification, i and j are the distributions being compared, and n is 

the number of bins. Although a statistical significance is not associated with this distance, from the magnitude a sense 

of relative similarity between distributions can nonetheless be obtained. 

3.3 Results 

3.3.1 Cartesian Location 

Cluster results and accompanying descriptions for each representation method are shown in Figure 3.3 and Figure 

3.4 corresponding to end-point locations and trajectory data, respectively. Scatter plot of the un-averaged end-points, 

grouped according to the clustering performed on the averages, are shown in the Figure 3.3 as well. An additional 

third-person view for the averaged locations is shown in Figure 3.5. Un-averaged trajectories were not visually 

informative and were thus excluded. Skeleton models were created using an online animation tool, KineMan 

(http://www.kineman.com), and inserted into the figures for reference. 
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Fig 3.3 –   Visual representations of the end-point locations (top) and the averages (bottom). The end-point locations 

of the un-averaged repetitions are classified according to average results. Centroids (red) are included in 

the top results. The origin is located halfway between markers placed on the C8 spinal segment and at the 

top of the sternum. 
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Fig 3.4 –   Visual representations of the original-path trajectories (top) and straight-path trajectories (bottom). Clusters 

are identified with unique line patterns and colors. Cluster labels are additionally included. The origin is 

located halfway between markers placed on the C8 spinal segment and at the top of the sternum. 
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The L method, described in Chapter 2, identified 5 clusters for the end-points of motion segments, 5 clusters for 

the original-path trajectories, and 7 clusters for the straight-line path trajectories (Figure 3.6). Detailed results depicting 

the results of hierarchical clustering are shown in Figure 3.7. Number of clusters for each method was selected using 

the L methods and demonstrated in the plots using a horizontal cut. Tasks segments and end-point locations are listed 

according to Table 2.1. 

 

Fig 3.5 –   A participant’s motion-captured hand and torso locations are superimposed on a skeleton model performing 

an ADL task, reaching overhead. Redundant markers enabled the prediction of occluded marker locations. 

Other reaching targets are displayed as well; discretized according to clustering results. Note the hand 

appears to reach to the side in the torso reference frame. 
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Fig 3.6 –   L method results for each data representation. An example of the identified “knee” for end-point locations 

is included in the top right. 

 

Fig 3.7 –   Hierarchical clustering results are displayed for end-point locations and paths. Clusters are numbered and 

colored and are extracted using horizontal cuts according to the L method. Cluster colors were 

automatically generated and are unrelated between dendrograms. Task segments and end-point locations 

are listed according to Table 2.1. 
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Evaluation of the clustering quality of each representation method is shown in Figure 3.8, calculated according 

to the pseudocode in Table 2.2 in Chapter 2. The number of clusters is varied from 1, containing all data, to 25 clusters. 

Evaluation could theoretically go on up until all data points belong to their own cluster, but results are less informative 

at that range. Original-path trajectory clustering outperformed the other methods while end-point locations performed 

the worst at almost every number of clusters. 

 

3.3.2 Orientation Distribution 

Distribution of hand orientations are presented in Figure 3.9 using the rhombicuboctahedron representation shown 

in the global, torso, and forearm coordinate frames for each of the 5 end-point location clusters for a total of 15 

distributions. The initial dispersion, based on the average pairwise distance between orientations, is displayed at the 

top right of each distribution. Sets of hand orientations are additionally shown below each distribution that represent 

the average hand poses for the sub-clusters that reduced dispersion below 22.5º. Note that for three of the of forearm 

locations, the subsets are identical, suggesting that distribution differences were not significantly different. 

 

Fig 3.8 –   Evaluation of clustering for each of the representation methods across a range of number of clusters. Scoring 

assessed how frequently repetitions clustered together. 
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Fig 3.9 –   Distributions of the hand orientations are shown in each of the three reference frames (right column), as 

well as within each end-point location cluster. Subsets of the distribution, found by re-clustering, are shown 

below each respective distribution. Some subsets are identical across distributions, as is seen for three of 

the clusters in the forearm reference frame. Dispersion values are displayed at the top right of each 

distribution. 
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A distance half matrix is shown in Fig. 3.10, highlighting the relative similarity between distributions. The range 

is normalized from 0, assigned to identical distributions, to 1, as identified by the most dissimilar pair of distributions. 

Note that the global and torso reference frames are more similar across than between clusters, indicated by the light 

diagonal. 

 

3.4 Discussion 

End-point locations, path trajectories of the hand, and generated straight-line paths of the hand performing a set 

of ADL tasks were used to discretize the ADL workspace using data driven approaches. End-point representation 

identified the following discretization: in-front-low, in-front-mid, overhead, mouth and axilla, and hand-by-side and 

pocket. The original-path trajectory on the other hand identified the following discretization: reach-to-pocket, reach-

to-front, motions-in-front, drink-utensil-to-mouth, and reach-overhead. Straight-line path clusters further 

differentiated some motions and merged others into the following groups: reach-to-body, reach-to-front, reach-

overhead, far-to-mouth, close-to-mouth, motions-in-front, and move-box. 

Differences between original-path and the straight-line path clusters includes a merging of reach-to-pocket with 

reaching to axilla motions, and differentiation of the drink-utensil-to-mouth cluster into motions that began closer to 

or further from the body. Unlike straight-line path clusters, original paths that pass by the mouth, such as transferring 

 

Fig 3.10 –   Relative similarity between hand orientation distributions across clusters and reference frames. Reference 

frames are indicated by G, T, and F, for global, torso, and forearm respectively. Cluster indices 1-5 refer to 

clusters in-front-low, in-front-mid, overhead, mouth/axilla, and hand-by-side and pocket, respectively. 
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the box from the bottom to the middle shelf and transferring the suitcase, clustered with drinking and eating motion 

segments. Original-path clusters also grouped reach-overhead with transferring a box task. These observations are 

largely impacted by a significant overlap that is not present when considering the straight-line path. This suggests that 

ADL tasks are not as distinguishable as they appear and that finer task segmentation could be more appropriate, for 

example, by splitting a transferring motion around the mid-point when the object is closest to the body. 

Although many tasks included an object that was centered and placed in front of the subject, the end-point 

locations of the hand were primarily situated to one side of the body. This suggests that reaching motions were 

coordinated with the motion of the torso such that the arm did not move directly in front of the body; this was even 

the case for the door opening task when the hand was expected to come across the body when reaching for the door 

handle. An example of this can additionally be seen in Figure 3.5. Trajectory plots further verified this observation by 

demonstrating that the paths seldom traversed in front of the torso. Although it may seem trivial, many experiments 

and evaluations have consistently centered the testing platforms with respect to the center of the subjects’ bodies. If 

we accept that in the body reference frame the arm indeed predominately appears to reach to one side, then results of 

those tests fail to account for the significance of body compensation due to the torso and potentially misevaluate upper-

limb prosthesis or rehabilitation outcomes. 

When evaluating the quality scores, we observe that end-point location clustering performs worse than path 

clustering for every number of clusters. This could be due to trajectories having more degrees of freedom than 

individual points in Cartesian space, and therefore contain sparser data. This is consistent with the original-path 

clustering also outperforming the generated straight-line paths at every number of clusters. Additionally, straight-line 

paths fail to capture characteristic hand motions and could therefore be the reason for its lower clustering quality. We 

also observe that path trajectories are more uniform between individuals and repetitions than end-point locations alone. 

Differences between methods are generally negligible for a few number of clusters, and selection of the representation 

is therefore highly application dependent. I proceeded with analyzing the hand orientations within the end-point 

location clusters as they generalize to either of the trajectory representations while enabling an intuitive control 

interface as is discussed below. 

A semi-autonomous control application of this work would enable users to operate multiple DOF without the 

associated increase in cognitive burden. For example, a 7 DOF (shoulder-elbow-wrist) prosthetic device could be first 

controlled by selecting one of the 5 desired locations followed by a selection of hand orientations; automatically 
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selected when there is one associated orientation. Switching from one location to another or moving within the same 

location would then correspond to which trajectories are available; e.g. starting with hand-by-side, there are 3 

possibilities, reach-to-front, reach-overhead, and reach-pocket. This particular implementation could take advantage 

of already existing myoelectric interfaces on the market and simultaneously operate multiple DOF rather than just one 

at a time. With capable location sensing, a prosthetic wrist device could likewise reorient itself from one 3 DOF hand 

orientation directly to another by providing users a succinct list of orientations to pick from. The user control process 

could be streamlined for locations that had an orientation dispersion value below 22.5º, such as hand by side/pocket, 

by coupling the location to a single hand orientation. Various other permutations of location and trajectory sequential 

control are possible. 

Relative distances demonstrated that the distribution of hand orientations is more similar across global and torso 

frames than between clusters. While this may not be surprising, this reaffirms the potential interchangeability of the 

two reference frames; an important feature in modelling the world space in mobile robots and prosthetics. One 

application is the implementation of an IMU in a prosthetic device [79] to orient it either with respect to gravity or the 

torso, which may include other hardware considerations. 

While similar, the global and torso reference frames still have certain noteworthy differences that do not make 

them completely interchangeable, so while a robotic arm is generally fixed to a base normal to the ground, a prosthetic 

arm could either be assumed to be on a moving base in some scenarios and not in others. Given that the global reference 

frame places no restrictions on hand orientation, I suspected that it would always have a more dispersed distribution 

than the torso or forearm reference frame, however, the opposite was the case for two clusters. This suggests that the 

distribution of hand orientations of some objects or locations is more consistent in the global reference frame. One 

way to exploit this is to use the more compact reference frame that includes the fewest representative hand orientations 

for different tasks. 

The forearm reference frame orientation distribution is the most compact of the three, and would likely be the 

best control option for transradial amputees looking to use a prosthetic wrist device. Most bins are anatomically 

impossible to reach, and the vast majority of orientations appear to lie within a narrow range along the pronation-

supination axis of rotation; this may explain why the first three location clusters have the same set of representative 

hand orientations. One implementation may include interpolating the current orientation and the desired final 

orientation, rotating as the hand traverses its trajectory. However, it might not be appropriate in prosthetic devices for 
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transhumeral and shoulder disarticulate amputees since positioning of the end effector would highly depend on device 

capability. Specifically, setting the position and orientation of the forearm would have to be a precursor to positioning 

of the hand, which is not a challenge for transradial devices. Additionally, since the global and torso reference frame 

distributions are generalizable, these are likely to be more useful for non-anthropomorphic robotic arms that may have 

an unconventional forearm or forearm control [80]. For example, while reaching for an object, it may be necessary for 

a robotic arm to position the forearm in extreme orientations in order to avoid an obstacle, or in the case of hyper-

redundant manipulators that lack a well-defined forearm altogether. 

In wheelchair-mounted robotic arm applications the cluster locations will most likely need to be dynamically 

adaptive to account for the variance, which could come in the form of a second input or computer vision. While the 

choice of references frames was based on the perspective of a prosthesis user, various other custom reference frame 

considerations [81] should be made depending on the application. The results are also dependent on the selected task 

list, which by no means is exhaustive, hence the framework could be extended to other applications by including 

relevant tasks. 
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4 EFFICACY OF VIRTUAL REALITY 

TESTING 

In order to test the proposed prosthesis control methods, access to 3 DOF wrist, 4 DOF elbow-wrist, and 7 DOF 

shoulder-elbow-wrist prosthetic devices was needed. Due to the unavailability of commercial devices, virtual reality 

(VR) was used instead, avoiding the need to develop physical devices in-lab. In this chapter I discuss the VR platform 

set up and its efficacy through a series of pilot studies. Here, 3 DOF prototypical wrist motions identified in Chapter 

2 are implemented to demonstrate the efficacy of both the control method as well the ability of the VR system and 

controller to accurately represent the outcomes of real device testing. I also aim to address the following questions 

regarding the feasibility of the use of the control method in prosthetic devices: do prototypical motions help reduce 

the time it takes to align the hand, do they mitigate body compensation, and do users have a preference. 

4.1 Background 

Myoelectric prostheses commonly use a standard 2-site surface electromyography (sEMG) control interface in 

which users drive the hand to open or close with their flexion or extension muscles [18]. Switching between grasp 

types occurs during co-contracting where both sEMG signals fire simultaneously. Co-contraction can also be 

programmed to switch between hand closure and wrist rotation in devices that include a wrist. I take advantage of this 

architecture and propose that instead of joints, users control whole motions that consist of multiple DOF. 

The tested control method in this chapter takes advantage of prototypical motions of the wrist, namely trajectory 

control. In sequential control, users select controllable DOF and then rotate around it one at a time. In trajectory 

control, each prototypical motion is implemented as a controllable mode in a sequential control manner: users select 

a desired motion trajectories and then are able to move forward and back along the coordinated angle path, embedded 

in a single dimension. The primary difference between the two controls is that because prototypical motions are 

independent of one another and correspond to specific tasks, unlike in sequential control, they do not “stack”. This 

means that switching between modes resets the joint angles to a position on the next mode. 
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VR and has been embraced across wide range of applications [82], including within the prosthesis community, 

as a low-cost method to iterate and test new device designs and controls that extend to a real world setting [83], [84]. 

Given that complex prosthetic devices that we are testing are not are not presently on the market, implementing a 

protocol in VR avoids needing to build them. Other applications of VR include training to use a prosthesis [85], fitting 

[23], and rehabilitation [86], [87]. This suggests that observations regarding prosthesis use made in VR would likely 

reflect those made in the real world as well. Virtual reality environment (VRE) has also been demonstrated to be 

convincing enough to treat phantom limb pain [88], [89], further reassuring its use in testing our proposed controls. 

4.2 Pilot Study with Trajectory Control 

It is hypothesized that most of the range of motion a fully articulated prosthetic device goes unused and that 

prototypical motions that are embedded in a single dimension are primarily all that a user would need to complete 

tasks related to ADL. While it may seem that trajectory control is limited in that the motion modes do not stack like 

they do in sequential control, they were designed to span a large set of tasks. Here I describe the set up aimed at 

demonstrating that trajectory control is indeed capable of completing tasks, and potentially outperform sequential 

control on a number of metrics. 

Two participants took part in this initial run of the study (Table 4.1) that lasted approximately 2 hours. These 

were right handed individuals without motion or visual impairments, and were comfortable being immersed in VR. 

Data collected from the experiment was exported and analyzed using MATLAB 2019a. 

 

4.2.1 Virtual Reality Set Up 

The study was designed to provide participants a fully immersive VRE, where they can view a virtual arm in 

place of their own and complete ADL tasks as they would in real life (Figure 4.1). Unity software was used to create 

Table 4.1 – Participant characteristics 

Participant Sex Age Weight (lbs) Height (inches) Arm Length (inches)1 

P1 M 27 135 67.5 27.5 

P2 M 23 160 70 28 

1Measured from the shoulder to the tip of the middle finger 
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the VRE as well as to interface with the inputs streaming from the users. Virtual objects were either designed within 

the Unity environment, created in Maya 3D modeling software, or obtained for free from the web. Object models were 

scaled to the task requirements, while the virtual prosthetic hand, forearm, and humerus models were scaled to the 

average human arm dimensions. Since the focus of testing wrist control is to correctly orient the hand, rather than 

grasping, kinematic and dynamic model interactions were turned off, and the need for the participants to grasp the 

objects was omitted. 

 

4.2.2 Control Inputs 

Motion tracking has been shown to be an effective input to kinematically controlling a hand in VR [90]. This 

study used 12 Vicon Bonita cameras to track the subjects’ hand and forearm, in the case when participants used their 

own hand, and forearm and humerus, for all other testing conditions. In addition to providing participants an immersive 

experience by displaying a virtual arm in place of their own, this also offered them a reference when operating the 

simulated prosthetic device. The respective reflective marker clusters are shown in Figure 4.2. Additional markers 

that were placed around the subject’s humerus, torso, and pelvis were not streamed into Unity, but were included for 

body compensation analysis. The reflective marker locations include bony landmarks (seen in Figure 4.1) that were 

used to calculate the joint coordinate reference frames according to [42]. 

 

Fig 4.1 –  Subject performing a cup pouring task, seen wearing the HMD and is using the controller to operate the 

virtual wrist. In the top right a semi-transparent red cup is visible indicating the desired cup orientation 

goal, which turns green (bottom right) once the cup reaches the target. 
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Participants used a Vive controller, rather than an sEMG input, to operate their simulated prosthetic devices, 

providing the benefit of an intuitive interface that required virtually no training (Figure 4.3). This streamlined the 

training process for able bodied participants who might not be as familiar with an sEMG interface, thereby emulating 

experienced powered device users. Specifically, the standard contralateral two-site sEMG control is imitated by using 

two antagonistic buttons on the Vive controller, one near the index and one near the thumb. If trajectory control 

outperforms other types of control using the Vive controller, then I claim that this difference in control performance 

would appear when using sEMG as well. This claim is tested with a pilot and described in more detail in section 4.4. 

Head tracking was also performed through HTC’s head mounted display (HMD). Calibration between the two 

systems, Unity and Vicon tracking, was performed by matching the Vive controller as it was tracked by the HTC 

cameras and Vicon. 

 

Fig 4.2 –   (a) Marker arrangement for the positive control; participants’ arms were unconstrained. Hand markers were 

used to control the location and orientation of the virtual hand while the rest of the markers were exported 

for further body motion analysis. (b) Braced condition used for the other four control modes. Forearm 

markers were used to control the virtual forearm, while the virtual hand was either fixed in place (negative 

control), or operated using the hand held Vive controller. Wooden piece was inserted into the brace to 

ensure a fixed flexion-extension position. The elbow brace hinge was given full range of motion. 
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4.2.3 Control Modes 

Each participant began the experiment by first completing the tasks using a positive and a negative control. The 

positive control allowed users to use their own unencumbered hand to complete the tasks; this served as a performance 

benchmark that participants aspired to achieve when using the prostheses. With the aid of a marker cluster placed on 

the back of the hand, participants saw the virtual hand closely match the position and orientation of their real hand. I 

also refer to this mode as natural control. 

For the other four modes, the wrist was fixed in place using a custom made wrist brace (Figure 4.2b), similar to 

the one used in [4]. The orthopedic wrist brace (DonJoy ComfrotFORM Wrist Support Brace – DJO Global, Vista 

CA, USA) was combined with an elbow brace (Orthomen ROM Elbow Brace) using Velcro straps and a bolt. The 

elbow brace was given full range of motion and served to limit the pronation-supination of the wrist without hindering 

elbow motion. 

A negative control was included in the experiment, a condition in which the virtual prosthesis lacked wrist 

mobility, and was also referred to as the no-wrist control condition. For this mode, subjects had to complete tasks 

without the ability to rotate their wrist and had to compensate for it using their residual limb and torso. Although task 

 

Fig 4.3 –   Standard HTC Vive Controller. Vicon reflective markers were placed in a known arrangement around the 

controller’s head and were used to calibrate the virtual space between Vicon and HTC. 
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performance was closely monitored by the experimenters, subjects were additionally instructed to indicate if a task 

could not be completed. 

Sequential control aimed to represent current myoelectric technologies on the market where users have access to 

only two control inputs. The Vive controller’s (Figure 4.3) trigger and trackpad button took the place of the two-site 

contralateral sEMG that are often placed on amputees’ forearm; in the case of powered prosthetic devices. On the 

controller, the trigger drove the wrist forward along a specified direction and the trackpad button drove it backward. 

A simultaneous press of both inputs switched the DOF along which the wrist rotated. When switching between DOF, 

the order of rotations cycled from pronation-supination, flexion-extension, to radial-ulnar deviation. This mode 

switching scheme is often used to switch between grasps in powered prostheses. 

Simultaneous control granted individuals access to all control inputs at the same time by leveraging all the buttons 

that were available on the Vive controller. Similar to the positive control, this mode represented the state of the art 

and a theoretical condition where users have 6 control inputs available to them. The Vive controller’s trackpad is a 

single button with location sensing in two dimensions, which I took advantage of by offering 2 DOF control of the 

wrist; pressing the trackpad while the thumb is at the top, bottom, left, and right of the trackpad drove the hand to 

extend, flex, radially deviate, and ulnarly deviate, respectively. Pressing the trackpad in the intermediate space, say 

top left corner, would simultaneously rotate the wrist in both directions, in this case simultaneously extend and radially 

deviate. The trigger and grip button were used to supinate and pronate, respectively, and could be operated 

concurrently with the other 2 DOF. 

Finally, I wanted participants to test the proposed trajectory control. In this mode participants only had access to 

two inputs, trigger and trackpad, similar to sequential control. In total there were five wrist prototypical motions to 

pick from, directly implemented from Chapter 2; all rotate the hand along all 3 DOF simultaneously and had a 

predefined start and end point beyond which the wrist would not continue to rotate. Although all 3 DOF are used in 

each prototypical motion, they can be generally described as follows: supination/ulnar deviation, flexion/ulnar 

deviation, supination/flexion, supination/extension, and extension/ulnar deviation (Figure 4.4). The proposed version 

of trajectory control would cycle between these the motions when both buttons (trigger and trackpad) were pressed, 

however, since only one motion is needed for each task, mode switching did not occur. At the beginning of each task 

a prototypical motion was preselected, and participants would only have to drive the wrist along a single trajectory to 

achieve the desired goal using either the trigger or the trackpad, depending at which end of the trajectory the task 
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began. Each task had a single corresponding motion (Table 4.2) that would begin at either end of the trajectory, which 

was also predefined. These tasks can be found in Table 2.1 as subtasks. Whichever orientation the wrist began at in 

this mode, would also be the start orientation for the sequential and simultaneous control modes. 

 

 

Fig 4.4 –  Each of the five wrist trajectory modes are depicted. First row represents the beginning and end (left to 

right) of each wrist trajectory respectively. Second row displays the actual 3 DOF angle trajectory. The 

order of rotations is supination-pronation, flexion-extension, and ulnar-radial deviation. Positive values 

correspond to supination, flexion, and ulnar deviation. Motion progress is scaled from 0 to 1, or 100% of 

the motion. 
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4.2.4 Study Procedure 

The role of an upper limb prosthesis is primarily to restore independent living by enabling amputees perform 

ADL tasks. The protocol therefore included a set of tasks inspired by work done in evaluating upper-limb prosthesis 

performance [39]. The virtual set up of the environment and objects are created to scale and are set up according to 

the dimensions described in Figure 2.2. I selected a set of 10 ADL tasks that require the use of only the right hand, 

cover a variety of locations, and include both reaching motion and object manipulation: i) reach to cup, ii) drink from 

cup, iii) reach to briefcase, iv) transfer briefcase, v) reach overhead, vi) bring down can, vii) reach to fork, viii) use 

fork, ix) eat from fork, and x) pour. These were also selected in such a way as to span each of the wrist’s prototypical 

motions, such that each motion was used at least once. 

During reaching tasks participants were asked to begin with their hands relaxed by their side, and proceed with 

matching the orientation and location of the end effector, indicated with a semi-transparent red hand model (Figure 

4.5). Each task included a goal and tolerance for both the location and orientation; generally within 2 centimeters and 

10°, inspired by previous pilot studies that I conducted. As such, task goals were defined agnostic to the control 

methodology and did not specifically align with any of the prototypical motions, and therefore it was possible that a 

Table 4.2 – Task description and corresponding prototypical motions 

Task description Prototypical motion used 

Reach to cup 4: supination-extension 

Drink from cup 2: flexion-ulnar deviation 

Reach to suitcase 5: extension-ulnar deviation 

Transfer suitcase 4: supination-extension 

Reach overhead 4: supination-extension 

Bring can down 2: flexion-ulnar deviation 

Reach to fork 5: extension-ulnar deviation 

Use fork 4: supination-extension 

Eat from fork 1: supination-ulnar deviation 

Pour from cup 3: supination-flexion 
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given motion was insufficient and participants would need to use some amount of body compensation to ultimately 

reach the desired goal. 

 

Therefore, after the reaching task, objects were automatically placed within the hand akin to how they would be 

grasped when using a natural hand. Participants were then asked to match the object location and orientation in a 

similar way, starting from where they “grasped” it. For sitting tasks, which included fork use and pouring tasks, 

participants were asked to place the hand in a relaxed position on the table prior to reaching, which was placed in front 

of them matching the virtual table’s location and height. When using a control mode, the hand was reset to match the 

first frame of the trajectory control mode applicable to that task. Close attention was paid to how participants 

accomplished the task, such that the task was not deemed complete when participants unintentionally passed the hand 

through the goal, estimated based on how long the participant maintained the goal pose. Therefore participants were 

asked to repeat a task in which they could not maintain the goal pose for more than 1 second. 

Tasks were performed in a semi-randomized order, with same-object reaching and manipulation occurring 

directly after one another. Each set of 10 tasks were performed in the following order: natural, no-wrist, sequential, 

simultaneous, and trajectory control. 

 

Fig 4.5 –   Example of a reach to a cup task. (a) Semi-transparent hand indicates the desired goal position of the user-

controller hand, which dims as the hand approaches it. A red arrow is included next to the hand to assist 

with visualizing the current hand orientation. (b) Task completion occurs when the hand is within the 

Euclidean tolerance and the corresponding orientation arrow is within the tolerance cone. 
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In order to mitigate training effects when faced with an unfamiliar environment or control interface, participants 

were given time to practice controlling the wrist prior to each task. Training ended when participants felt comfortable 

and had a strategy as to how they were going to accomplish the task, such that they were not hesitating when recording 

started. For trajectory control, a mode was preselected during training and placed at either end of the trajectory, 

according to the task requirements. During recording users would simply need to move along it to achieve the desired 

orientation. 

4.2.5 Data Analysis 

Several metrics were considered in assessing whether there is a benefit to trajectory control. These include 

evaluating the range of motion (ROM) and Cartesian trajectory length of each joint as an indicator of natural 

movement, and were calculated for each control mode and task condition.  Arm joints and torso coordinate systems 

were calculated according to [42]. Torso angles were calculated with respect to the pelvis and are described in the 

following order: torso flexion-extension (leaning forward or back), turning left-right (twisting), and leaning left-right, 

where extension, turning left, and leaning right are positive directions. Cartesian trajectory length, L, of each body 

segment was calculated as a sum of Euclidean distances between sampled points, 

 𝐿 = ∑ √(𝑋𝑖 − 𝑋𝑖+1)2 + (𝑌𝑖 − 𝑌𝑖+1)2 + (𝑍𝑖 − 𝑍𝑖+1)2

𝑗−1

𝑖=1

 

(7) 

where X, Y, and Z correspond to the three Cartesian components of a trajectory in space and j is the total number of 

sample points in that trial. 

The start of the trial manually detected by the researchers when participants began to move, while the end was 

automatically determined by the software when the goal was reached. Time to accomplish the task was recorded for 

each task condition and would point to the simplicity of operating each control. 

At the end of the experiment participants were asked to fill out a survey that included questions about their 

preferences and whether the control modes were easy to learn, intuitive, and appeared/felt natural. The latter is referred 

to as movement cosmesis. 
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4.3 Results 

The time it took each participant to perform the set of tasks was recorded, and can be seen in Figure 4.6. An 

aggregate time was assessed by summing across tasks for each control mode. The positive (natural) control was 

consistently the shortest for both participants, while sequential control took the longest. Of the three wrist controls, 

trajectory control was the fastest for both participants. 

 

Range of motion of each joint angle was assessed to evaluate body compensation under different conditions and 

control modes (refer to Figure 4.7 for the summary data, and Figure 4.8 for the individual results). The negative control 

(no-wrist condition) generally lead to larger torso and shoulder ranges of motion. While humeral elevation (Shoulder2 

in the figures) was the lowest for trajectory control, other joints were higher. However, as a whole, results indicate 

very similar performance between trajectory control and the sequential and simultaneous controls. Additionally, 

negative control (“No Wrist” in the figures) had the highest range of motion for the torso angles and humeral elevation, 

consistent with expectation. Positive control (“Natural” in the figures) generally sustained the largest wrist angles 

range of motion, which likely contributed to the lowest torso and shoulder ranges. 

 

Fig 4.6 –   Time each subject took to perform the tasks using the five control modes. Each column represents a control 

mode and is broken up by individual task. 
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Cartesian trajectory length of each joint is summarized in Figure 4.9, averaged across both participants; displayed 

as a heat map. Each joint angle is normalized, from smallest to largest, to distinguish control mode performance. Total 

trajectory length is calculated by summing the lengths for each task while weighing them all equally; calculated as the 

sum of normalized lengths. Summing the unnormalized Cartesian lengths would result in a few tasks biasing the 

 

Fig 4.7 –   Average range of motion (ROM) results, for each condition across both participants, is displayed as a heat 

map, normalized for each column by the positive control (natural condition). Variable ρ represents the 

range of motion of the positive control. Joint angles are on the horizontal axis while control conditions are 

on the vertical axis. 

 

Fig 4.8 –  Range of motion (ROM) for each joint angle for each control mode and task is displayed, displayed as a 

heat map scaled to the largest angle (in radians). The first row corresponds to data obtained from the first 

subject, the second row corresponds to the second subjects, and the third row represents the average. Note 

that the wrist angles under the negative control (no wrist) condition is consistently at zero, given that the 

wrist was fixed. 
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control mode performance. Positive and negative control dominated the two ends of the spectrum, while it was difficult 

to distinguish between the performances of the other three wrist controls. 

 

After each experiment session subjects had the opportunity to give feedback by ranking various control qualities 

on a scale from 1 to 5 (Table 4.3). Both subjects ranked the positive control highest for training, intuition, movement 

cosmesis, and overall preference (full score of 5). Negative control received lowest marks for looking natural, and 

overall preference (1 or 2), however participants disagreed on whether training was easy or intuitive; average score of 

3. Out of the three controllable wrist strategies, sequential performed the worst, while the trajectory control slightly 

outperformed simultaneous. 

 

 

Fig 4.9 –  Cartesian trajectory length for each joint across each task and control condition. Vertical columns on the 

right summarize the results for each control condition. Columns are scaled independently from the smallest 

value (generally the Natural condition, positive control), to the largest value (generally the No Wrist 

condition, negative control). 

Table 4.3 – Survey results: mean score 

 Sequential Simultaneous Trajectory No Wrist Natural 

Training was easy 4 4 4.5 3.5 5 

Intuitive 1 4 4.5 3 5 

Appeared natural 1.5 2.5 4 1.5 5 

Overall preference 2 4* 4* 1 5 

*One participant ranked one of the modes higher than the other; on average they received the same score. 
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4.4 Pilot Study with sEMG 

To demonstrate that the results obtained using an HTC Vive controller are relevant in myoelectric devices, the 

above set up and controls were piloted using an sEMG interface as well. The virtual wrist device was controlled using 

a two-site surface sEMG and tested on two tasks with two prototypical motions. The results reaffirmed the previous 

observations; prototypical motions were more intuitive to use and appeared more natural without inducing further 

body compensation when compared to sequential control. 

4.4.1 Control Input 

To control the virtual hand, the participant’s forearm was outfitted with two sEMG sensors (MyoWareTM Muscle 

Sensor AT-04-001), placed on the flexor and extensor muscle groups of the forearm under the elbow brace (see Figure 

4.10), connected to an Arduino Uno. Sensor readings were translated to either on or off according to a calibrated 

threshold value. This corresponded to the trigger and thumb pad joystick inputs. 

4.4.2 Procedure 

In this pilot study, one healthy right-handed participant (male, age 28) performed two tasks related to ADL in VR 

by attempting to align the end effector with the desired goal. The subject did not have any visual or motion impairment 

and was comfortable using VR. Tasks included in this pilot study are described in more detail in Table 4.4. Because 

each prototypical motion corresponded to a specific task, they were included in the table for reference. Only two tasks 

were tested in this pilot, therefore only trajectories (4) and (3) (see Figure 2.7 for detail) were used, for reaching to 

the cup and pouring with the cup, respectively. Prior to each task, the participant was given ample time to practice and 

develop a strategy that they’re comfortable with using during the task recording; the purpose was simulate the 

 

Fig 4.10 – The brace and marker set remained the same form the previous pilot and is based on Figure 4.2b. sEMG 

sensors were placed over the skin around the forearm can be seen underneath the elbow brace. 
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performance likely achieved by an experienced user. For the cup pouring task, the cup object was automatically placed 

within the hand. 

 

4.4.3 Evaluation 

In this brief pilot the participant’s performance was assessed in two ways. Because the goal is to improve 

prosthesis use in the real world, the focus was placed on the time it takes to complete a task and movement cosmesis. 

The participant provided feedback and helped guide our interpretation of his performance. While cognitive effort to 

control the prosthesis was not directly measured, it may be inferred from the time measurements. 

4.4.4 Results 

Recorded wrist joint motion trajectories for each of the trials are displayed in Figure 4.11. Motions were 

segmented according to when the participant’s hand began to move and when the target end effector position and 

orientation, was reached. 

Table 4.4 – sEMG pilot tasks 

Task Task description Corresponding wrist 

trajectory 

Reach to cup Standing, starting with the hand by the 

side, reach to the cup on the table 

(4) supination/extension 

Pour from cup Sitting, transfer the cup from the table 

to the pouring location and orientation 

(3) supination/flexion 

. 
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The participant was able to complete both tasks faster using trajectory control. Sequential control for the cup 

pouring task took significantly longer than when using trajectory control, while the times were much closer for the 

cup reaching task. This is likely because the task required switching between the different joint angles, which can be 

challenging, or even confusing, for the user. The cup reaching task did not require switching between the different 

DOF, and supination alone was sufficient. 

Wrist motions appeared more natural under trajectory control. This is largely due to the lack of simultaneous 

access to all 3 DOF of the wrist during sequential control, as is evident in Figure 4.10. Without haptic feedback, the 

user appeared to be looking down at their simulated device. This was exacerbated when multiple mode switching was 

required, such as for the cup pouring task with sequential control. Trajectory control for both tasks did not require 

mode switching, since a single mode, corresponding to the respective task, was sufficient. 

The results obtained in this pilot largely overlap with those found using the HTC Vive controller. This suggests 

that observations made with controller inputs other than sEMG can be insightful. In particular trajectory appeared to 

outperform sequential control on a number of criteria. 

4.5 Discussion 

The performance of a novel wrist prosthesis control methodology, namely trajectory control, was assessed by 

comparing to alternative methods. Assessments included evaluating body compensation and cognitive load that users 

inevitably experience when faced with complex orienting tasks. None of the participants reported an issue with 

 

Fig 4.11 –  The 3 DOF wrist joint angle trajectories are displayed for each trial. θ1, θ2, and θ3 correspond to pronation, 

flexion, and ulnar deviation respectively. The left two plots correspond to the cup pouring task under the 

two different control strategies, sequential and trajectory control, while the right two images correspond 

to the cup reaching task. Wrist rotation did not necessarily begin when the hand started to move. 
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achieving the end effector goal location and orientation, and felt that the tolerances were fair, even when struggling to 

complete certain tasks using the no-wrist control condition. 

Participants were expected, but not required, to make use of the wrist control modes to assist them in completing 

the tasks. However, the three participants consistently elected to use wrist functionality in every task with every DOF 

at some point being used throughout the experiment. On a preference level, this marks the importance of a wrist 

prosthesis.  

During the sEMG pilot, when using sequential control, the participant generally relied on fewer DOF than were 

available. This was likely the easiest way to control the wrist without having to repetitively switch between DOF. This 

showcases the benefits of trajectory control whereby all 3-DOF of the wrist are at use while maintaining a simple and 

intuitive control strategy. 

Participants did not use simultaneous control as expected, and largely operated the DOF sequentially. This is 

likely due to the difficulty associated with visualizing the interaction between different DOF and operating them 

simultaneously. However, because switching between modes was not required, task completion was nonetheless 

faster. This contributed to participants identifying this mode as easier to operate. This is consistent with previous 

findings [91]. Although possible, switching was not necessary for trajectory control, since a desired trajectory was 

preselected during training. This has the potential to bias results related to time. However, this was deliberately done 

so that I could demonstrate that orienting the hand using the novel control methodology is feasible, and perhaps 

superior to other control methods when orienting is analyzed in isolation. In order to fully assess trajectory control, a 

more comprehensive task protocol will be used that includes ADL tasks that require switching and grasping, and is 

presented in Chapter 5. 

Trajectory modes were faster compared to alternative control approaches, requiring users to operate a single 

embedded DOF that automatically oriented the wrist close to the desired goal. Given that the five trajectories were 

created using a much larger set of motions, I did not expect the final hand orientation to be exact. However, body 

compensation, measured as ROM and Cartesian path length, was largely comparable to the other controls that had the 

capacity to orient the hand in any desired way. This suggests that the reduced cognitive burden is worth the reduction 

in direct orientation control. One interesting finding was that the no-wrist condition was overall faster for one of the 

subjects. I suspect it was due to the reduced cognitive burden and perhaps due to the simplicity of the orienting strategy. 

Despite that, it had the largest amount of body compensation, appeared unnatural, and was the least preferred by both 
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participants, suggesting that movement cosmesis, or perhaps a reduced amount of physical exertion, is likely more 

important than speed. 

While training time was not quantified, I made a few observations. Training time for the natural and no-wrist 

conditions was unsurprisingly very short, and time was primarily spent trying to simply understand what hand 

positions satisfied the task conditions. Out of the three wrist control conditions, I observed that training time for the 

trajectory control was the fastest, as participants did not have to figure out a sequence of inputs. However, this is only 

the case if a mode is known in advance, as it was in our experiment. The next chapter investigates what happens when 

mode switching is required, as it will be in the real world where multiple trajectory sequences are used to complete a 

series of tasks, and I suspect that training time will increase and participants will have to focus on memorizing which 

modes are useful to which tasks. 

Preliminary results demonstrate the ability of the trajectories to effectively carry out the tasks they are supposed 

to represent, by demonstrating that participants were able to complete all the tasks without major body compensation 

motions. This suggests that the prototypical motions could be practical in everyday use. To further validate their use, 

the test protocol would need to expand to tasks beyond the ones that the motions constitute. It might be the case that 

the trajectories do not fully generalize and additional modes or fine tuning of the hand orientation will be required. 

Grasping, commonly the sole mode in powered transradial prosthetic devices, was also omitted as the focus was 

primarily on positioning the hand, but will be included in our next experiment described in Chapter 5 to assess whether 

the additional cognitive burden dissuade users from engaging with wrist control. 

4.6 Conclusion 

In this chapter the benefits of a novel wrist control are highlighted, based on 3 DOF trajectories, in completing 

daily tasks in VR. Additionally, the pilot studies have successfully validated the use of VR and have informed 

improvements that are included in Chapter 5. A vast reduction in cognitive burden associated with operating a 3 DOF 

wrist device was observed while maintaining the benefits of a fully articulated wrist. Although participants did not 

have full control over the orientation of the hand, the much simplified trajectory control was nonetheless comparable 

with alternative approaches when evaluating time to complete the tasks and body compensation. Prototypical motions 

appeared to generalize well to the tasks, without requiring the user to excessively compensate with their residual limb 
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or torso. These preliminary findings motivate the recruitment of more subjects and a larger investigation into wrist 

trajectory control as well as the development of a physical 3 DOF wrist device. 

Because rejection rates appear to be higher for more proximal levels of amputation [92], I believe that the 

application of this work will be even more valuable to elbow-wrist, and shoulder-elbow-wrist prosthetic devices [93]. 

I therefore expand the VR platform to address these in Chapter 5 using the additional prototypical motions identified 

in Chapter 2. 
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5 EXPERIMENT IN VIRTUAL 

REALITY 

The next step in testing prototypical motions as a novel prosthesis control method is to implement a more 

comprehensive test. The pilot studies, described in detail in the previous chapter, indicated that trajectory control was 

superior to both sequential and simultaneous control on a number of criteria, however, testing was limited to a 3 DOF 

device, subtasks were not strung together, and grasping was not required. In this work I make use of VR and 

participants with unaffected limbs to test whether leveraging learned motions to control 3, 4, and 7 DOF devices 

outperforms alternative control approaches, while avoiding having to build and implement the physical device 

hardware. I address the following questions regarding trajectory control use in a prosthetic device: does it reduce the 

time it takes to position and orient the hand, does it mitigate body compensation, and do users have a preference. By 

exhibiting controls’ efficacy in VR, I hope to provide a foundation for the development of physical complex prosthetic 

devices in the future. More specifically, I look to demonstrate trajectory control as a feasible control method to 

position and orient the end-effector of various prosthetic devices. For a full description of how the prototypical motions 

were obtained I direct the reader to Chapter 2. 

5.1 Experiment Protocol 

Several changes were made to the VR set up to account for the 4 DOF and 7 DOF devices as well as address the 

shortcomings of the previous iteration. Primary changes include the addition of virtual body segments for participants 

to use as a reference when operating different devices. This also required the implementation of a new control input 

since the HTC Vive controller was limited to 3 paired inputs, accounting for at most 3 DOF simultaneous control. 

Finally, changes to the protocol included a more comprehensive list of tasks that required grasping and the sequential 

completion of subtasks. 

In this updated version of the VR protocol, twelve right-handed participants (ages 18-53) completed the study 

over one session, lasting from 6 to 8 hours. In addition to lunch, participants were encouraged to take as many breaks 

as they needed. Data processing and analysis was performed in MATLAB 2021a. 
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5.1.1 Virtual Reality Environment 

Virtual objects related to the expanded task list were added as well as a virtual computer monitor was designed 

to help participants monitor their prosthesis use in VRE (Figure 5.1). This was done to mimic what a potential real-

world use might look like, where prosthesis users may have a tablet on hand as an aid during training or general use. 

The virtual computer monitor displayed the mode and controls that the device was currently in and the control inputs 

coming from the user. It was always placed in front of the user on the virtual table. Additional visual feedback was 

included in the form of two posters, placed on the left and right walls of the virtual room listing the modes for the 

participants to reference (Figure 5.2). 

 

All segments of the prosthesis (humerus, forearm, and hand) were scaled to the average human arm dimensions. 

Although included in this iteration of the experiment, given that grasping is nonetheless not the focus of this work, in-

hand object kinematics and dynamics were not considered; successful initiation of a grasp (and likewise release) 

 

Fig 5.1 –   Four tasks are highlighted, starting at the top left going clockwise: kettle, screw, cook, and fork use. The 

kettle, screw, and cooking tasks were included in the protocol to test the ADL generalizability of 

trajectory controls. Poster listing the prototypical motions for trajectory control can be seen in the top left 

panel. Poster listing the order of joints can be seen in the bottom left panel. 
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resulted in the object to automatically connect to the palm of the end effector as if they had grasped it using a natural 

hand. 

5.1.2 Control Input 

To ensure that the prosthesis control inputs remained consistent across prosthetic devices and control conditions, 

a modular control board was implemented: MIDI audio interface, K-Mix (Keith McMillen Instruments, Berkeley CA, 

USA)  (Figure 5.2). To imitate sEMG inputs found in myoelectric devices, slider intensity corresponded to a velocity 

input. For each slider, one inch in the middle of each slider was dedicated to a “dead zone”, where velocity input 

remained at zero, and whose value gradually increased or decreased towards the ends. This was done so that 

participants could rest their finger on the slider without inducing motion; a particularly important feature for 

simultaneous control when multiple sliders were being used. A digital keyboard was selected over an analog due to 

the ability to program a “zeroing” of the sliders when a finger was no longer making contact. The keyboard is set on 

the torso pad worn by the participants and is meant to be controlled with the left hand for the 3 and 4 DOF device, 

freeing up the right arm to move around. For 7 DOF device, both hands are free to control the device since all the arm 

joints are controlled with the keyboard (Figure 5.3). 
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Fig 5.2 –  K-Mix MIDI keyboard. This keyboard was converted to a prosthesis controller by programming the 

buttons and sliders. (a) This slider was used in conjunction with any one of the buttons highlighted in (b) 

for both sequential and trajectory control. The right side of the slider was the “forward” direction and the 

left was “backward”, while buttons were used as toggles between grasping or for switching between joints 

or learned motions. (c) These sliders were dedicated for sequential control, with each corresponding to a 

different arm joint. For sequential control, slider (a) was used for grasping. All other buttons and sliders 

were not used. 
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(a)  

(b)      

Fig 5.3 –  (a) Each component of the input is described. (b) Left panel: highlighted marker clusters correspond to 

each body segment. Pelvis markers are seen as a small cluster near the forearm. Marker arrangement 

tracking the hand were used using the natural control condition, and ignored for the no-wrist control 

condition. The elbow brace was allowed full range of motion. Middle panel: the controller was operated 

using the left hand. Forearm markers were tracked for 3 DOF control but ignored for 4 DOF control where 

only the humerus markers was needed. The elbow brace could be allowed full range of motion in both 

cases, though all participants found it helpful to lock the brace into a single position for the 4 DOF 

controls. Right panel: since, the participant operated a 7 DOF virtual arm, tracking the humerus was no 

longer needed. Torso and pelvis markers are present but not highlighted in the image. 
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For easy donning, markers were placed on wearables. To track the hand markers were placed on a small pad with 

elastic straps. An orthopedic elbow brace (Orthomen ROM Elbow Brace, Foothill Ranch CA, USA) was used to track 

the forearm and humerus. A modified lacrosse pad (Gait Gunnar Lacrosse Shoulder Pads) was used to track the torso. 

Finally, a nylon tactical belt with a plastic buckle was used for pelvis tracking. Marker clusters for the torso and the 

pelvis were placed on the dorsal side to avoid optical occlusions (Figure 5.3). 

Certain segments were left untracked when a virtual prosthetic device was being used, for example, the hand and 

forearm were not tracked when the participants operated the elbow-wrist prosthetic device; the input came directly 

from the controller. 

5.1.3 Control Modes 

The control modes used in Chapter 4 are included in the expanded version as well, and include several changes. 

For both the natural and no-wrist trials only, grasping was instantaneously initiated when the hand reached the target 

location and orientation. Negative controls in which the virtual prosthesis lacked an elbow or a shoulder control were 

not included due to the inability to perform the majority of tasks. 

In sequential control, only one slider was in use, while switching was relegated to a button, mimicking the mode 

switching in myoelectric devices. While this set up seems distinct to the two-site sEMG input in myoelectric devices, 

functionally they are the same: each half of the slider rotates a joint either forward or backward. A single button press 

toggled the control mode down the joint list, a double tap toggled the mode up the list, and a prolonged 1 second press 

of the button toggled grasping (or releasing). Switching between controllable joints cycles in the following order: i) 

shoulder plane of elevation, ii) elevation, iii) shoulder internal rotation, iv) elbow flexion-extension, v) wrist pronation-

supination, vi) flexion-extension, and vii) radial-ulnar deviation [42]. Only the relevant joints are included for the 3 

and 4 DOF devices. This sequence was listed on a poster in the VRE that the participants could reference at any time 

(Figure 5.1). 

One of the main reasons for moving away from the Vive controller was its limited number of inputs. To 

simultaneously control a virtual 7 DOF arm and grasping functionality, 2×8 inputs were needed, impractical with 

either the Vive controller or standard sEMG. Multiple sliders were made available on the MIDI keyboard and button 

functionality was no longer needed. Each slider corresponded to a single DOF, and participants could decide whether 
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they wanted to operate them using several fingers concurrently or one at a time. Much like each of the controllable 

joints, grasping and releasing was also performed using a dedicated slider. 

In trajectory control participants had the same interface in sequential control: one slider was used to move forward 

and backward along a prototypical arm motion, and a button to toggle between the modes and initiate a grasp. 

Implementing the learned motions from Figure 2.10, 2.12, and 2.14, there were 5, 11, and 11 options for the 3, 4, and 

7 DOF devices, respectively; examples of what these looked like VR are seen in Figure 5.4. Each motion was listed 

on a poster in the VRE accompanied by a list of tasks from which the motions were extracted from (Figure 5.1), and 

would likely be the best candidates to help users complete those tasks. Prior to each task, participants had the ability 

to try out the motion trajectories and decide with which mode they ultimately would like to begin. 

 

5.1.4 Study Procedure 

In total, 12 ADL tasks were selected that required the use of only the right arm, covered a variety of locations, 

and included both reaching motion and object manipulation (Table 5.1); these were also chosen to span as many of 

the learned motion modes in trajectory control as possible. The VRE and objects were created to scale (Figure 5.1), 

and 9 of the 12 tasks were set up according to dimensions described in Figure 2.3; 3 tasks were added to the protocol 

  

Fig 5.4 – An example of a prototypical motion is shown for each device. In the 4 DOF case, the humerus is stationary. 
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to test trajectories against tasks that were not included in generating them. Therefore, there is not necessarily a 

trajectory mode designed for every task or target condition. Tasks included different number of subtasks, totaling to 

43 subtasks, composed of 30 reaches and transfers and 13 grasps and releases. Each set of 12 blocks was completed 

by each control mode in the order depicted in Figure 5.5. 

 

Table 5.1 – Protocol tasks 

standing tasksa   

axilla (1) reach axilla 

briefcase (1) reach briefcase (2) grab (3) transfer to table 

cell phone (1) bring cell phone to ear 

cook 

(1) reach pan handle (2) grab (3) transfer pan to stove (4) release (5) reach knob (6) grab 

(7) turn knob 90 degrees counterclockwise 

cup drink (1) reach cup (2) grab (3) bring cup to mouth (4) return cup to table 

door knob (1) reach door knob (2) grab (3) turn knob 90 degrees clockwise 

kettle (1) reach kettle handle (2) grab (3) pour into container 

overhead 

(1) reach can on top shelf (2) grab (3) bring to front of body (4) return can to middle shelf 

(5) release 

suitcase (1) reach suitcase (2) grab (3) transfer 

  

sitting tasksa   

cup pour (1) reach cup (2) grab (3) pour into container (4) return to table 

fork (1) reach fork (2) grab (3) stab food (4) bring fork to mouth 

spoon (1) reach spoon (2) grab (3) transfer spoon to bowl (4) scoop (5) bring spoon to mouth 

 
aStanding tasks started and ended with the subjects’ hands by their side while for sitting tasks the hands were to 

start on their laps. 
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Prior to each tasks, participants were to begin with their hands relaxed by their side if standing or on their laps if 

sitting. Each task had to be completed all at once, without breaks between subtasks, and included matching the end 

effector to its target pose. A successful completion of a grasping subtask resulted in the object to automatically be 

attached to the hand, and is followed by a transferring subtask in which the object, rather than the end effector, is 

required to be placed in a new location and orientation starting from where they grasped it. For sequential and 

simultaneous control, the controllable joints were reset to zero prior to the start of a new task. To ensure that 

participants intentionally completed the tasks, the target pose had to be held for one second. 

Several conditions were implemented to ensure that the virtual tasks were representative of a hypothetical real 

device. As in real life, if a cup was tilted beyond 180 degrees during a transferring phase, then the whole task failed; 

this condition is unique to the cup drinking and the cup pouring tasks. Screwing and turning a knob would likewise 

fail if the end effector did not maintain its position while rotating. Finally, tasks were flagged as incomplete if the 

participant was unable to complete a subtask within one minute. 

5.1.5 Data Analysis 

During the experiment the following were captured: position and orientation of the different body segments, 

inputs from the MIDI controller, and task success/failure status. Similar to the pilot study in Chapter 4, the start of the 

trial was manually detected when participants began to move, while the end was automatically determined by the 

 

Fig 5.5 –  The experiment protocol consisted of eleven blocks of testing, corresponding to each control mode and 

device combination (in green). Each block consisted of a randomized order of the twelve tasks. The first 

and second blocks corresponded to natural and no-wrist conditions, respectively, so that participants 

could familiarize themselves with the testing environment and target requirements before attempting to 

use the virtual prostheses. In sets of three blocks, 3, 4, and 7 DOF devices were used, in that order. Each 

set of three blocks corresponded to sequential, simultaneous, and trajectory controls, allocated randomly. 

Training periods were included to familiarize the participants with the body joints. 
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software when the target pose for the final subtask was reached and held for 1 second. A moving average of window 

size 5 was used to smooth the data after large discontinuities were manually removed. 

Several processing steps were taken to ensure interpretable results. According to the shoulder angle definitions 

[35], a discontinuity appears when the humerus is perfectly vertical, aligning the plane of elevation and internal 

rotation axes. Therefore the plane of elevation and internal rotation data was ignored when calculating ROM or 

Cartesian path length when humeral elevation is below 15 degrees. Otherwise, refer to Chapter 4 for details regarding 

ROM and Cartesian path length calculation. 

At the end of the experiment participants were asked to fill out a survey that included questions about their overall 

preference of control methods on a scale of 1 (did not like) to 5 (very much liked). Participants were also asked to 

indicated on a scale of 1 (disagree) to 5 (agree) to the following statements about each control-device combination: 

(a) easy to learn, (b) appeared natural (did the motion resemble a healthy arm), (c) mentally challenging (gauges the 

cognitive burden), and (d) physically challenging (gauges the amount of body compensation). 

Before running statistical comparisons, missing data due to failed tasks was estimated using Multiple Imputation 

method with Monte Carlo Markov Chain (SPSS 2019). Tasks that were not completed by any participants with a given 

device and control condition cannot be imputed and were therefore omitted from the analysis for the other control 

conditions as well. Approximately 7.4% of the distributions being compared did not strictly meet the assumption of 

normality under the Shapiro-Wilk test. The data across all conditions did appear to come from a normal distribution, 

so the analyses proceed. Multivariate analysis of variance (MANOVA) was performed for each device to test if there 

was a significant difference between controls (excluding natural and no wrist conditions). The α-level was adjusted 

to 0.0031 using Bonferroni correction to account for repeated MANOVA calculations; 16 tests in total were made for 

each device. Follow up analysis of variance (ANOVA) tests were performed between pairs of controls. Repeated 

testing was adjusted with Bonferroni correction as well, accounting for tests within each dependent variable category 

(i.e. time, Cartesian path length, and ROM). Because the order of the 3, 4, and 7 DOF devices were not randomized 

in the experiment protocol, quantitative and qualitative assessment comparisons were not made between them but 

within each device category, i.e. the 4 DOF trajectory control was only compared to the other two 4 DOF controls. 
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5.2 Results 

All participants completed the experiment to the best of their ability, though most were not able to complete every 

task with every control mode. Reasons for failing to complete a task included timing out, failing a transferring 

condition, or quitting. Some tasks under certain control conditions were not completed by any participant and included 

reach to axilla and the eating with a spoon tasks using the no-wrist control, reach to axilla task with the 3 DOF 

trajectory control, and cooking with the 7 DOF sequential control. A detailed list of which modes lead to the most 

failed tasks is shown in Figure 5.6. 

 

After accounting for the variability between subjects and tasks, time was found to be significantly different (p < 

0.001, MANOVA) between prosthesis control conditions for both 4 and 7 DOF devices; it was not significant for 3 

DOF devices, with p-value = 0.86. The time it took each participant to complete the entire experiment is displayed in 

Figure 5.6, along with the number of mode switching that occurred when using sequential and trajectory controls and 

the total number of failed tasks. A mean completion time for each test condition was calculated by summing the 

average task times across participants. Because some participants were not able to complete every task, the average 

time it took one participant to complete the tasks was on average shorter than the representative completion time. 

 

Fig 5.6 –   Experiment completion times are displayed per subject and per control. Colored bars all contain the same 

data, while dark bars may contain tasks that other control modes do not include. Each participants’ total 

time spent using each control mode and device is displayed as a dot. ANOVA results are displayed 

between pairs of controls for each device; significance levels were set at p-values of 0.05, 0.01, and 0.001 

after adjusting for repeated testing. Numbers below the three bar charts on the right indicate the number 

of mode switching that occurred and the number of failed tasks, whether per subject or per control. 

Training periods were included to familiarize the participants with the body joints, but omitted in the time 

calculation above. 
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After accounting for the variability between subjects and tasks, Cartesian path length was found to be significantly 

different in the wrist both the 4 DOF (p = 0.002) and 7 DOF (p < 0.001) devices. Representative Cartesian path length 

of each joint center is summarized in Figure 5.7. Similar to the representative completion times, these were calculated 

by summing the average lengths per task for each control condition. Distal joints on average travelled further than 

proximal ones. Thus, differences between control modes increase in the distal joints, an observation that can be seen 

to further increase the more DOF were controlled. For tasks that no participant was able to complete with a given 

condition, that task was removed from the colored bars, as well as the analysis, and included in the black bars in Figure 

5.7. For the 7 DOF device, the black bars in sequential and trajectory controls are nonetheless shorter than the colored 

bar in sequential, pointing to the inefficiency of sequential control. 

 

Significant differences in ROM between control conditions are summarized in Table 5.2: using MANOVA, p-

values are calculated to test the significance of the difference between control methods for each device and joint angle. 

ROM of each joint angle was assessed to evaluate body compensation under different conditions and control modes 

by calculating the average ROM across tasks and participants (Figure 5.8). For the 3 DOF condition results, the 

negative control (no-wrist condition) generally had the largest torso, shoulder, and elbow ROM, while the positive 

control (natural) had the highest wrist ROM and the lowest ROM in the other joints, satisfying the control 

expectations. Significance levels are included, though likely due to the conservative Bonferroni method, significant 

difference between two conditions related to a body joint, rather than a prosthesis joint, were not found. The torso, 

 

Fig 5.7 –   Representative Cartesian path lengths are displayed as colored and dark bars. Colored bars all contain the 

same data, while dark bars may contain tasks that other control modes do not include. Each participants’ 

total Cartesian path length for each control mode and device is displayed as a dot. ANOVA results are 

displayed between pairs of controls for each device; significance levels were set at p-values of 0.05, 0.01, 

and 0.001 after accounting for repeated testing. 
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shoulder, and elbow ROM were generally mixed between the three prosthesis control conditions. While ROM is 

primarily analyzed with respect to body compensation, it can also be used to evaluate device usage as it relates to 

power consumption and motion efficiency. 

 

Table 5.2 – ROM MANOVA p-values 

  Device 

  3 DOF 4 DOF 7 DOF 

torso 

flexion 0.34 0.35 0.03 

lean 0.71 0.22 0.02 

turn 0.30 0.63 0.34 

shoulder 

plane of elevation 0.02 <0.01* 0.01 

elevation 0.55 0.01 <0.01* 

internal rotation 0.34 0.01 0.30 

elbow flexion 0.38 <0.01* 0.45 

wrist 

supination 0.44 0.29 0.04 

flexion 0.17 0.42 0.19 

deviation 0.14 <0.01* 0.03 

Adjusted α-level identified significance when p-values were below 0.0031, denoted with an * 
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After each experiment session subjects had the opportunity to give verbal feedback as well as rank the controls 

on various qualities on a scale from 1 to 5 (Figure 5.9). Between the three prosthesis controls, there appear to be 

several trends that gradually change from 3 to 4 DOF and 4 to 7 DOF devices. For example the preference given to 

trajectory control appear to improve relative to the other modes the more DOF a device had. Note that the scores are 

a reflection of the participants’ perceptions, so survey results may end up being inconsistent with the quantitative 

measures. For example while the trajectory control was perceived less physically challenging in the 7 DOF than the 4 

DOF device, ROM results indicate otherwise. 

 

Fig 5.8 –   Representative ROM values averaged across all tasks are displayed. Each participants’ average ROM for 

each control mode and device is displayed as a dot. ANOVA results are displayed between pairs of 

controls for each device; significance levels were set at p-values of 0.05, 0.01, and 0.001 after accounting 

for repeated testing. Significance bars were omitted for the wrist joint angles in the no wrist conditions. 
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5.3 Discussion 

Many of the observations that were made in the pilot study are reaffirmed on here and expanded through an 

analysis of 4 and 7 DOF devices. While the overall message remains the same, new insights were discovered and are 

discussed below. 

 

Fig 5.9 –   Box plots indicate the median, 25th and 75th interquartile range, and outliers of survey results, separated 

by device type. Mentally challenging and physically challenging are displayed not mentally and 

physically challenging by flipping responses from 1-5 to 5-1, such that a higher value was indicative of 

predilection across all fields. ANOVA results are displayed between pairs of controls for each device; 

significance levels were set at p-values of 0.05, 0.01, and 0.001 after accounting for repeated testing. 
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In this protocol I tabulated the number of times participants switched between modes. The effect of switching 

may have contributed to a shorter completion time when using simultaneous compared to sequential control [91] for 

the 4 and 7 DOF. This likely contributed to participants to consistently identify simultaneous control as easier to 

operate, and generally preferred over sequential, despite a lack of distinction in the time it took to complete the tasks 

with the 3 DOF device. I noticed that despite trajectory control requiring users to use mode switching as well, the time 

to complete the tasks was shorter still in the 4 and 7 DOF devices. This demonstrates that positioning and orienting 

the hand using learned prototypical motions is not only feasible, but potentially superior under certain conditions to 

the other control methods. 

When it comes to completing the tasks in a natural way with low extraneous movements and at a timely manner, 

there appears to be a tradeoff. One interesting finding was that the no-wrist control was significantly faster than the 

other 3 DOF controls. I suspect it was due to the reduced cognitive burden and likely due to the simplicity of the 

orienting strategy; participants had a clear expectation of what was possible, and thus vastly simplified their control 

plan. However, it also had the largest amount of body compensation, appeared unnatural, and was the least preferred 

by all participants, suggesting that movement cosmesis and reduced body compensation are likely more important 

than speed alone. This is reaffirmed by the observation that participants engaged with all the controllable joints in 

each of the devices, even at the cost of longer completion times. Ensuring that participants were not feeling pressured 

to use the device, they reassured that it was entirely because they wanted to mitigate body compensation. 

As participants moved from the 3 to the 4 DOF device the training time was shorter for the sequential and 

simultaneous controls gotten longer for trajectory control. When controlling the joints independently, the addition of 

an elbow did not impose much more complexity and largely overlapped with the 3 DOF controls, whereas the 

participants had to relearn a brand new and larger set of motions for trajectory control. The opposite was observed for 

the 7 DOF device. Relearning a new set of motions for trajectory control was not only similar, but participants noted 

that they were more intuitive than the 4 DOF motions given the more straightforward association between whole arm 

motions and tasks. The same was not true for controlling the joints independently, and the addition of three new 

controllable DOF (i.e. shoulder), was significantly more difficult to intuitively grasp than the previous joints. 

However, when using sequential and simultaneous control, participants seldom referenced the virtual posters. The 

opposite was true when using trajectory control, where participants referenced the poster almost every time they 
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looked to switch modes. Training time appeared to have been relegated to the poster, so a more in depth investigation 

in the future should address learning and memorization of the learned motions in trajectory control. 

Participant feedback confirmed several notable observations. Those that had an easier time controlling the devices 

at a joint level, normally preferred the sequential and simultaneous controls, though most participants preferred 

trajectory the more DOF were being controlled. For the 7 DOF device, sequential control was preferred by some over 

simultaneous, noting that simultaneous control had too many inputs to keep track of, but on the other hand, the 

excessive mode switching that was necessitated in sequential was cumbersome. Most participants preferred trajectory 

control in the 7 DOF device, as it combined the simplicity of controlling one DOF at a time and simultaneous joint 

movement. Therefore, it is very likely that trajectory control will have the most impact in the 4 and 7 DOF devices, 

especially since transhumeral and shoulder disarticulate patients have higher rates of prosthesis rejection [92]. 

Trajectory control mode was successful in completing three ADL tasks beyond the motions that it was design 

after, and thus highlighting its versatility. On the other hand, participants failed to complete the axilla task for the 3 

DOF device, suggesting that there are still certain limitations and perhaps the addition of a second input, such as one 

based on fPCA, could push this method further. I suspect that the concept of using learned motions could be extended 

to other devices and sets of tasks, such as the JACO wheelchair-mounted robotic arm [17]. 

I reaffirm previous findings in the pilot studies that there is not a significant or consistent distinction in body 

compensation, whether Cartesian path length or ROM, between the different prosthesis controls. Sequential control 

generally appeared to have the most body compensation, particularly in the Cartesian path lengths of the arm joints. 

This suggests that despite switching and a limitation to specific motions, the benefits of trajectory control, namely 

completion time, human-like appearance, and control intuition, are worth exploring further. 
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6 CONCLUSION 

The aim of this thesis was to propose novel control methods, develop them using data driven approaches, and 

validate them through a series of human subject testing. Findings provide strong motivation for the development of 

complex prosthetic devices as well as offer insight into the biomechanics of our arms and categorizations of real world 

tasks. 

6.1 Summary 

In Chapter 2, categories of arm motion were identified as well as their respective averages and variation. This 

chapter in particular emphasized the exploration of unsupervised learning methods. It is generally accepted to report 

the performance of several, if not many, common algorithms. In the present case, the selection of the primary algorithm 

was largely heuristically driven, though comparisons to other algorithms were also made. Given that the application 

of this work was to be implemented in a device operated by humans, efforts were made to ensure that results were 

useful and intuitive. One major observation was the number of groupings that emerged for each arm model (3, 4, or 7 

DOF), as these not only provide a lower dimensional representation of the upper-limb biomechanics, but is also useful 

for prosthesis implementation. The prototypical motions of each group could on one hand be implemented in 

hardware, as has been suggest with DTM [94], though in software all motions would be accessible. 

This was taken as step further in Chapter 3 by reducing the dimensionality of the 6 DOF hand alone. A prosthesis 

implementation is proposed whereby users would select from a list of task locations followed by a selection of hand 

orientation. It was found that certain locations were coupled with orientation, further reducing the dimensionality of 

the workspace. As with choosing an analysis pipeline, there were multiple ways to obtain features from the data. By 

analyzing different approaches, namely hand trajectories, straight-line trajectories, and task-locations, additional 

biomechanical observations were made possible. For example, what constitutes a subtask or a submotion has 

commonly been heuristically identified and used as a ground truth to test data driven approaches, yet our intuition 

may have overlooked a submovement during certain reaching and transferring tasks that passed by the body. 
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In Chapter 4, a series of pilot tests were presented measuring both the efficacy and potential use of prototypical 

motions as well as the ability of the VR testing platform to provide accurate measurement of prosthesis use 

performance. The performance of users operating the 3 DOF wrist with the proposed control method outperformed 

the state of the art, motivating a comprehensive test protocol. Observations were consistent across different control 

interfaces as well. However, several simplifications were made, such as analyzing each subtask independently of one 

another rather than strung together as part of a single task. 

Expansions to both the protocol and controls were made in Chapter 5. Quantitative and qualitative evaluations 

were made to assess the proposed trajectory control against the state of the art for 3, 4, and 7 DOF devices. The 

changes in the protocol have shed further insight into some of the preliminary findings in the pilot studies. For 

example, the time it took participants to complete tasks with the 3 DOF device was not necessarily faster with 

trajectory control after all, likely due to the necessity to switch between modes, which entailed referencing the virtual 

poster. On the other hand, the completion time relative to the other control methods did get shorter with added device 

complexity. The same was observed for Cartesian path length of the body segments, while ROM was largely very 

similar between control methods. The primary takeaway was that body compensation was not exacerbated despite 

taking away the ability to rotate the joints in any desired way, while reaping the benefits based on completion time 

and user feedback. 

6.2 Tabulation of Heuristics and Considerations 

The field of research regarding dimensionality reduction of upper-limb use has yet to be fully explored, and there 

are few, if any, established methods of developing upper-limb prosthesis controls. Therefore, many data analysis tools 

in this thesis were chosen heuristically. In this section I provide a clear outline of all such decisions, listed in 

chronological order as they appear in the main text. 

 

ADL tasks – the protocol tasks that were selected were identified based on several factors, such as whether they 

appeared in rehabilitation evaluation or surveys. However, a major concern was whether prosthesis users 

would ever opt to use their prosthetic device when completing certain tasks. For example, during feeding, no 

matter how capable a future prosthesis might be, cutting a piece of food would almost certainly be performed 

with the sound hand with the prosthetic hand holding the fork in place. Likewise for brushing teeth, combing 
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hair, using scissors, and writing. When given certain task choices, I expect a prosthesis user to simply use 

their sound limb. Therefore, tasks that users would likely opt to use the device for, or tasks that simply 

necessitated prosthesis use (such as bimanual manipulation or reaching to the contralateral axilla), were 

ultimately selected. We often must carry or manipulate objects in our sound limb, so simple tasks that could 

be feasibly completed by a prosthetic device were likely candidates, and include basic reaching and 

transferring motions. 

Arm model – the decision to use arm joint angles over Cartesian coordinates of the segments or the other 

considerations cited in the main text ultimately came down to dimensionality and interpretability of the 

representation. Only 7 joint angles are needed to represent the full arm, while 27 dimensions are needed if 

using Cartesian coordinates. Additionally, joint angles lend themselves to a forward kinematic 

implementation of the virtual device. If using Cartesian coordinates, then cluster results and ROM would 

nonetheless need to be converted to joint angle representation for interpretability. 

Similarity measure – Similarity between time-series data can be performed in many ways. One common method is to 

find the Euclidean distance between feature vectors of the motions. Reducing the dimensionality of motion 

of an entire trajectory includes sampling points of interest and modeling the data and using the coefficients. 

These methods attempt to capture certain characteristics of motion, but ultimately result in loss of data that 

we believed was meaningful for a motion to appear natural. This could be abated if a highly dimensional 

function was fit to the data, but provided that some of the motions were 7 DOF, this would've resulted in the 

curse of dimensionality, i.e. the data would have been too sparse for meaningful clusters. Alternatively, 

calculating the frame-by-frame distance between motions would be possible with resampling. Linear 

resampling was not a good candidate since nearly identical arm motions would likely appear further from 

one another due phase shifts (the peaks would unlikely match). Ultimately, DTW was selected due to its 

ability to resample the time-series data while matching epochs. 

Averaging time-series – The rationale behind the decision to use DBA overlaps with the decision to use DTW: a 

method that does not result in loss of data through modeling and is capable of matching characteristic epochs 

of motion. 

Clustering time-series – The choice of a clustering algorithm was limited by the desire to obtain "spherically" distinct 

clusters. Algorithms such as spectral clustering [95] and DBScan [96] are excellent at identifying clusters 
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that could be arbitrarily shaped, and were therefore not considered. For example, the average of a U-shaped 

cluster would fall outside its own boundary and would likely be unlike any of the cluster members, potentially 

resulting in a "useless" prototypical motion. There are several ways to perform hierarchical clustering, with 

different linkage distance criterion resulting in vastly different clusters. Ultimately Ward's distance was 

selected as it accounted for both the between and within variance. However, other methods distances could 

be considered, such as furthest distance. 

Cluster method evaluation – The presence of task repetitions lent itself to validation of the clustering approach. 

Without repetitions, there is no ground truth. I therefore suspect that whenever possible, repetitions should 

be collected and used for validation. 

Motion variation – Motion variation was found using fPCA, however the way by which this is done is application 

dependent. Here, fPCA requires the motions to be modelled, and one common approach is with B-splines. 

However, the type of B-splines and number of knots can be application specific. Our decision was to use 4 

knots, corresponding to 3 phases of each motion (i.e. start, middle, and end), and using cubic splines. 

Complexity of motion was the large determinant of the number of knots, and given that we have already 

segment full tasks into submovements, our conservative 4 knots were appropriate. We were cognizant of both 

prior literature and the ability of cubic Bezier curves to accurately compress motion data [56] and the sparsity 

associated with additional splines or increasing power. Only the kinematics of motion were considered, and 

therefore the selected method was appropriate. In applications were velocity or higher order features are 

considered, higher dimensional B-splines should be used instead. When motion is cyclical, cyclical 

representations should be used, such as wavelets or Fourier series. 

Orientation distribution - I believe this is the first documented attempt at using the rhombicuboctahedron as a tool to 

visualize the distributions of 3D orientations. Initial attempt at using a cube resulted in crude classification, 

while geometric shapes with a greater number of facets would lose their intuition. The selected hedron 

geometry, an intermediate, appeared to be the most intuitive, though this could be further established. 

Clustering orientations – Because hand orientations are in SO(3), it did not make sense to cluster them using traditional 

approaches; clustering will be affect by how the sphere is unwrapped. Here, I also attempted to minimize 

number of representative hand orientations while affirming that the prototypical hand orientations are 

"useful" for task completion. To that end, a dispersion was used that aimed to cap the divisive clustering 



88 

algorithm when the average distance between orientations reached 22.5°. This limit corresponded to the limit 

of the classification of the rhombicuboctahedron (halfway between two facets), and should therefore result 

in orientations that are likewise intuitive as the hedron classes themselves. Other approaches that characterize 

hand orientations, such as the principal geodesic analysis [97], could be explored in the future. 

Virtual reality – The capabilities of a virtual environment to provide results related directly to the real-world is 

something that has been supported, but not directly established. Therefore, we conscientiously rely on the 

results as a step towards testing the device in the real world. Drawbacks to using any virtual reality system 

include the following limitations: field of view, video quality, screen-door effect, wires, sound, weight of the 

headset, and other sensors that may be placed on the body that otherwise would not be needed in the real 

world. 

Virtual prostheses – The focus of the experiment protocol was to demonstrate that using a series of preplanned 

prototypical motions is a feasible approach to assisting participants to complete a series of ADL tasks. 

Therefore, several simplifications and assumptions were made. These included ignoring the following: 

dynamic considerations, such as inertial forces, physical constraints, power consumption, interaction effects 

between the end-effector and object, and gravity. The device was simply controlled in velocity control that 

could be operated with maximum fidelity; it would stop the moment the user ceased using the controller 

without any motor backlash. Finally, the results are based on hypothetical prosthetic devices that do not 

currently exist. Although a shoulder and elbow prosthetic joints can be found in the commercial Luke/DEKA 

arm, much like other devices, it lacks a 3 DOF wrist. 

Controller – One major decision that was iterated on in the thesis was the decision of a controller. The initial joystick 

controller maintained all prosthesis controls to the affect limb, while the keyboard relegated the controls 

almost entirely to the sound limb. A modular controller that could accommodate up to 8 simultaneous dual-

site inputs was selected to be as agnostic to input as possible. A complex placement of sEMG on various 

parts of the body or a controller in the hand would be susceptible to bias of some inputs and not others. A 

modular controller, on the other hand, places all inputs in the same plane and the same effort is required to 

use any one of them. 

Participant selection and training – How much naïve participants should be trained prior to testing prosthesis is 

something we had to consider when designing the experiment protocol. A decision was made not to convert 
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the participants to experts through extensive training, since I hoped to evaluate the intuition of the control 

methods. At the same time, I ensured participants understood the control methods and provided the 

opportunity for them to practice. 

6.3 Lessons Learned and Future Work 

Some improvements to the experimental design can be made. Both time and survey responses attempted to 

indirectly capture the cognitive burden associated with each of the control modes. However, pupillometry has been 

shown to measure it directly [98], and has been used across various fields, including prosthesis use [99] as well as 

driving [100]. Dynamics too play a role in prosthesis use that are not currently captured in our set up. For full 

immersion, and to simulate real world prosthesis use, future efforts may consider expanding our platform and task 

conditions to require object interaction dynamics, akin to [83]. However, using state of the art motion tracking, HMD, 

and control input, I believe this is the closest a simulation can get to testing prostheses without using the actual 

prosthetic device. Nonetheless, there is always room for improvement, and certain changes in the future could fully 

bridge the gap between simulation and reality. These include adding haptic feedback, inertia, wider field of view and 

resolution in the HMD, and improving the realism of the virtual environment design. 

Bimanual tasks were deliberately avoided in our experiment due to the lack of haptic feedback and the complexity 

associated with coordinating control with the healthy hand. It is the reason why amputees rarely perform bimanual 

interactions and why the research community is biased towards assessing unilateral tasks [101]. Given that the learned 

motions encompass bimanual interactions, namely transferring a box, future efforts ought to evaluate if trajectory 

control can assist with bimanual tasks as well. I suspect this will be intractable without adding sensing complexity. 

Since trajectory control includes a pre-specified set of prototypical motions, participants inevitably failed certain tasks. 

It is suggested that the variation in motion that was identified in Chapter 2 could be used to dynamically adjust the 

end point. However, this would require added sensing, though, depending on the level of amputation, this could be 

manageable. For, example, for transhumeral amputees, the residual translational motion in the shoulder could be used 

to adjust the end-effector. 

As a proxy to sEMG control inputs, the keyboard was used to assess prosthesis control. While for sequential and 

trajectory control the input is a single slider, simultaneous control involved up to eight sliders. This particular interface 

involved some level of finger dexterity that will unlikely be present in a marketable device. As an imperfect imitation 
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of sEMG, it introduces error. While I hope the comparison stands, further improvements to the cognitive burden and 

robustness of operating several DOF simultaneously [16], [102], [103] could ultimately outweigh the simplicity of 

trajectory control. Finally, it is likely that endpoint control is what humans use to program reaching and grasping 

movements [104], so the idea of using a predefined set of locations and orientations, rather than joint motions, could 

be a possible future direction. In the meantime, trajectory control highlights the benefits of using learned motions and 

suggests that a complex, yet practical, solution will likely be a semi-autonomous one and where additional trajectories 

can be added by end-users. 

The initial 3 DOF prosthesis control investigation demonstrated that under certain assumptions prototypical 

motions have the capacity to outperform the state of the art in prosthesis controls. The assumptions, however, are not 

trivial, and deserve their own in-depth study. The assumptions were removed for the more comprehensive 

investigation, and it was evident that for the proposed control method to match the performance of a healthy arm, 

mode selection and mode switching will need to be addressed. Mode selection could potentially be solved through a 

semi-autonomous interface that predicts intent and shuffles the order of the modes such that participants only need to 

switch once. Another solution is to improve mode switching such that it can be performed very quickly, accurately, 

and intuitively; though this method will nonetheless require users to either memorize the order of the modes or carry 

a reference list. 

It seems to me that in its present form, trajectory control is not nearly intuitive enough to outperform other control 

methods for the 3 DOF device. Initially, 3 DOF motion categories were labeled according to the major joint rotations 

as can be seen in Chapter 2. When implementing in the VR, the posters listing the motions instead referred to the tasks 

that those motions are able to complete. However, this is not a generalizable approach, and a better labeling system is 

much needed. It is here that I believe that the decoupled orientation analysis will likely be most useful. Perhaps the 

wrist orientation would be most intuitive along major axes, such as those on the surface of the rhombicuboctahedron. 

Users would simply select a hand orientation from a succinct list of available hand orientations, rather than whole 

trajectories. Additionally, most participants did not consider the trajectory path that the prototypical motions 

performed, and primarily concerned themselves with the target location and orientation.  This again reaffirms the 

potential use case of decoupling the location and orientation control 

Alternative arm features have been proposed in the literature, such as the arm triangle [105], or defining a new 

angle eliminating one of the discontinuities [106], either of which could be used in future iterations. However, they 
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carry a tradeoff that would make the results less interpretable and clinically relevant. On the other hand, if simply 

programed into trajectory control, then these could have resulted in more robust motion categories. With so many 

considerations to make when designing a prosthesis control and an experiment protocol, it is genuinely hard to say 

that my approach was ultimately was the right one. Is trajectory control the future? What about decoupled selection 

of hand location and orientation? If brute force is not an option, we are left to use our heuristics and creativity until 

we identify a method that ultimately grants us a seamless control. One thing is for certain, rehabilitation and prosthetics 

continue to be rich fields for research and innovation. 

In our findings, there were significant differences in performance between certain participants, and evaluation 

was largely contingent on their learning. This raises the question of the purpose of prosthesis control evaluation. When 

evaluating a new prosthetic device or a control method, should we be considering a novice user or an expert? In 

practice, users develop expertise over a prolonged period of time, something that cannot be captured in a single 

laboratory visit. What does it mean for a prosthesis control to be “good”? It cannot simply be the feasibility of a 

prosthesis to complete the task or any other single metric. User experience must be taken into account, and is likely 

the main factor that leads to prosthesis acceptance [107]. Therefore, in addition to quantitative measures, insight can 

often be found in surveys evaluating each participant’s personal perspective and through conversation. Despite these 

efforts, the proposed control method would still need to be evaluated in the real world where users would likely need 

to memorize the control methods and make voluntary control decisions. There is a risk, of course, that much like has 

been observed with current devices [108], that the prosthesis controls will not be used in the intended way simply 

because of the user experience. Although ultimately, nothing provides insight as much as the experience of trying out 

the device yourself, whether in virtual reality or in the real world. 
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