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Background: Despite advances in prosthetic development and neurorehabilitation,

individuals with upper extremity (UE) loss continue to face functional and psychosocial

challenges following amputation. Recent advanced myoelectric prostheses offer intuitive

control over multiple, simultaneous degrees of motion and promise sensory feedback

integration, but require complex training to effectively manipulate. We explored whether

a virtual reality simulator could be used to teach dexterous prosthetic control paradigms

to individuals with UE loss.

Methods: Thirteen active-duty military personnel with UE loss (14 limbs) completed

twenty, 30-min passive motor training sessions over 1–2 months. Participants were

asked to follow the motions of a virtual avatar using residual and phantom limbs, and

electrical activity from the residual limb was recorded using surface electromyography.

Eight participants (nine limbs), also completed twenty, 30-min active motor training

sessions. Participants controlled a virtual avatar through three motion sets of increasing

complexity (Basic, Advanced, and Digit) and were scored on how accurately they

performed requested motions. Score trajectory was assessed as a function of time using

longitudinal mixed effects linear regression.

Results: Mean classification accuracy for passive motor training was 43.8 ± 10.7% (14

limbs, 277 passive sessions). In active motor sessions, >95% classification accuracy

(which we used as the threshold for prosthetic acceptance) was achieved by all

participants for Basic sets and by 50% of participants in Advanced and Digit sets.

Significant improvement in active motor scores over time was observed in Basic and

Advanced sets (per additional session: β-coefficient 0.125, p= 0.022; β-coefficient 0.45,

p = 0.001, respectively), and trended toward significance for Digit sets (β-coefficient

0.594, p = 0.077).

Conclusions: These results offer robust evidence that a virtual reality training platform

can be used to quickly and efficiently train individuals with UE loss to operate advanced

prosthetic control paradigms. Participants can be trained to generate muscle contraction
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patterns in residual limbs that are interpreted with high accuracy by computer software

as distinct active motion commands. These results support the potential viability of

advanced myoelectric prostheses relying on pattern recognition feedback or similar

controls systems.

Keywords: upper extremity amputation, myoelectric prostheses, virtual integration environment, surface

electromyography (semg), pattern recognition control, virtual reality therapy, modular prosthetic limb,

neurorehabilitation

INTRODUCTION

Following upper extremity (UE) loss, individuals face a variety
of functional challenges that restrict their ability to complete
activities of daily living and lead to decreased quality of
life. By improving functionality, upper limb prostheses have
the potential to improve quality of life for individuals with
limb loss (1). Despite the promise that prostheses hold,
the current rate of prosthetic usage among individuals with
UE loss ranges from 27 to 56% (2, 3). Low rates of
prosthetic use are largely explained by user dissatisfaction
with existing protheses. An ideal prosthesis needs to replicate
human hand features, incorporate into the user’s sense of
self, and operate by near-natural control (4). Currently,
some of the most advanced prosthetic hands offer multiple,
simultaneous degrees of freedom of motion via non-invasive
methods like surface electromyography (sEMG). Control of
such prostheses requires an operating system capable of
discriminating between various sEMG signals and a user
capable of sustaining the significant cognitive burden associated
with pattern recognition control of a dexterous, myoelectric
prosthesis (4). Therefore, there exists the need for the
development of training platforms that pair with advanced
prosthetic systems and lead to effective and intuitive prosthetic
control.

There are few such platforms currently available for training
with advanced prosthetic hands. Pons et al. (5) explored the
use of virtual reality-based muscle conditioning and command
language learning to teach users to control the MANUS, an
UE prosthesis. In 2011, the Johns Hopkins University Applied
Physics Laboratory (JHU/APL) created the Virtual Integration
Environment (VIE)—a virtual reality simulator for UE prosthetic
training (6). The VIE allows individuals with UE loss to
both follow and command the movements of a virtual avatar
using sEMG signals captured from their residual limbs (7,
8). Sophisticated software algorithms associate user-generated
sEMG signal patterns with UE motions, allowing the participant
to intuitively drive the movements of a virtual limb (9–11).
The VIE was created in part as a screening and training
device for an advanced myoelectric prosthetic developed by
JHU/APL for DARPA Revolutionizing Prosthetics 2009 (12–
14).

In this study, we evaluated the application of the VIE as a
motor training tool with active duty military personnel with UE
loss. Training and motion accuracy scores were collected and
used to assess how pattern recognition and machine learning
could lead to improved motor control within the virtual system.

MATERIALS AND METHODS

Participants
The data was collected as part of the clinical trial “Virtual
Integration Environment in Decreasing Phantom Limb Pain,”
identifier number NCT01462461 (ClinicalTrials.gov). Volunteers
were recruited at Walter Reed National Military Medical Center
(WRNMMC) in Bethesda, MD, within 18 months of sustaining
an UE amputation. Data collection occurred from 10/18/2011
to 5/10/2014. The WRNMMC Institutional Review Board (IRB)
gave approval for the study and written informed consent
was obtained from all participants. Inclusion criteria consisted
of the presence of an UE amputation, a normal neurological
examination (except for amputation), and no prior history
of vertebral disk disease/condition, sciatica, or radiculopathy.
Exclusion criteria included the presence of traumatic brain
injury, known uncontrolled systemic disease, significant Axis I
or II diagnosis in the 6 months prior to enrollment, and a score
lower than a 42/50 on the Test ofMemoryMalingering (TOMM).

System Components
The VIE system is laptop-based and contains both an operator
and a visualization screen with five core sub-systems: inputs,
signal analysis, controls, plant, and presentation. The input
modules can process cortical inputs, surface EMG signals, and
intramuscular EMG signals. Surface EMG signals were utilized
as the input for this study (6, 7). A circumferential array of eight
non-invasive LTI dome electrode pairs (Liberating Technology,
Inc. Holliston, MA, USA) was placed around the residual limb
1 cm above the amputation site, in addition to a single ground
electrode placed 1 cm below either the elbow for individuals
with trans-radial and more distal amputations or 1 cm below the
shoulder for individuals with trans-humeral and more proximal
amputations. An electrically isolated data acquisition system was
used to digitize the sEMG signals (Figure 1). Signal analysis
algorithms internal to the VIE performed sEMG signal filtering,
signal feature extraction, andmotion classification usingmachine
learning-based pattern recognition software. We used a Linear
Discriminant Analysis (LDA) classifier. The raw sEMG data
was sampled at 1,000Hz, high-pass filtered using a 3rd order
Butterworth filter with break frequency of 20Hz, and processed
into four signal features (Mean Absolute Value, Curve Length,
Zero Crossings, and Slope Sign Changes). Training was done by
labeling the sEMG features recorded in correspondence to each
movement motion label presented graphically to the user. The
system output display, based on the Musculo-Skeletal Modeling
Software, rendered a stereoscopic, user motion-controlled 3-D

Frontiers in Neurology | www.frontiersin.org 2 October 2018 | Volume 9 | Article 785

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Perry et al. VIE as Prosthetic Limb Trainer

FIGURE 1 | VIE system set-up and electrode configuration. Using MiniVIE open source code, created in affiliation with the John Hopkins University Applied Physics

Laboratory and available at https://bitbucket.org/rarmiger/minivie, myoelectric signal processing was used to execute pattern recognition training and virtual avatar

limb control. The left image illustrates the various components of the VIE platform, including live motor data collection, filtering and signal processing, pattern

classification and machine learning modules, and user assessments to evaluate classifier performance (6). The right image demonstrates the circumferential

placement of the eight pairs of surface electromyography electrodes around the user’s residual limb with one ground electrode positioned either below the elbow or

the shoulder depending on residual limb length.

arm, observable on the visualization screen (15). This allowed
the user to control the virtual arm in real time. The VIE
synchronizes with a specific physical prosthetic limb system,
the Modular Prosthetic Limb (MPL). Pattern recognition-
based motor classification with the VIE facilitates transition
from virtual to physical limb control (16). The most recent
implementation of the VIE, as used for this study, is the open-
source MiniVIE code project, part of The Open Prosthetics
Project (http://openprosthetics.org/). The MiniVIE code project
reflects the concepts and workflow of the JHU/APL VIE platform
in a separate and lightweight MATLAB-based program.

VIE Procedure
Participants were screened, enrolled, and consented by a member
of the WRNMMC research team prior to study participation.
Thirteen participants, representing 14 limbs, completed twenty
30-min virtual therapy sessions over the course of 1–2 months.
Each session consisted of a 30-min passive period, in which the
participant observed and attempted to replicate the movements
of the limb of a virtual avatar (Video 1). Participants were
instructed to follow along with the screen movements using
their residual limb and phantom limb, if present. Surface EMG
data was simultaneously recorded from their residual limbs.
These signals were labeled using the cued motion of the passive
virtual limb. There were 11 motions: wrist flexion, extension,
pronation, and supination, as well as hand opening and several
grasp patterns. At the start of each session the motions were
presented in a set sequence and then switched to being presented
in a randomized order. Each motion was displayed in sets of 2-
min intervals. Participants were asked to additionally complete
four passive sessions with their intact limb, which served as
the control sessions. Two of the participants had bilateral UE

amputations and one opted to complete the study two times—
once with each arm. He therefore did not have a true “control”
session.

The active motor control component of the VIE, or the
MiniVIE system, was created by JHU/APL after the study
began and offered to all participants who were enrolled after
its completion. All eight of the participants who were given the
option to complete the active motor control training did elect
to complete it. This second training phase involved learning
to drive three sets of motions within the VIE platform: Basic,
Advanced, and Digit Control. These sessions lasted 30-min and
immediately followed passivemotor training. The individual who
elected to complete the passive portion of the study with each of
his amputated limbs also elected to complete this phase of the
study twice. The Basic motion set included wrist rotation in/out,
wrist flexion/extension, cylindrical grasp, and hand open. The
Advanced motion set added lateral, spherical, and pointer grasps
to the Basic set. The Digit Control set included control of each
finger plus the hand open motion. Linear Discriminant Analysis
(LDA) was used to identify the intended movements from the
recorded data and to classify the data sets accordingly.

Participants completed the MiniVIE training by executing
movements with their phantom limb in response to computer-
presented cues (Figure 2) in two sets of 2 s per motion. Unique
sEMG signals associated with each intended motion were
collected from the circumferential array of electrodes along
the participant’s residual limb. Once the LDA algorithm was
trained, participants controlled the motion of a dexterous virtual
hand and wrist avatar within the VIE during a period of free-
play (Figure 3). This activity provided real-time feedback on
training data accuracy and on each participant’s ability to execute
desired UE movements within the virtual environment. Seven

Frontiers in Neurology | www.frontiersin.org 3 October 2018 | Volume 9 | Article 785

https://bitbucket.org/rarmiger/minivie
http://openprosthetics.org/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Perry et al. VIE as Prosthetic Limb Trainer

FIGURE 2 | Interface for assessing controllability of the virtual limb system.

The user trains a motion within the MiniVIE program by moving his phantom

limb through a series of prompted motions as surface electromyography data

is collected from electrodes placed on the muscles of his residual limb. The

user is then assessed on his ability to reproduce these trained motion patterns

by attempting to complete 10 correct readings of each target motion within a

specific period of time. In the top panel, the user is training (top left) and then

assessing (top right) the motion of “wrist rotate in.” The user successfully

achieves all 10 motion classifications in the allotted time. In the bottom panel,

the user is training (bottom left) and then assessing (bottom right) the motion

of “hand open.” He completes the target motion correctly six times before the

time ends.

of the eight participants who completed active VIE training also
completed weekly evaluations with their intact limb that served as
a “control.” The eighth participant had bilateral UE amputations
and instead completed the study once with each upper limb.
Training with the “control” limb was completed in an identical
manner to training with the residual limb.

VIE Assessment
The analysis of passive motor training data was completed in
post-processing using machine-learning algorithms. The sEMG
data that had been collected continuously during the virtual
sessions was identified and distinguished into discrete motion
classes. These classes were labeled according to the motion of
the virtual avatar at the time of data collection. These discrete,
labeled motion sets were then loaded into the VIE signal
classifier to generate an average motion accuracy score. We
considered the trajectory of these accuracy scores across study
sessions.

Unlike the passive motor training assessment, the analysis
of the active motor training happened at the end of each
session. These assessments quantified the user’s ability to control
the virtual limb using pattern recognition software and were
completed within the MiniVIE system. The computer prompted
the participants to perform each trained motion over a 100ms
interval (Figure 2). For each motion, they were given 5 s to
achieve 10 correct motion classifications. During the assessment,
the computer presented the participant with both the targeted

FIGURE 3 | Manipulation of a virtual avatar limb within a three-dimensional

framework. After training a Linear Discriminant Analysis (LDA) algorithm within

the VIE training system, each user had the opportunity to direct the motion of a

virtual hand and wrist during a period of free-play. Inputs were myoelectric and

collected from the user’s residual limb. This program provided real-time

feedback on training data, as well as the opportunity to practice and improve

upon pattern recognition feedback control.

motion class and the motion class that their data was currently
being read as. This feedback allowed the participant to modify
their approach in real-time as needed to achieve the target
motion. These assessments generated classification accuracy
scores, which reflect how well the participant in testing was able
to reproduce the unique sEMG patterns they had generated in
training. We defined the threshold for prosthetic acceptance as
equal to or greater than a classification accuracy score of 95%
based on several prior studies of myoelectric pattern recognition
control of UE prostheses (12, 17–19).

Statistical Analysis
Individual analyses were conducted for passive motor scores and
active motor scores (Basic, Advanced, and Digit motion sets). For
each analysis, change in accuracy scores over time was assessed
using unadjusted longitudinal linear mixed effects regression
models. These models account for within-subject correlation of
scores, inconsistent measurement intervals, and missing data
(20). All tests were two-tailed and p = 0.05 was regarded as
the threshold for significance. Analysis was accomplished using
open-source statistical analysis software (R version 3.4.2).

RESULTS

Participants
Fourteen individuals were recruited and consented to this
study. Thirteen male, active duty military personnel between
20 and 33 years of age completed this study (Table 1).
One participant withdrew after three study sessions due to
scheduling conflicts. Eleven of the 13 participants had sustained
unilateral UE amputations, while two had sustained bilateral
UE amputations. One of the participants with bilateral UE
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TABLE 1 | Participant demographics.

User Age

(years)

Site, side of

amputation

Months since

amputation

Phantom

limb pain

01 27 ED, left 14 Yes

02 22 TH, right 9 Yes

03 27 TH, right 18 Yes

04 28 TR, left 18 Yes

05 33 TR, left 4 No

07 23 TR, left 13 Yes

08 30 WD, Right 6 Yes

09 30 WD, left 2 No

10 29 WD, left 105 No

11–L 24 TH, left 14 No

11–R 24 TR, right 14 No

12 28 PH, left 9 No

13 22 WD, right 6 Yes

14 20 TR, left 10 Yes

The age, amputation details, and baseline phantom limb pain status for each participant

are displayed in Table 1. A total of 14 participants were recruited to the study and 13

completed all sessions. Participant 06 is not reflected, as he withdrew from the study

early on due to scheduling conflicts. Participant 11 has a bilateral upper extremity (UE)

amputation and volunteered to complete the study twice—once with his right arm and

once with his left arm. These data sets were collected and analyzed independently, and

are labeled as 11_R and 11_L, respectively. The following abbreviations describe the site

of UE amputation: ED, elbow disarticulation; TH, trans-humeral; TR, trans-radial; WD, wrist

disarticulation; and PH, partial hand.

amputations volunteered to complete the study twice, once
with his right arm and once with his left arm. These two
data sets were collected independently and given independent
identifiers. Thus, the total sample size was 14 data sets collected
from 13 individuals. For the active motor training, or MiniVIE,
component of the study, nine data sets were collected from eight
individuals. The same participant who opted to complete the
passive training with each of his limbs also completed the active
training twice.

VIE Results
A total of 277 passive motor training sessions were conducted.
Each individual study identifier completed an average of 17.6
± 4.7 sessions over 66.2 ± 40.5 days. The mean classification
accuracy score across all sessions for all 14 data sets was 43.8
± 10.7%. Given 11 unique motions performed during passive
training, the chance of completing a motion purely by chance
was 9%, which was statistically significantly different from the
observed mean classification score of 43.8% (one-sample t-test
p-value <0.001). This suggests that participants were actively
engaged in the virtual limb-following tasks. There was no
significant change in accuracy scores for passive motor training
over time (per one additional session, β-coefficient <0.001, p =

0.36).
For the active motor training, or MiniVIE, portion of the

study mean accuracy scores greater than 95% were achieved by
all nine studied limbs for the Basic set (Figure 4, Table 2). For
the Advanced set (i.e., Basic set plus three complex grasps), four
of the eight participants (50%) representing five of the nine (56%)
data sets achieved proficiency greater than 95%. These same

four participants achieved over 95% accuracy with Digit control
(Figure 4, Table 2).

For both the Basic and Advanced sets, there was a significant
improvement in motor accuracy scores over time (per additional
session: β-coefficient 0.125, p = 0.022; β-coefficient 0.45, p =

0.001, respectively), and there was a trend toward significance
for the Digit set (β-coefficient 0.594, p= 0.077). Improvement in
motor accuracy scores occurred early; the mean accuracy score
for the nine arms completing the Basic set increased from 90.2%
(range: 76.7–100%) to 100% (range: 95.8–100%) across the first
three sessions.

All participants who completed the weekly “control” arm
sessions within theMiniVIE platform (i.e., 7 of the 8 participants,
representing 7 of the 9 independent data sets) attained 100%
accuracy with their intact limbs for the Basic set. It is notable
that even with their intact limbs, these participants were unable
to achieve perfect results with either the Advanced or Digit sets
(Table 2). Interestingly, the eighth participant who had sustained
bilateral UE amputations demonstrated similar accuracy scores
regardless of which arm was being tested. With either limb, he
achieved greater than a 95% mean accuracy score with the Basic
set, less than a 95% mean accuracy for the Digit set, and mean
accuracy scores that fell within one percentage point for the
Advanced set (88.1 and 88.8%) (Table 2).

DISCUSSION

In the passive portion of this study, 13 participants (representing
14 independent data sets) demonstrated the ability to move their
residual and phantom limbs in concert with a virtual avatar and
elicit sEMG signals unique to those motions. The variability in
results in this portion of the study is likely due to the randomized
nature of the motion generator, which made it difficult for
participants to precisely control the onset and offset of their
movements. The low accuracy scores are further explained by
the lack of user feedback during sessions, which restricted the
participants’ ability to edit their contraction patterns in real-time.
Themain conclusion to be drawn from the passive control results
is that the participants were engaged in the task of following the
virtual limb, as indicated by all of the accuracy scores being better
than chance (43.8% observed; 9% expected purely by chance;
one-sample t-test p < 0.001).

When given the opportunity to train a pattern recognition-
based myoelectric arm controller, eight individuals (representing
9 independent data sets) demonstrated proficiency with wrist
motions, hand grasps, and individual finger control. All
participants who completed the active motor portion of this
study achieved classification accuracy scores for six individual
movements that passed the threshold for prosthetic use, which we
defined as 95% or greater. Four of these individuals (representing
five independent data sets) achieved greater than 95% accuracy
for a total of 14 movements (i.e., the Basic, Advanced, and Digit
Control motion sets). Furthermore, results from longitudinal
mixed effects regression models demonstrate that there is a
cumulative learning effect from repeated training: participant
scores improved with each subsequent training session. These
results demonstrate that individuals with UE loss can effectively
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FIGURE 4 | Mean active motion score by participant. Eight participants, representing nine individual data sets, completed the active motion training portion of the VIE

study. The horizontal dashed line represents 95% mean classification accuracy, which we defined as the threshold for prosthetic acceptance. Each column represents

an individual participant. The columns are grouped based on type of motion set: Basic, Advanced, or Digit. The y-axis begins at 50% classification accuracy to better

distinguish small differences in score.

TABLE 2 | Active motor control, or “MiniVIE,” accuracy scores.

User P-basic P-advanced P-digits C-basic C-advanced C-digits

05 97.6% (16/19) 0% (0) 0% (0) 100.0% (6/6) 0% (0) 0% (0)

08 99.3% (19/20) 96.3% (13/20) 100.0% (4/4) 100.0% (4/4) 100.0% (4/4) 100.0% (1/1)

09 97.4% (23/29) 92.0% (7/14) 0% (0) 100.0% (8/8) 0% (0) 0% (0)

10 98.3% (5/6) 85.4% (1/6) 92.3% (2/5) 100.0% (1/1) 100.0% (1/1) 0% (0)

11 97.3% (21/28) 88.1% (2/7) 71.1% (0/3) 96.2% (18/20) 88.8% (6/18) 94.4% (14/17)

12 100.0% (20/20) 99.2% (18/20) 100.0% (20/20) 100.0% (4/4) 96.1% (3/4) 97.1% (3/4)

13 98.9% (19/21) 95.6% (11/17) 100.0% (13/13) 100.0% (6/6) 98.3% (3/4) 100.0% (3/3)

14 96.7% (20/25) 99.1% (12/13) 95.3% (4/6) 100.0% (5/5) 97.0% (2/3) 100.0% (1/1)

The motion classification accuracy results for the active motor control training, or “MiniVIE,” portion of the VIE study are displayed in Table 2. Included are each participant’s mean

accuracy scores for the Basic, Advanced, and Digit motion sets achieved while using either their residual/phantom (P) limbs or intact/control (C) limbs. The scores that pass the threshold

for prosthetic efficiency (i.e., 95% accuracy) are bolded. The fractions provided within parentheses represent the number of assessments where that participant achieved greater than

95% accuracy over the total number of assessments they completed under those testing conditions. Of note, participant 11 has bilateral upper extremity amputations and opted to

complete the study twice—once with each arm. Therefore, for participant 11 both the left and the right columns are “P” data, as he does not have a true intact, or “control,” limb. The

left and right columns correspond to the data collected from his right and left arms, respectively.

learn to create and reproduce unique sEMG contraction patterns
for a variety of UE motions.

Though there is a paucity of literature quantifying and
characterizing changes in motor accuracy following limb loss,
Sebelius et al. observed that six individuals with unilateral
trans-radial limb loss actuated seven discrete motions with
a virtual computerized hand (21). The hand was operated
through sEMG-mediated, thought-based control of an Artificial
Neural Network (ANN), as well as a data glove worn on the
contralateral healthy hand. There were no significant differences
in control with respect to time since amputation over seven

sEMG training sessions. A study by Schabowsky et al. examined
the motor accuracies of eight trans-radial prosthetic users
and eight neurologically intact persons without amputation in
executing reaching movements within the horizontal plane (22).
This study used a robotic manipulandum and exposure to curl
field perturbances imposed by robotic motors to determine
the rate and quality of adaptation between the two groups.
Adaptation was reflected by a decrease in peak error between
observed and ideal trajectories. It was observed that during the
late phase of adaptation (i.e., trials 36–120), error magnitude and
variability were greater in the prosthetic user group compared
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to controls, but that overall, motor adaptation to curl fields and
accuracy during reaching is similar between individuals with
UE amputation and healthy individuals. These studies suggest
that individuals with UE amputation have the neurorehabilitative
potential to learn to manipulate virtual movements using sEMG
control and to adapt to motion stimuli in virtual environments.
In addition, the rapidity (total number of training sessions
required) with which participants reached near perfect accuracy
in movement control suggests that the brains of persons with
amputation retain the ability to rapidly adapt over time. The
results of our study agree with these findings, by demonstrating
that motor accuracy scores for individuals with UE loss training
within a virtual environment can pass the threshold for prosthetic
usage (i.e., 95% accuracy) for every user and pass it rapidly (here,
within the first three of 20 sessions).

The limitations of our study include the small sample size
and short testing time with each participant, which restricted
both the number of data points available for analysis and the
learning period in which participants could master the motor
control system. The limited training period made it difficult to
fully characterize the timeframe and pattern of motor learning
following amputation, as participants were observed during only
1–2 months of their recovery. Lastly, while virtual training
systems allow us to assess a participant’s ability to learn and
utilize pattern recognition software for sEMG-driven control
of a virtual limb, distinct differences exist between operating a
virtual avatar and manipulating a physical prosthesis. Notably,
our participants were not faced with the postural kinetic and
kinematic challenges that come with physical prosthetic training
and use. Therefore, our ability to predict how success within the
VIE platform translates to control of an advanced myoelectric
device is limited.

The modular design of the VIE system is a major
strength, as it allows for the frequent manipulation of each
subsystem and graphic limb simulation (23). While other
modular neuroprosthetic frameworks exist, they are not designed
specifically for operating neurally-controlled prosthetic limbs
(24). Alternative virtual systems for myoelectric training may
also include realistic virtual avatars and practice with real-
time virtual environments of virtual tasks such as clothespin
movement, posture matching, and Fitts-law target acquisition,
as well as the abstraction of myoelectric signals in gaming (19,
25–27). In addition to the successful use of the VIE platform
by participants with unilateral UE amputation, the ability of
two participants with bilateral UE amputation to demonstrate
passive motor control—and active motor control by one of
these individuals—suggests the viability of the VIE system
as a motor training platform for persons with bilateral UE
amputation. Though many studies have cited the benefits of
prosthetic training within a virtual environment, there is a dearth
of literature on the comparative strengths and weaknesses of
existing virtual prosthetic training systems. Additional research
is needed to investigate the relative merits and limitations of
these platforms, as well as the VIE, with respect to their ability
to accurately characterize participant motor learning and predict
future success with controlling a physical myoelectric prosthesis.

Overall, these motor results demonstrate the potential for
the VIE to be used as a motor classification and training

tool for operation of advanced myoelectric prostheses, such
as the MPL (7). The motor training afforded by the VIE
system is consistent with previous findings regarding the
potential to improve and facilitate motor learning after
amputation using virtual prosthetic training systems over
time. Though the VIE system was designed to synchronize
specifically with the MPL, successful training within the VIE
system—with respect to accurate motion classification and
pattern recognition-based discrimination between movement
classes—may facilitate transition to and use of other advanced
myoelectric prostheses that similarly utilize pattern recognition
software. The MPL is an experimental device not currently
available for commercial use and dissemination. A study is
now ongoing to determine the functionality of the MPL
and includes a VIE-based training and classification accuracy
screening stage that precedes user control of the physical
prosthesis. Future research can be conducted to investigate
exactly how predictive success within the VIE system is for
success controlling an advanced, dexterous UE prosthesis like the
MPL.

The VIE platform is an effective training platform for
individuals with UE amputation to learn pattern recognition-
based motor control. Understanding this control paradigm may
lead to improved operation of advanced myoelectric prostheses,
such as the MPL. If we are to increase the current low rates
of prosthetic acceptance, then we need to continue to develop
training platforms that allow for the intuitive motor control of
dexterous prostheses. Future research is needed to explore to
what degree success within a virtual training system, such as the
VIE, translates into improved functioning and quality of life for
individuals with UE loss.
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