581 research outputs found

    Advancing a Design for Trusted Community Bathymetry

    Get PDF
    The design for a Trusted Community Bathymetry (TCB) system, presented in Calder et al., 2020, demonstrates a data collection system capable of collecting precisely geo-referenced depth soundings from any navigational echosounder installed on a volunteer vessel. The TCB system is capable of autonomously determining any vertical installation offset with respect to the waterline, and provides sufficient guarantees of data quality to allow the soundings to be considered for hydrographic use. This thesis presents two contributions to advance the original TCB system design. First, it capitalizes on the widespread availability of low-cost sidescan modules in the recreational sonar market by describing a method to integrate one of these units with the existing TCB datalogger. This integration adds significant richness to a volunteer dataset by enabling a hydrographic office to benefit from imagery of targets and obstructions in the vicinity of TCB vessels. Additionally, a method for autonomous operation is presented in which the TCB datalogger may command the sidescan to automatically log imagery in the vicinity of targets of interest specified by the hydrographic office. Second, this work demonstrates it is possible to replace the survey-grade GNSS receiver antenna used in the original system design with a comparatively inexpensive unit. The replacement antenna does not provide equivalent real-time performance but can collect observations which can be post-processed to produce solutions with uncertainties on the same order as the survey-grade antenna. Since real-time performance is not important in a TCB application, this development represents a significant reduction in total system cost and increases the viability of widespread deployment without sacrificing data quality

    Rationale, Scenarios, and Profiles for the Application of the Internet Protocol Suite (IPS) in Space Operations

    Get PDF
    This greenbook captures some of the current, planned and possible future uses of the Internet Protocol (IP) as part of Space Operations. It attempts to describe how the Internet Protocol is used in specific scenarios. Of primary focus is low-earth-orbit space operations, which is referred to here as the design reference mission (DRM). This is because most of the program experience drawn upon derives from this type of mission. Application profiles are provided. This includes parameter settings programs have proposed for sending IP datagrams over CCSDS links, the minimal subsets and features of the IP protocol suite and applications expected for interoperability between projects, and the configuration, operations and maintenance of these IP functions. Of special interest is capturing the lessons learned from the Constellation Program in this area, since that program included a fairly ambitious use of the Internet Protocol

    Engineering a Live UHD Program from the International Space Station

    Get PDF
    The first-ever live downlink of Ultra-High Definition (UHD) video from the International Space Station (ISS) was the highlight of a Super Session at the National Association of Broadcasters (NAB) Show in April 2017. Ultra-High Definition is four times the resolution of full HD or 1080P video. Also referred to as 4K, the Ultra-High Definition video downlink from the ISS all the way to the Las Vegas Convention Center required considerable planning, pushed the limits of conventional video distribution from a space-craft, and was the first use of High Efficiency Video Coding (HEVC) from a space-craft. The live event at NAB will serve as a pathfinder for more routine downlinks of UHD as well as use of HEVC for conventional HD downlinks to save bandwidth. A similar demonstration was conducted in 2006 with the Discovery Channel to demonstrate the ability to stream HDTV from the ISS. This paper will describe the overall work flow and routing of the UHD video, how audio was synchronized even though the video and audio were received many seconds apart from each other, and how the demonstration paves the way for not only more efficient video distribution from the ISS, but also serves as a pathfinder for more complex video distribution from deep space. The paper will also describe how a live event was staged when the UHD video coming from the ISS had a latency of 10+ seconds. In addition, the paper will touch on the unique collaboration between the inherently governmental aspects of the ISS, commercial partners Amazon and Elemental, and the National Association of Broadcasters

    Thought-controlled games with brain-computer interfaces

    Get PDF
    Nowadays, EEG based BCI systems are starting to gain ground in games for health research. With reduced costs and promising an innovative and exciting new interaction paradigm, attracted developers and researchers to use them on video games for serious applications. However, with researchers focusing mostly on the signal processing part, the interaction aspect of the BCIs has been neglected. A gap between classification performance and online control quality for BCI based systems has been created by this research disparity, resulting in suboptimal interactions that lead to user fatigue and loss of motivation over time. Motor-Imagery (MI) based BCIs interaction paradigms can provide an alternative way to overcome motor-related disabilities, and is being deployed in the health environment to promote the functional and structural plasticity of the brain. A BCI system in a neurorehabilitation environment, should not only have a high classification performance, but should also provoke a high level of engagement and sense of control to the user, for it to be advantageous. It should also maximize the level of control on user’s actions, while not requiring them to be subject to long training periods on each specific BCI system. This thesis has two main contributions, the Adaptive Performance Engine, a system we developed that can provide up to 20% improvement to user specific performance, and NeuRow, an immersive Virtual Reality environment for motor neurorehabilitation that consists of a closed neurofeedback interaction loop based on MI and multimodal feedback while using a state-of-the-art Head Mounted Display.Hoje em dia, os sistemas BCI baseados em EEG estão a começar a ganhar terreno em jogos relacionados com a saúde. Com custos reduzidos e prometendo um novo e inovador paradigma de interação, atraiu programadores e investigadores para usá-los em vídeo jogos para aplicações sérias. No entanto, com os investigadores focados principalmente na parte do processamento de sinal, o aspeto de interação dos BCI foi negligenciado. Um fosso entre o desempenho da classificação e a qualidade do controle on-line para sistemas baseados em BCI foi criado por esta disparidade de pesquisa, resultando em interações subótimas que levam à fadiga do usuário e à perda de motivação ao longo do tempo. Os paradigmas de interação BCI baseados em imagética motora (IM) podem fornecer uma maneira alternativa de superar incapacidades motoras, e estão sendo implementados no sector da saúde para promover plasticidade cerebral funcional e estrutural. Um sistema BCI usado num ambiente de neuro-reabilitação, para que seja vantajoso, não só deve ter um alto desempenho de classificação, mas também deve promover um elevado nível de envolvimento e sensação de controlo ao utilizador. Também deve maximizar o nível de controlo nas ações do utilizador, sem exigir que sejam submetidos a longos períodos de treino em cada sistema BCI específico. Esta tese tem duas contribuições principais, o Adaptive Performance Engine, um sistema que desenvolvemos e que pode fornecer até 20% de melhoria para o desempenho específico do usuário, e NeuRow, um ambiente imersivo de Realidade Virtual para neuro-reabilitação motora, que consiste num circuito fechado de interação de neuro-feedback baseado em IM e feedback multimodal e usando um Head Mounted Display de última geração

    Code Generation: An Introduction to Typed EBNF

    Get PDF
    Errors and inconsistencies between code components can be very costly in a software project. E orts to reduce these costs can include the use of tools that limit human interac- tion with code by generating it from a description. This paper introduces two new works to address these issues: (1) an input speci cation called Typed EBNF (TEBNF), and (2) a prototype tool that demonstrates how TEBNF can be used to generate code. The tool generates code for a console application as described by a TEBNF grammar. An application built from the generated code will be able to receive input data, parse it, process it, and output it as needed

    NASA Tech Briefs, August 2006

    Get PDF
    Topics covered include: Measurement and Controls Data Acquisition System IMU/GPS System Provides Position and Attitude Data Using Artificial Intelligence to Inform Pilots of Weather Fast Lossless Compression of Multispectral-Image Data Developing Signal-Pattern-Recognition Programs Implementing Access to Data Distributed on Many Processors Compact, Efficient Drive Circuit for a Piezoelectric Pump; Dual Common Planes for Time Multiplexing of Dual-Color QWIPs; MMIC Power Amplifier Puts Out 40 mW From 75 to 110 GHz; 2D/3D Visual Tracker for Rover Mast; Adding Hierarchical Objects to Relational Database General-Purpose XML-Based Information Managements; Vaporizable Scaffolds for Fabricating Thermoelectric Modules; Producing Quantum Dots by Spray Pyrolysis; Mobile Robot for Exploring Cold Liquid/Solid Environments; System Would Acquire Core and Powder Samples of Rocks; Improved Fabrication of Lithium Films Having Micron Features; Manufacture of Regularly Shaped Sol-Gel Pellets; Regulating Glucose and pH, and Monitoring Oxygen in a Bioreactor; Satellite Multiangle Spectropolarimetric Imaging of Aerosols; Interferometric System for Measuring Thickness of Sea Ice; Microscale Regenerative Heat Exchanger Protocols for Handling Messages Between Simulation Computers Statistical Detection of Atypical Aircraft Flights NASA's Aviation Safety and Modeling Project Multimode-Guided-Wave Ultrasonic Scanning of Materials Algorithms for Maneuvering Spacecraft Around Small Bodies Improved Solar-Radiation-Pressure Models for GPS Satellites Measuring Attitude of a Large, Flexible, Orbiting Structur

    Efficient Employment of Large Format Sensor Data Transfer Architectures

    Get PDF
    Due to the increasing quantity of data collected by Air Force intelligence, surveillance and reconnaissance (ISR) assets and the focus on timely access to the data collected by these systems, operational data transfer network architectures have become a critical component of their employment in the intelligence production process. Efficient utilization of the provided long-haul communications component of the ISR system improves the value of the single asset to the warfighter and enables connectivity of additional assets via the data transfer network architecture. This research effort focused on the creation and implementation of a structured test design methodology based on the principles of Design of Experiments to propose recommendations for optimization of one such operational architecture while avoiding the common pitfalls of inadequate and inefficient test design and implementation. Factors that could influence the performance of the data transfer network architecture were researched and evaluated to recommend the factors of interest that most greatly affect the efficiency of the operational architecture. To support this evaluation, an emulated network testbed was utilized to develop a representative model of system efficiency. The results of this model indicate that increased aggressiveness for data transfer leads to decreased efficiency in the attempt to utilize available network resources, especially in realm of operations under study that represent non-traditional bandwidth delay product (BDP) networks where network delay is the dominating factor in the determination of BDP. The analysis documented a baseline model of system performance that will be used to guide ongoing maintenance, sustainment and enhancement efforts for the current data transfer capability and provides insight into the recommended test design process for use in development and deployment of future capabilities. The ability to model system performance through the use of a structured and straight-forward process allows for the inclusion of the test design and analysis process in software design and development, as well as, system deployment and operations improvements

    Platform Development for the Implementation and Testing of New Swarming Strategies

    Get PDF
    Gemstone Team SWARM-AISwarm robotics--the use of multiple autonomous robots in coordination to accomplish a task--is useful for mapping, light package transport, and search and rescue operations, among other applications. Researchers and industry professionals have developed robotic swarm mechanisms to accomplish these tasks. Some of those mechanisms or “strategies” have been tested on hardware; however, the technical requirements involved in fielding a drone swarm can be prohibitive to physical testing. Team SWARM-AI has developed a platform that provides a starting point for testing new swarming strategies. This platform allows the user to select vehicles of their choosing- either air, land, or water based, or some combination thereof- as well as define their own swarming method. Using a novel decentralized approach to ground control software, this platform provides a user interface and a system of computational “units” to coordinate drone swarms with a centralized, decentralized, or combination architecture. Additionally, the platform propagates user input from the master unit to the rest of the swarm and allows each unit to request sensor data from other units. The user is free to edit the processes by which each drone interacts with the environment and the rest of the swarm, giving them freedom to test their swarming strategy. The software system is then tested with a swarm of quadcopters using Software in the Loop (SITL) testing
    corecore