782 research outputs found

    Use of low-cost acquisition systems with an embedded linux device for volcanic monitoring

    Get PDF
    This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro.Postprint (published version

    MARSITE - Deliverable 8: System architecture and preliminary tests

    Get PDF
    The recent devastating earthquakes and associated tsunamis in Japan, Indonesia, and Haiti, which killed more than half a million people, highlighted how mankind is still far away from a satisfactory level of seismic risk mitigation. MARSITE (New Directions in Seismic Hazard Assessment through Focused Earth Observation in the Marmara Supersite) aims assessing the “state of the art” of seismic risk evaluation and management at European level to establish a starting point to move a “step forward” towards new concepts of risk mitigation and management by long-term monitoring activities carried out both on land and at sea. This report describes the activities carried out within the deliverable 8.4. by the Development Team of CNR, DAIMAR and INGV

    Ultraviolet Imaging with Low Cost Smartphone Sensors: Development and Application of a Raspberry Pi-Based UV Camera

    Get PDF
    Here, we report, for what we believe to be the first time, on the modification of a low cost sensor, designed for the smartphone camera market, to develop an ultraviolet (UV) camera system. This was achieved via adaptation of Raspberry Pi cameras, which are based on back-illuminated complementary metal-oxide semiconductor (CMOS) sensors, and we demonstrated the utility of these devices for applications at wavelengths as low as 310 nm, by remotely sensing power station smokestack emissions in this spectral region. Given the very low cost of these units, ≈ USD 25, they are suitable for widespread proliferation in a variety of UV imaging applications, e.g., in atmospheric science, volcanology, forensics and surface smoothness measurements

    Armstrong Flight Research Center Research Technology and Engineering Report 2015

    Get PDF
    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Centers Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Centers agility to develop technologies supporting each of NASAs core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASAs mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Dont hesitate to contact them for more information or for collaboration ideas

    Next generation single board clusters

    Get PDF
    Until recently, cluster computing was too expensive and too complex for commodity users. However the phenomenal popularity of single board computers like the Raspberry Pi has caused the emergence of the single board computer cluster. This demonstration will present a cheap, practical and portable Raspberry Pi cluster called Pi Stack. We will show pragmatic custom solutions to hardware issues, such as power distribution, and software issues, such as remote updating. We also sketch potential use cases for Pi Stack and other commodity single board computer cluster architectures

    Towards the use of unmanned aerial systems for providing sustainable services in smart cities

    Get PDF
    La sostenibilidad está en el centro de muchos campos de aplicación en los que el uso de los sistemas aéreos no tripulados (SUA) es cada vez más importante (por ejemplo, la agricultura, la detección y predicción de incendios, la vigilancia ambiental, la cartografía, etc.). Sin embargo, su uso y evolución están muy condicionados por el campo de aplicación específico para el que están diseñados y, por lo tanto, no pueden ser fácilmente reutilizados entre los diferentes campos de aplicación. Desde este punto de vista, al no ser polivalentes, podemos decir que no son totalmente sostenibles. Teniendo esto en cuenta, el objetivo de este trabajo es doble: por un lado, identificar el conjunto de características que debe proporcionar un UAS para ser considerado sostenible y demostrar que no hay ningún UAS que satisfaga todas estas características; por otra parte, presentar una arquitectura abierta y sostenible de los UAS que pueda utilizarse para construir UAS a petición para proporcionar las características necesarias en cada campo de aplicación. Dado que esta arquitectura se basa principalmente en la adaptabilidad del software y el hardware, contribuye a la sostenibilidad técnica de las ciudades.Sustainability is at the heart of many application fields where the use of Unmanned Aerial Systems (UAS) is becoming more and more important (e.g., agriculture, fire detection and prediction, environmental surveillance, mapping, etc.). However, their usage and evolution are highly conditioned by the specific application field they are designed for, and thus, they cannot be easily reused among different application fields. From this point of view, being that they are not multipurpose, we can say that they are not fully sustainable. Bearing this in mind, the objective of this paper is two-fold: on the one hand, to identify the whole set of features that must be provided by a UAS to be considered sustainable and to show that there is no UAS satisfying all these features; on the other hand, to present an open and sustainable UAS architecture that may be used to build UAS on demand to provide the features needed in each application field. Since this architecture is mainly based on software and hardware adaptability, it contributes to the technical sustainability of cities.• Ministerio de Economía y Competitividad y Fondos FEDER. Proyecto TIN2015-69957-R (I+D+i) • Junta de Extremadura y Fondo Europeo de Desarrollo Regional. Ayuda GR15098 y IB16055 • Parcialmente financiado por Interreg V-A España-Portugal (POCTEP) 2014-2020 program. Proyecto 0045-4IE-4-PpeerReviewe

    Raspberry Pi Technology

    Get PDF
    corecore