982 research outputs found

    Fictional Proto-architecture as an Introduction to Biologic Design: Challenging the Concept of Morphogenesis of Neo-architectural Organism

    Get PDF
    The architecture is based on a dialectical search for new ways of matter representation. We deal with the form of contemporary architecture under two approaches: expression and content. The article examines how mathematical principles based on natural growth can be applied in architectural design to create a dynamic, not static, structure. The dynamic process of the cell and its growth provides the basic structure. The continuity of the domain is exemplified by the impact of the new forms on the society that has already begun to emerge from the obscurity. The paper argues that without a deeper and more receptive connection between geometry and performance from a bio-morphogenetic perspective of complex systems. The experimental design methods are applied both to generate and to evaluate an architecture of the futuristic lines. These methodological frameworks focus on cyclically restated themes in the field of parametrises, which are identified as endemic to architecture: the realization of buildings, of multifunctional volumes and customized per se through a gradual approach of the architectural properties and the exploitation of a "concept construction" integrated as a process, obtained through innovative modelling environments. And so, and the reconstruction of architecture as an organ of nature is demonstrated. The new vanguard of proto architecture describes difficulties and inconsistencies in the relationship between theories and structures, difficulties arising from the very idea of "virtually" itself. It becomes difficult to say that a drawing in cyberspace is an architectural form or just a graph of architectural theory; in the virtual space, there is no difference between the particular structure and the general principle. Therefore, the form is first designed, only after to be constructed. Naturally, it is impossible (theoretically or technically) for design and construction processes to take place simultaneously. Predictably, bio-morphosis leads to multiple forms of expression, defined and transmitted in geometric terms. Doi: 10.28991/esj-2020-01248 Full Text: PD

    Opinions and Outlooks on Morphological Computation

    Get PDF
    Morphological Computation is based on the observation that biological systems seem to carry out relevant computations with their morphology (physical body) in order to successfully interact with their environments. This can be observed in a whole range of systems and at many different scales. It has been studied in animals – e.g., while running, the functionality of coping with impact and slight unevenness in the ground is "delivered" by the shape of the legs and the damped elasticity of the muscle-tendon system – and plants, but it has also been observed at the cellular and even at the molecular level – as seen, for example, in spontaneous self-assembly. The concept of morphological computation has served as an inspirational resource to build bio-inspired robots, design novel approaches for support systems in health care, implement computation with natural systems, but also in art and architecture. As a consequence, the field is highly interdisciplinary, which is also nicely reflected in the wide range of authors that are featured in this e-book. We have contributions from robotics, mechanical engineering, health, architecture, biology, philosophy, and others

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 324)

    Get PDF
    This bibliography lists 200 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Implementing Industry 4.0 in SMEs

    Get PDF
    This open access book addresses the practical challenges that Industry 4.0 presents for SMEs. While large companies are already responding to the changes resulting from the fourth industrial revolution , small businesses are in danger of falling behind due to the lack of examples, best practices and established methods and tools. Following on from the publication of the previous book ‘Industry 4.0 for SMEs: Challenges, Opportunities and Requirements’, the authors offer in this new book innovative results from research on smart manufacturing, smart logistics and managerial models for SMEs. Based on a large scale EU-funded research project involving seven academic institutions from three continents and a network of over fifty small and medium sized enterprises, the book reveals the methods and tools required to support the successful implementation of Industry 4.0 along with practical examples

    Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    Get PDF
    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors

    Adaptive networks for robotics and the emergence of reward anticipatory circuits

    Get PDF
    Currently the central challenge facing evolutionary robotics is to determine how best to extend the range and complexity of behaviour supported by evolved neural systems. Implicit in the work described in this thesis is the idea that this might best be achieved through devising neural circuits (tractable to evolutionary exploration) that exhibit complementary functional characteristics. We concentrate on two problem domains; locomotion and sequence learning. For locomotion we compare the use of GasNets and other adaptive networks. For sequence learning we introduce a novel connectionist model inspired by the role of dopamine in the basal ganglia (commonly interpreted as a form of reinforcement learning). This connectionist approach relies upon a new neuron model inspired by notions of energy efficient signalling. Two reward adaptive circuit variants were investigated. These were applied respectively to two learning problems; where action sequences are required to take place in a strict order, and secondly, where action sequences are robust to intermediate arbitrary states. We conclude the thesis by proposing a formal model of functional integration, encompassing locomotion and sequence learning, extending ideas proposed by W. Ross Ashby. A general model of the adaptive replicator is presented, incoporating subsystems that are tuned to continuous variation and discrete or conditional events. Comparisons are made with Ross W. Ashby's model of ultrastability and his ideas on adaptive behaviour. This model is intended to support our assertion that, GasNets (and similar networks) and reward adaptive circuits of the type presented here, are intrinsically complementary. In conclusion we present some ideas on how the co-evolution of GasNet and reward adaptive circuits might lead us to significant improvements in the synthesis of agents capable of exhibiting complex adaptive behaviour

    SABRE: A bio-inspired fault-tolerant electronic architecture

    Get PDF
    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance. © 2013 IOP Publishing Ltd

    The Irresistible Animacy of Lively Artefacts

    Get PDF
    This thesis explores the perception of ‘liveliness’, or ‘animacy’, in robotically driven artefacts. This perception is irresistible, pervasive, aesthetically potent and poorly understood. I argue that the Cartesian rationalist tendencies of robotic and artificial intelligence research cultures, and associated cognitivist theories of mind, fail to acknowledge the perceptual and instinctual emotional affects that lively artefacts elicit. The thesis examines how we see artefacts with particular qualities of motion to be alive, and asks what notions of cognition can explain these perceptions. ‘Irresistible Animacy’ is our human tendency to be drawn to the primitive and strangely thrilling nature of experiencing lively artefacts. I have two research methodologies; one is interdisciplinary scholarship and the other is my artistic practice of building lively artefacts. I have developed an approach that draws on first-order cybernetics’ central animating principle of feedback-control, and second-order cybernetics’ concerns with cognition. The foundations of this approach are based upon practices of machine making to embody and perform animate behaviour, both as scientific and artistic pursuits. These have inspired embodied, embedded, enactive, and extended notions of cognition. I have developed an understanding using a theoretical framework, drawing upon literature on visual perception, behavioural and social psychology, puppetry, animation, cybernetics, robotics, interaction and aesthetics. I take as a starting point, the understanding that the visual cortex of the vertebrate eye includes active feature-detection for animate agents in our environment, and actively constructs the causal and social structure of this environment. I suggest perceptual ambiguity is at the centre of all animated art forms. Ambiguity encourages natural curiosity and interactive participation. It also elicits complex visceral qualities of presence and the uncanny. In the making of my own Lively Artefacts, I demonstrate a series of different approaches including the use of abstraction, artificial life algorithms, and reactive techniques
    corecore