2,025 research outputs found

    Learning medical alarms whilst performing other tasks.

    Get PDF
    Two studies are reported which first observe, and then attempt to replicate, the cognitive demands of intensive care unit (ICU) activity whilst concurrently learning audible alarms. The first study, an observational study in an ICU ward, showed that the alarms are very frequent and co-occur with some activities more than others. The three most frequently observed activities observed in the ICU were drugs (calculation, preparation and administration), patient observation and talking. The cognitive demands of these activities were simulated in a second, laboratory-based experiment in which alarms were learned. The results showed that performance in the alarm task generally improved as participants were exposed to more repetitions of those alarms, but that performance decrements were observed in the secondary tasks, particularly when there were two or three of them. Some confusions between the alarms persisted to the end of the study despite prolonged exposure to the alarms, confusions which were likely caused by both acoustic and verbal labelling similarities. PRACTITIONER SUMMARY: The cognitive demands of working in an ICU were observed and simulated whilst alarms were learned. Alarms should generally avoid sharing similar rhythmic (and other) characteristics. The simulation task described here could be used for testing alarm learning without requiring a clinical environment

    Classifying Alarms: Seeking Durability, Credibility, Consistency, and Simplicity

    Get PDF

    The Recognizability and Localizability of Auditory Alarms: Setting Global Medical Device Standards.

    Get PDF
    Objective Four sets of eight audible alarms matching the functions specified in IEC 60601-1-8 were designed using known principles from auditory cognition with the intention that they would be more recognizable and localizable than those currently specified in the standard. Background The audible alarms associated with IEC 60601-1-8, a global medical device standard, are known to be difficult to learn and retain, and there have been many calls to update them. There are known principles of design and cognition that might form the basis of more readily recognizable alarms. There is also scope for improvement in the localizability of the existing alarms. Method Four alternative sets of alarms matched to the functions specified in IEC 60601-1-8 were tested for recognizability and localizability and compared with the alarms currently specified in the standard. Results With a single exception, all prototype sets of alarms outperformed the current IEC set on both recognizability and localizability. Within the prototype sets, auditory icons were the most easily recognized, but the other sets, using word rhythms and simple acoustic metaphors, were also more easily recognized than the current alarms. With the exception of one set, all prototype sets were also easier to localize. Conclusion Known auditory cognition and perception principles were successfully applied to an existing audible alarm problem. Application This work constitutes the first (benchmarking) phase of replacing the alarms currently specified in the standard. The design principles used for each set demonstrate the relative ease with which different alarm types can be recognized and localized

    Human-centred design of clinical auditory alarms

    Get PDF
    Auditory alarms are commonly badly designed, providing little to no information or guidance. In the healthcare context, the poor acoustics of alarms is one contributor for the noise problem. The goal of this thesis is to propose a human-centred methodology for the design of clinical auditory alarms, by making them less disruptive and more informative, thus improving the healthcare soundscape. It implements this methodology from concept to evaluation and validation, combining psychoacoustics with usability and user experience methods. Another aim of this research consisted in understanding the limitations and possibilities offered by online tools for scientific studies. Thus, different processes and methodologies were implemented, and corresponding results were discussed. To understand the acoustic healthcare environment, field visits, interviews, and surveys were performed with healthcare professionals. Additionally, sound pressure levels and frequency analysis of several surgeries in different hospitals provided specific sound design requirements, which were added to an existent body of knowledge on clinical alarm design. A second stage consisted in prototyping very simple sounds to comprehend which temporal and spectral parameters of sound could be manipulated to communicate clinical information. Parameters such as frequency, speed, onset, and rhythm were studied, and relations between subjective perception and physical parameters were established. In parallel, and heavily influenced by the new IEC 60601-1-8 - General requirements, tests and guidance for alarm systems in medical electrical equipment and medical electrical systems, a design strategy with auditory icons was created. This strategy intended to provide as much information as possible in an auditory alarm. To do so, it involved two main components: a priority pointer indicating the priority of the alarm; an auditory icon indicating the cause of the alarm. A third component indicating increasing or decreasing tendency of the vital sign was designed, but not validated with users. After online validation of the priority pointer and auditory icon for eight categories (cardiac, drug administration, ventilation, blood pressure, perfusion, oxygen, temperature, and power down), a new library of clinical auditory alarms is proposed.Os alarmes auditivos são habitualmente mal concebidos, dando poucas informações ou orientações perante a situação que despoletou o aviso. No contexto da saúde, a má acústica dos alarmes é um dos contribuidores para o problema do ruído. O objetivo desta tese é o de melhorar a paisagem sonora em ambientes clínicos, propondo uma metodologia centrada no Humano para o design de alarmes auditivos clínicos, tornando-os menos disruptivos e mais informativos. Essa metodologia é implementada desde o conceito até a avaliação e validação, combinando métodos da psicoacústica com métodos de usabilidade e experiência do utilizador. Outro objetivo desta investigação é o de compreender as limitações e possibilidades oferecidas pelas ferramentas online para estudos científicos. Assim, diversos processos e metodologias foram implementados, e os respetivos resultados são discutidos. Para compreender o ambiente acústico clínico, foram realizadas visitas de campo, entrevistas e inquéritos com profissionais de saúde. Além disso, avaliou-se o nível de pressão sonora e frequências de várias cirurgias em diferentes hospitais. Esta atividade forneceu requisitos específicos de design de som que foram adicionados a um corpo existente de conhecimento sobre design de alarmes clínicos. Uma segunda etapa consistiu na prototipagem de sons simples para compreender que parâmetros temporais e espectrais do som poderiam ser manipulados para comunicar informações clínicas. Parâmetros como frequência, velocidade, envelope e ritmo foram estudados, e as relações entre a perceção subjetiva e os parâmetros físicos foram estabelecidas. Paralelamente, e fortemente influenciado pela nova norma IEC 60601-1-8 - Requisitos gerais, testes e orientações para sistemas de alarme em equipamentos médicos elétricos e sistemas médicos elétricos, foi criada uma estratégia de design com ícones auditivos. Essa estratégia pretendia incorporar o máximo de informações num alarme auditivo. Para isso, envolveu dois componentes principais: um ponteiro de prioridade que indica a prioridade do alarme; e um ícone auditivo que indica a causa do alarme. Um terceiro componente de tendência (aumento ou diminuição do valor do sinal vital) foi criado, mas não validado com utilizadores. Após a validação do ponteiro de prioridade e ícone auditivo para oito categorias (cardíaco, administração de medicamentos, ventilação, pressão arterial, perfusão, oxigénio, temperatura e falha de equipamento), propõe-se uma nova biblioteca de alarmes auditivos clínicos

    Fatique alarms in intensive care: describing the phenomenon through integrative literature review

    Get PDF
    Objective: To analyze scientific publications about alarm monitoring and alarm fatigue phenomenon in intensive care. Methods: Integrative review of literature held in databases Lilacs, PubMed and SciELO. Results: After analyzing the productions elucidate the concepts and definitions of the phenomenon, predisposing factors and strategies to minimize them, the relationship with patient safety, achieving time frame 1993 to June 2010. Fatigue alarm occurs when a large number of alarms covers those clinically significant, enabling relevant alarms are disabled, silenced or ignored by staff. The excessive number of alarms makes indifferent staff, reducing your alertness, leading to distrust of the sense of urgency of alarms, resulting in lack of response to alarms relevant. Conclusion: The technological apparatus requires attention of professionals to ensure patient safety serious

    Clinical Alarms in a Gynaecological Surgical Unit: A Retrospective Data Analysis

    Get PDF
    Alarm fatigue refers to the desensitisation of medical staff to patient monitor clinical alarms, which may lead to slower response time or total ignorance of alarms and thereby affects patient safety. The reasons behind alarm fatigue are complex; the main contributing factors include the high number of alarms and the poor positive predictive value of alarms. The study was performed in the Surgery and Anaesthesia Unit of the Women’s Hospital, Helsinki, by collecting data from patient monitoring device clinical alarms and patient characteristics from surgical operations. We descriptively analysed the data and statistically analysed the differences in alarm types between weekdays and weekends, using chi-squared, for a total of eight monitors with 562 patients. The most common operational procedure was caesarean section, of which 149 were performed (15.7%). Statistically significant differences existed in alarm types and procedures between weekdays and weekends. The number of alarms produced was 11.7 per patient. In total, 4698 (71.5%) alarms were technical and 1873 (28.5%) were physiological. The most common physiological alarm type was low pulse oximetry, with a total of 437 (23.3%). Of all the alarms, the number of alarms either acknowledged or silenced was 1234 (18.8%). A notable phenomenon in the study unit was alarm fatigue. Greater customisation of patient monitors for different settings is needed to reduce the number of alarms that do not have clinical significance

    Alarm fatigue in the ward

    Get PDF
    This article addresses the need of including acoustical perspectives in the debate on alarm fatigue within the healthcare domain. We show how conceptualisations and proposed solutions to alarm fatigue are unequally distributed across what could be called the ‘alarm chain’: a generic model of the core structural elements and dynamic relations that constitute any alarm scenario. A focal point in the alarm chain – the ‘alarm mediation cleft’ – seems to divide the alarm fatigue literature from the segment of the alarm literature that deals with auditory alarm design. The current healthcare discourse on alarm fatigue is centred around the ‘premediated alarm phase’, which has the consequence of an unfortunate dichotomous approach to the functionality of sound. We address some shortcomings of this approach and outline some methodological implications and potentials of searching for signs of alarm fatigue in the ‘post-mediated alarm phase’

    Local entanglements and utopian moves : an inquiry into train accidents

    Get PDF
    In 1996 after nearly fifty years in public ownership the British rail network was privatised. As a part of this what had been single organisation, British Rail, was broken into a set of different units which were individually sold off. Prominent among these were Railtrack plc (owner of the track, stations, signalling and other infrastructure), more than twenty train operating companies (TOCs) which received franchises to run trains (usually with government subsidies), and three companies which owned and leased rolling stock

    Spatial audio in small display screen devices

    Get PDF
    Our work addresses the problem of (visual) clutter in mobile device interfaces. The solution we propose involves the translation of technique-from the graphical to the audio domain-for expliting space in information representation. This article presents an illustrative example in the form of a spatialisedaudio progress bar. In usability tests, participants performed background monitoring tasks significantly more accurately using this spatialised audio (a compared with a conventional visual) progress bar. Moreover, their performance in a simultaneously running, visually demanding foreground task was significantly improved in the eye-free monitoring condition. These results have important implications for the design of multi-tasking interfaces for mobile devices

    Sound management in a truck cabin

    Get PDF
    corecore