153 research outputs found

    Computability Theory

    Get PDF
    Computability is one of the fundamental notions of mathematics, trying to capture the effective content of mathematics. Starting from Gödel’s Incompleteness Theorem, it has now blossomed into a rich area with strong connections with other areas of mathematical logic as well as algebra and theoretical computer science

    Computability Theory (hybrid meeting)

    Get PDF
    Over the last decade computability theory has seen many new and fascinating developments that have linked the subject much closer to other mathematical disciplines inside and outside of logic. This includes, for instance, work on enumeration degrees that has revealed deep and surprising relations to general topology, the work on algorithmic randomness that is closely tied to symbolic dynamics and geometric measure theory. Inside logic there are connections to model theory, set theory, effective descriptive set theory, computable analysis and reverse mathematics. In some of these cases the bridges to seemingly distant mathematical fields have yielded completely new proofs or even solutions of open problems in the respective fields. Thus, over the last decade, computability theory has formed vibrant and beneficial interactions with other mathematical fields. The goal of this workshop was to bring together researchers representing different aspects of computability theory to discuss recent advances, and to stimulate future work

    On the topological aspects of the theory of represented spaces

    Get PDF
    Represented spaces form the general setting for the study of computability derived from Turing machines. As such, they are the basic entities for endeavors such as computable analysis or computable measure theory. The theory of represented spaces is well-known to exhibit a strong topological flavour. We present an abstract and very succinct introduction to the field; drawing heavily on prior work by Escard\'o, Schr\"oder, and others. Central aspects of the theory are function spaces and various spaces of subsets derived from other represented spaces, and -- closely linked to these -- properties of represented spaces such as compactness, overtness and separation principles. Both the derived spaces and the properties are introduced by demanding the computability of certain mappings, and it is demonstrated that typically various interesting mappings induce the same property.Comment: Earlier versions were titled "Compactness and separation for represented spaces" and "A new introduction to the theory of represented spaces

    Three models of ordinal computability

    Get PDF
    In this thesis we expand the scope of ordinal computability, i.e., the study of models of computation that are generalized to infinite domains. The discipline sets itself apart from classical work on generalized recursion theory by focusing strongly on the computational paradigm and an analysis in elementary computational steps. In the present work, two models of classical computability of which no previous generalizations to ordinals are known to the author are lifted to the ordinal domain, namely λ-calculus and Blum-Shub-Smale machines. One of the multiple generalizations of a third model relevant to this thesis, the Turing machine, is employed to further study classical descriptive set theory. The main results are: An ordinal λ-calculus is defined and confluency properties in the form of a weak Church-Rosser theorem are established. The calculus is proved to be strongly related to the constructible hierarchy of sets, a feature typical for an entire subfamily of models of ordinal computation. Ordinal Turing machines with input restricted to subsets of ω are shown to compute the Δ12 sets of reals. Conversely, the machines can be employed to reprove the absoluteness of Σ12 sets (Shoenfield absoluteness) and basic properties of Σ12 sets. New tree representations and new pointclasses defined by the means of ordinal Turing computations are introduced and studied. The Blum-Shub-Smale model for computation on the real numbers is lifted to transfinite running times. The supremum of possible runtimes is determined and an upper bound on the computational strength is given. Summarizing, this thesis both expands the field of ordinal computability by enlarging its palette of computational models and also connects the field further by tying in the new models into the existing framework. Questions that have been raised in the community, e.g. on the possibility of generalizations of λ-calculus and Blum-Shub-Smale machines, are addressed and answered

    Mathematical Logic: Proof Theory, Constructive Mathematics (hybrid meeting)

    Get PDF
    The Workshop "Mathematical Logic: Proof Theory, Constructive Mathematics" focused on proofs both as formal derivations in deductive systems as well as on the extraction of explicit computational content from given proofs in core areas of ordinary mathematics using proof-theoretic methods. The workshop contributed to the following research strands: interactions between foundations and applications; proof mining; constructivity in classical logic; modal logic and provability logic; proof theory and theoretical computer science; structural proof theory
    • …
    corecore