522 research outputs found

    Polyhedral graph abstractions and an approach to the Linear Hirsch Conjecture

    Full text link
    We introduce a new combinatorial abstraction for the graphs of polyhedra. The new abstraction is a flexible framework defined by combinatorial properties, with each collection of properties taken providing a variant for studying the diameters of polyhedral graphs. One particular variant has a diameter which satisfies the best known upper bound on the diameters of polyhedra. Another variant has superlinear asymptotic diameter, and together with some combinatorial operations, gives a concrete approach for disproving the Linear Hirsch Conjecture.Comment: 16 pages, 4 figure

    A quasi-polynomial bound for the diameter of graphs of polyhedra

    Full text link
    The diameter of the graph of a dd-dimensional polyhedron with nn facets is at most nlogd+2n^{\log d+2}Comment: 2 page

    Recent progress on the combinatorial diameter of polytopes and simplicial complexes

    Full text link
    The Hirsch conjecture, posed in 1957, stated that the graph of a dd-dimensional polytope or polyhedron with nn facets cannot have diameter greater than ndn - d. The conjecture itself has been disproved, but what we know about the underlying question is quite scarce. Most notably, no polynomial upper bound is known for the diameters that were conjectured to be linear. In contrast, no polyhedron violating the conjecture by more than 25% is known. This paper reviews several recent attempts and progress on the question. Some work in the world of polyhedra or (more often) bounded polytopes, but some try to shed light on the question by generalizing it to simplicial complexes. In particular, we include here our recent and previously unpublished proof that the maximum diameter of arbitrary simplicial complexes is in nTheta(d)n^{Theta(d)} and we summarize the main ideas in the polymath 3 project, a web-based collective effort trying to prove an upper bound of type nd for the diameters of polyhedra and of more general objects (including, e. g., simplicial manifolds).Comment: 34 pages. This paper supersedes one cited as "On the maximum diameter of simplicial complexes and abstractions of them, in preparation

    A Quantitative Steinitz Theorem for Plane Triangulations

    Full text link
    We give a new proof of Steinitz's classical theorem in the case of plane triangulations, which allows us to obtain a new general bound on the grid size of the simplicial polytope realizing a given triangulation, subexponential in a number of special cases. Formally, we prove that every plane triangulation GG with nn vertices can be embedded in R2\mathbb{R}^2 in such a way that it is the vertical projection of a convex polyhedral surface. We show that the vertices of this surface may be placed in a 4n3×8n5×ζ(n)4n^3 \times 8n^5 \times \zeta(n) integer grid, where ζ(n)(500n8)τ(G)\zeta(n) \leq (500 n^8)^{\tau(G)} and τ(G)\tau(G) denotes the shedding diameter of GG, a quantity defined in the paper.Comment: 25 pages, 6 postscript figure

    Witness (Delaunay) Graphs

    Get PDF
    Proximity graphs are used in several areas in which a neighborliness relationship for input data sets is a useful tool in their analysis, and have also received substantial attention from the graph drawing community, as they are a natural way of implicitly representing graphs. However, as a tool for graph representation, proximity graphs have some limitations that may be overcome with suitable generalizations. We introduce a generalization, witness graphs, that encompasses both the goal of more power and flexibility for graph drawing issues and a wider spectrum for neighborhood analysis. We study in detail two concrete examples, both related to Delaunay graphs, and consider as well some problems on stabbing geometric objects and point set discrimination, that can be naturally described in terms of witness graphs.Comment: 27 pages. JCCGG 200

    On the Length of Monotone Paths in Polyhedra

    Full text link
    Motivated by the problem of bounding the number of iterations of the Simplex algorithm we investigate the possible lengths of monotone paths followed by the Simplex method inside the oriented graphs of polyhedra (oriented by the objective function). We consider both the shortest and the longest monotone paths and estimate the monotone diameter and height of polyhedra. Our analysis applies to transportation polytopes, matroid polytopes, matching polytopes, shortest-path polytopes, and the TSP, among others. We begin by showing that combinatorial cubes have monotone and Bland pivot height bounded by their dimension and that in fact all monotone paths of zonotopes are no larger than the number of edge directions of the zonotope. We later use this to show that several polytopes have polynomial-size pivot height, for all pivot rules. In contrast, we show that many well-known combinatorial polytopes have exponentially-long monotone paths. Surprisingly, for some famous pivot rules, e.g., greatest improvement and steepest edge, these same polytopes have polynomial-size simplex paths.Comment: 24 pages, 8 figure

    Diameter of Polyhedra: Limits of Abstraction

    Get PDF
    We investigate the diameter of a natural abstraction of the 11-skeleton of polyhedra. Even if this abstraction is more general than other abstractions previously studied in the literature, known upper bounds on the diameter of polyhedra continue to hold here. On the other hand, we show that this abstraction has its limits by providing an almost quadratic lower bound
    corecore