71 research outputs found

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering

    Applications of Power Electronics:Volume 1

    Get PDF

    Enhancing the performance of flexible AC transmission systems (FACTS) by computational intelligence

    Get PDF
    The thesis studies and analyzes UPFC technology concerns the management of active and reactive power in the power networks to improve the performance aiming to reach the best operation criteria. The contributions of the thesis start with formatting, deriving, coding and programming the network equations required to link UPFC steady-state and dynamic models to the power systems. The thesis derives GA applications on UPFC to achieve real criteria on a real world sub-transmission network. An enhanced GA technique is proposed by enhancing and updating the working phases of the GA including the objective function formulation and computing the fitness using the diversity in the population and selection probability. The simulations and results show the advantages of using the proposed technique. Integrating the results by linking the case studies of the steady-state and the dynamic analysis is achieved. In the dynamic analysis section, a new idea for integrating the GA with ANFIS to be applied on the control action procedure is presented. The main subject of the thesis deals with enhancing the steady-state and dynamics performance of the power grids by Flexible AC Transmission System (FACTS) based on computational intelligence. Control of the electric power system can be achieved by designing the FACTS controller, where the new trends as Artificial Intelligence can be applied to this subject to enhance the characteristics of controller performance. The proposed technique will be applied to solve real problems in a Finnish power grid. The thesis seeks to deal, solve, and enhance performances until the year 2020, where the data used is until the conditions of year 2020. The FACTS device, which will be used in the thesis, is the most promising one, which known as the Unified Power Flow Controller (UPFC). The thesis achieves the optimization of the type, the location and the size of the power and control elements for UPFC to optimize the system performance. The thesis derives the criteria to install the UPFC in an optimal location with optimal parameters and then designs an AI based damping controller for enhancing power system dynamic performance. In this thesis, for every operating point GA is used to search for controllers' parameters, parameters found at certain operating point are different from those found at others. ANFISs are required in this case to recognize the appropriate parameters for each operating point

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters

    Voyager spacecraft. Volume V - Alternate designs, subsystems considerations, appendix II Study report, phase IA

    Get PDF
    Stability and control, telecommunication system, solar array design, propellant feed system, and infrared model of Mars for Voyager projec

    Application of the cascaded multilevel inverter as a shunt active power filter

    Get PDF
    Abstract unavailable please refer to PD

    Innovation in Energy Systems

    Get PDF
    It has been a little over a century since the inception of interconnected networks and little has changed in the way that they are operated. Demand-supply balance methods, protection schemes, business models for electric power companies, and future development considerations have remained the same until very recently. Distributed generators, storage devices, and electric vehicles have become widespread and disrupted century-old bulk generation - bulk transmission operation. Distribution networks are no longer passive networks and now contribute to power generation. Old billing and energy trading schemes cannot accommodate this change and need revision. Furthermore, bidirectional power flow is an unprecedented phenomenon in distribution networks and traditional protection schemes require a thorough fix for proper operation. This book aims to cover new technologies, methods, and approaches developed to meet the needs of this changing field

    Performance analysis of doubly-fed induction generator (DFIG)- based wind turbine with sensored and sensorless vector control

    Get PDF
    PhD ThesisConventional energy sources are limited and pollute the environment. Therefore more attention has been paid to utilizing renewable energy resources. Wind energy is the fastest growing and most promising renewable energy source due to its economically viability. Wind turbine generator systems (WTGSs) are being widely manufactured and their number is rising dramatically day by day. There are different generator technologies adopted in wind turbine generator systems, but the most promising type of wind turbine for the future market is investigated in the present study, namely the doubly-fed induction generator wind turbine (DFIG). This has distinct advantages, such as cost effectiveness, efficiency, less acoustic noise, and reliability and in addition this machine can operate either in grid-connected or standalone mode. This investigation considers the analysis, modeling, control, rotor position estimation and impact of grid disturbances in DFIG systems in order to optimally extract power from wind and to accurately predict performance. In this study, the dynamic performance evaluation of the DFIG system is depicted the power quantities (active and reactive power) are succeed to track its command signals. This means that the decouple controllers able to regulating the impact of coupling effect in the tracking of command signals that verify the robust of the PI rotor active power even in disturbance condition. One of the main objectives of this study is to investigate the comparative estimation analysis of DFIG-based wind turbines with two types of PI vector control using PWM. The first is indirect sensor vector control and the other type includes two schemes using model reference adaptive system (MRAS) estimators to validate the ability to detect rotor position when the generator is connected to the grid. The results for the DFIG-based on reactive power MRAS (QRMRAS) are compared with those of the rotor current-based MRAS (RCMRAS) and the former scheme proved to be better and less sensitive to parameter deviations, its required few mathematical computations and was more accurate. During the set of tests using MATLAB®/SMULINK® in adjusting the error between the reference and adaptive models, the estimated rotor position can be obtained with the objective of achieving accurate rotor position information, which is usually measured by rotary encoders or resolvers. The use of these encoders will conventionally lead to increased cost, size, weight, and wiring ii complexity and reduced the mechanical robustness and reliability of the overall DFIG drive systems. However the use of rotor position estimation represents a backup function in sensor vector control systems when sensor failure occurs. The behavioral response of the DFIG-based wind turbine system to grid disturbances is analyzed and simulated with the proposed control strategies and protection scheme in order to maintain the connection to the network during grid faults. Moreover, the use of the null active and reactive reference set scheme control strategy, which modifies the vector control in the rotor side converter (RSC) contributes to limiting the over-current in the rotor windings and over-voltage in the DC bus during voltage dips, which can improve the Low Voltage Ride-through (LVRT) ability of the DFIG-based wind turbine system.my home country of Iraq and its Ministry of Planning for providing a scholarship for my study

    Development of a High-Bandwidth Current Sensor for High-Frequency Power Applications

    Get PDF
    The aim of this master thesis is to develop a high-bandwidth current sensor for a nominal design current of 100 A and a nominal design bandwidth of 100 MHz. After an analysis which properties are important to develop a current sensor, a requirement list was stated. Several current sensing methods were described and their qualification for the stated requirements were evaluated. With the resulting sensing concept, consisting out of Rogowski coils and magneto resistors, a system design was elaborated. One requirement was to develop a current sensor which needs less effort in series production than a regular Rogowski coil. Therefore, a planar Rogowski coil was proposed for this sensor development. Furthermore, a magnetic field simulation was designed. Based on the results, a optimal placement simulation for both sensors was carried out. In the final design phase, the galvanic insulation requirements of 4.8 kV based on the corresponding standards were investigated and implemented. The test equipment used in this thesis was designed and build in-house at IPE (KIT-ADL). Commercial solutions did not offer the suggested requirements for generating a double pulse with the necessary rise time to characterize the current sensor’s bandwidth. The test equipment was able to apply pulses with a maximum current of 200 A and a rise time of 1 ns to the device under test. The prototype is able to sense a current up to ±100 A with a bandwidth of 20 MHz

    Fault location on the high voltage series compensated power transmission networks

    Get PDF
    Nowadays power transmission networks are capable of delivering contracted power from any supplier to any consumer over a large geographic area under market control, and thus transmission lines are incorporated with FACTs series compensated devices to increase the power transfer capability with improvement to system integrity. Conventional fault location methods developed in the past many years are not suitable for FACTs transmission networks. The obvious reason is that FACTs devices in transmission networks introduce non-linearity in the system and hence linear fault detection methods are no longer valid. Therefore, it is still a matter of research to investigate developing new fault detection techniques to cater for modern transmission network configurations and solve implementation issues maintaining required accuracy. This PhD research work is based on developing an accurate and robust new fault location algorithm for series compensated high voltage transmission lines, considering many issues such as transmission line models, configurations with series compensation features. Building on the existing knowledge, a new algorithm has been developed for the estimation of fault location using the time domain approach. In this algorithm, instantaneous fault signals from the transmission line ends are measured and applied to the algorithm to calculate the distance to fault. The new algorithm was tested on two port transmission line model developed using EMTP/ATP software and measured fault data from the simulations are exported to the MATLAB space to run the algorithm. Broad range of faults has been simulated considering various fault cases to test the algorithm and statistical results obtained. It was observed that the accuracy of location of fault on series compensated transmission line using this algorithm is in the range from 99.7 % to 99.9% in 90% of fault cases. In addition, this algorithm was further improved considering many practical issues related to modern series compensated transmission lines (with TCSC var compensators) achieving similar accuracies in the estimation of fault location
    corecore