20,087 research outputs found

    Identifying Rare and Subtle Behaviors: A Weakly Supervised Joint Topic Model

    Get PDF

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Investigation of sequence processing: A cognitive and computational neuroscience perspective

    Get PDF
    Serial order processing or sequence processing underlies many human activities such as speech, language, skill learning, planning, problem-solving, etc. Investigating the neural bases of sequence processing enables us to understand serial order in cognition and also helps in building intelligent devices. In this article, we review various cognitive issues related to sequence processing with examples. Experimental results that give evidence for the involvement of various brain areas will be described. Finally, a theoretical approach based on statistical models and reinforcement learning paradigm is presented. These theoretical ideas are useful for studying sequence learning in a principled way. This article also suggests a two-way process diagram integrating experimentation (cognitive neuroscience) and theory/ computational modelling (computational neuroscience). This integrated framework is useful not only in the present study of serial order, but also for understanding many cognitive processes

    Autonomous Fault Detection in Self-Healing Systems using Restricted Boltzmann Machines

    Get PDF
    Autonomously detecting and recovering from faults is one approach for reducing the operational complexity and costs associated with managing computing environments. We present a novel methodology for autonomously generating investigation leads that help identify systems faults, and extends our previous work in this area by leveraging Restricted Boltzmann Machines (RBMs) and contrastive divergence learning to analyse changes in historical feature data. This allows us to heuristically identify the root cause of a fault, and demonstrate an improvement to the state of the art by showing feature data can be predicted heuristically beyond a single instance to include entire sequences of information.Comment: Published and presented in the 11th IEEE International Conference and Workshops on Engineering of Autonomic and Autonomous Systems (EASe 2014

    Towards modeling complex robot training tasks through system identification

    Get PDF
    Previous research has shown that sensor-motor tasks in mobile robotics applications can be modelled automatically, using NARMAX system identi�cation, where the sensory perception of the robot is mapped to the desired motor commands using non-linear polynomial functions, resulting in a tight coupling between sensing and acting | the robot responds directly to the sensor stimuli without having internal states or memory. However, competences such as for instance sequences of actions, where actions depend on each other, require memory and thus a representation of state. In these cases a simple direct link between sensory perception and the motor commands may not be enough to accomplish the desired tasks. The contribution to knowledge of this paper is to show how fundamental, simple NARMAX models of behaviour can be used in a bootstrapping process to generate complex behaviours that were so far beyond reach. We argue that as the complexity of the task increases, it is important to estimate the current state of the robot and integrate this information into the system identification process. To achieve this we propose a novel method which relates distinctive locations in the environment to the state of the robot, using an unsupervised clustering algorithm. Once we estimate the current state of the robot accurately, we combine the state information with the perception of the robot through a bootstrapping method to generate more complex robot tasks: We obtain a polynomial model which models the complex task as a function of predefined low level sensor motor controllers and raw sensory data. The proposed method has been used to teach Scitos G5 mobile robots a number of complex tasks, such as advanced obstacle avoidance, or complex route learning

    Open-Ended Evolutionary Robotics: an Information Theoretic Approach

    Get PDF
    This paper is concerned with designing self-driven fitness functions for Embedded Evolutionary Robotics. The proposed approach considers the entropy of the sensori-motor stream generated by the robot controller. This entropy is computed using unsupervised learning; its maximization, achieved by an on-board evolutionary algorithm, implements a "curiosity instinct", favouring controllers visiting many diverse sensori-motor states (sms). Further, the set of sms discovered by an individual can be transmitted to its offspring, making a cultural evolution mode possible. Cumulative entropy (computed from ancestors and current individual visits to the sms) defines another self-driven fitness; its optimization implements a "discovery instinct", as it favours controllers visiting new or rare sensori-motor states. Empirical results on the benchmark problems proposed by Lehman and Stanley (2008) comparatively demonstrate the merits of the approach
    corecore