328 research outputs found

    Investigation related to multispectral imaging systems

    Get PDF
    A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community

    Developing a remote sensing system based on X-band radar technology for coastal morphodynamics study

    Get PDF
    New data processing techniques are proposed for the assessment of scopes and limitations from radar-derived sea state parameters, coastline evolution and water depth estimates. Most of the raised research is focused on Colombian Caribbean coast and the Western Mediterranean Sea. First, a novel procedure to mitigate shadowing in radar images is proposed. The method compensates distortions introduced by the radar acquisition process and the power decay of the radar signal along range applying image enhancement techniques through a couple of pre-processing steps based on filtering and interpolation. Results reveal that the proposed methodology reproduces with high accuracy the sea state parameters in nearshore areas. The improvement resulting from the proposed method is assessed in a coral reef barrier, introducing a completely novel use for X-Band radar in coastal environments. So far, wave energy dissipation on a coral reef barrier has been studied by a few in-situ sensors placed in a straight line, perpendicular to the coastline, but never been described using marine radars. In this context, marine radar images are used to describe prominent features of coral reefs, including the delineation of reef morphological structure, wave energy dissipation and wave transformation processes in the lagoon of San Andres Island barrier-reef system. Results show that reef attenuates incident waves by approximately 75% due to both frictional and wave breaking dissipation, with an equivalent bottom roughness of 0.20 m and a wave friction factor of 0.18. These parameters are comparable with estimates reported in other shallow coral reef lagoons as well as at meadow canopies, obtained using in-situ measurements of wave parameters.DoctoradoDoctor en Ingeniería Eléctrica y Electrónic

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Earth Resources: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 623 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1983. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    A Multi-temporal fusion-based approach for land cover mapping in support of nuclear incident response

    Get PDF
    An increasingly important application of remote sensing is to provide decision support during emergency response and disaster management efforts. Land cover maps constitute one such useful application product during disaster events; if generated rapidly after any disaster, such map products can contribute to the efficacy of the response effort. In light of recent nuclear incidents, e.g., after the earthquake/tsunami in Japan (2011), our research focuses on constructing rapid and accurate land cover maps of the impacted area in case of an accidental nuclear release. The methodology involves integration of results from two different approaches, namely coarse spatial resolution multi-temporal and fine spatial resolution imagery, to increase classification accuracy. Although advanced methods have been developed for classification using high spatial or temporal resolution imagery, only a limited amount of work has been done on fusion of these two remote sensing approaches. The presented methodology thus involves integration of classification results from two different remote sensing modalities in order to improve classification accuracy. The data used included RapidEye and MODIS scenes over the Nine Mile Point Nuclear Power Station in Oswego (New York, USA). The first step in the process was the construction of land cover maps from freely available, high temporal resolution, low spatial resolution MODIS imagery using a time-series approach. We used the variability in the temporal signatures among different land cover classes for classification. The time series-specific features were defined by various physical properties of a pixel, such as variation in vegetation cover and water content over time. The pixels were classified into four land cover classes - forest, urban, water, and vegetation - using Euclidean and Mahalanobis distance metrics. On the other hand, a high spatial resolution commercial satellite, such as RapidEye, can be tasked to capture images over the affected area in the case of a nuclear event. This imagery served as a second source of data to augment results from the time series approach. The classifications from the two approaches were integrated using an a posteriori probability-based fusion approach. This was done by establishing a relationship between the classes, obtained after classification of the two data sources. Despite the coarse spatial resolution of MODIS pixels, acceptable accuracies were obtained using time series features. The overall accuracies using the fusion-based approach were in the neighborhood of 80%, when compared with GIS data sets from New York State. This fusion thus contributed to classification accuracy refinement, with a few additional advantages, such as correction for cloud cover and providing for an approach that is robust against point-in-time seasonal anomalies, due to the inclusion of multi-temporal data

    Estimation of Surface Moisture Content and Evapotranspiration Using Weightage Approach.

    Get PDF
    Soil moisture (MC) and evapotranspiration (ET) are considered as the most significant boundary conditions controlling most of the hydrological cycle’s processes. However, monitoring them continuously over large areas using the high temporal-resolution optical satellites is very demanding. Satellites such as the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), have a coarse spatial resolution in their images. Thus it not only impedes the acquisition of an accurate MC and ET but also represents multispectral reflections from the holistic surface features. This beside their dependence on vegetation and ground coefficient when assessing MC and ET. The study aims to enhance the spatial accuracy by weighting the MC produced from different surface cover classes within the pixel. MC for each pixel is segmented into three (3) different classes namely urban, vegetation and multi surface cover according to their respective MC weightage. Secondly, to generate an improved actual ETa map by overlaying the segmented MC with a rectified ETo. Images from AVHRR and MODIS satellites were selected in order to generate MC and ET maps. Two powerful MC algorithms were used based on land Surface Temperature (Ts), vegetation Indices (VI) and field measurements of MC; which were conducted at variable depths to examine the depth influence on MC and Ts magnitudes

    Advanced Processing of Multispectral Satellite Data for Detecting and Learning Knowledge-based Features of Planetary Surface Anomalies

    Get PDF
    abstract: The marked increase in the inflow of remotely sensed data from satellites have trans- formed the Earth and Space Sciences to a data rich domain creating a rich repository for domain experts to analyze. These observations shed light on a diverse array of disciplines ranging from monitoring Earth system components to planetary explo- ration by highlighting the expected trend and patterns in the data. However, the complexity of these patterns from local to global scales, coupled with the volume of this ever-growing repository necessitates advanced techniques to sequentially process the datasets to determine the underlying trends. Such techniques essentially model the observations to learn characteristic parameters of data-generating processes and highlight anomalous planetary surface observations to help domain scientists for making informed decisions. The primary challenge in defining such models arises due to the spatio-temporal variability of these processes. This dissertation introduces models of multispectral satellite observations that sequentially learn the expected trend from the data by extracting salient features of planetary surface observations. The main objectives are to learn the temporal variability for modeling dynamic processes and to build representations of features of interest that is learned over the lifespan of an instrument. The estimated model parameters are then exploited in detecting anomalies due to changes in land surface reflectance as well as novelties in planetary surface landforms. A model switching approach is proposed that allows the selection of the best matched representation given the observations that is designed to account for rate of time-variability in land surface. The estimated parameters are exploited to design a change detector, analyze the separability of change events, and form an expert-guided representation of planetary landforms for prioritizing the retrieval of scientifically relevant observations with both onboard and post-downlink applications.Dissertation/ThesisDoctoral Dissertation Computer Engineering 201

    Earth Resources: A continuing bibliography with indexes, issue 2

    Get PDF
    Reports, articles, and other documents announced between April and June 1974 in Scientific and Technical Aerospace Reports (STAR), and International Aerospace Abstracts (IAA) are cited. Documents related to the identification and evaluation by means of sensors in spacecraft and aircraft of vegetation, minerals, and other natural resources, and the techniques and potentialities of surveying and keeping up-to-date inventories of such riches are included along with studies of such natural phenomena as earthquakes, volcanoes, ocean currents, and magnetic fields; and such cultural phenomena as cities, transportation networks, and irrigation systems. The components and use of remote sensing and geophysical instrumentation, their subsystems, observational procedures, signature and analyses and interpretive techniques for gathering data are, described. All reports generated under NASA's Earth Resources Survey Program for the time period covered are included
    • …
    corecore