4,070 research outputs found

    Reverse engineering of drug induced DNA damage response signalling pathway reveals dual outcomes of ATM kinase inhibition

    Get PDF
    The DNA Damage Response (DDR) pathway represents a signalling mechanism that is activated in eukaryotic cells following DNA damage and comprises of proteins involved in DNA damage detection, DNA repair, cell cycle arrest and apoptosis. This pathway consists of an intricate network of signalling interactions driving the cellular ability to recognise DNA damage and recruit specialised proteins to take decisions between DNA repair or apoptosis. ATM and ATR are central components of the DDR pathway. The activities of these kinases are vital in DNA damage induced phosphorylational induction of DDR substrates. Here, firstly we have experimentally determined DDR signalling network surrounding the ATM/ATR pathway induced following double stranded DNA damage by monitoring and quantifying time dependent inductions of their phosphorylated forms and their key substrates. We next involved an automated inference of unsupervised predictive models of time series data to generate in silico (molecular) interaction maps. We characterized the complex signalling network through system analysis and gradual utilisation of small time series measurements of key substrates through a novel network inference algorithm. Furthermore, we demonstrate an application of an assumption-free reverse engineering of the intricate signalling network of the activated ATM/ATR pathway. We next studied the consequences of such drug induced inductions as well as of time dependent ATM kinase inhibition on cell survival through further biological experiments. Intermediate and temporal modelling outcomes revealed the distinct signaling profile associated with ATM kinase activity and inhibition and explained the underlying signalling mechanism for dual ATM functionality in cytotoxic and cytoprotective pathways

    TREEOME: A framework for epigenetic and transcriptomic data integration to explore regulatory interactions controlling transcription

    Get PDF
    Motivation: Predictive modelling of gene expression is a powerful framework for the in silico exploration of transcriptional regulatory interactions through the integration of high-throughput -omics data. A major limitation of previous approaches is their inability to handle conditional and synergistic interactions that emerge when collectively analysing genes subject to different regulatory mechanisms. This limitation reduces overall predictive power and thus the reliability of downstream biological inference. Results: We introduce an analytical modelling framework (TREEOME: tree of models of expression) that integrates epigenetic and transcriptomic data by separating genes into putative regulatory classes. Current predictive modelling approaches have found both DNA methylation and histone modification epigenetic data to provide little or no improvement in accuracy of prediction of transcript abundance despite, for example, distinct anti-correlation between mRNA levels and promoter-localised DNA methylation. To improve on this, in TREEOME we evaluate four possible methods of formulating gene-level DNA methylation metrics, which provide a foundation for identifying gene-level methylation events and subsequent differential analysis, whereas most previous techniques operate at the level of individual CpG dinucleotides. We demonstrate TREEOME by integrating gene-level DNA methylation (bisulfite-seq) and histone modification (ChIP-seq) data to accurately predict genome-wide mRNA transcript abundance (RNA-seq) for H1-hESC and GM12878 cell lines. Availability: TREEOME is implemented using open-source software and made available as a pre-configured bootable reference environment. All scripts and data presented in this study are available online at http://sourceforge.net/projects/budden2015treeome/.Comment: 14 pages, 6 figure

    Supporting the identification of novel fragment-based positive allosteric modulators using a supervised molecular dynamics approach: A retrospective analysis considering the human A2A adenosine receptor as a key example

    Get PDF
    Structure-driven fragment-based (SDFB) approaches have provided efficient methods for the identification of novel drug candidates. This strategy has been largely applied in discovering several pharmacological ligand classes, including enzyme inhibitors, receptor antagonists and, more recently, also allosteric (positive and negative) modulators. Recently, Siegal and collaborators reported an interesting study, performed on a detergent-solubilized StaR adenosine A2A receptor, describing the existence of both fragment-like negative allosteric modulators (NAMs), and fragment-like positive allosteric modulators (PAMs). From this retrospective study, our results suggest that Supervised Molecular Dynamics (SuMD) simulations can support, on a reasonable time scale, the identification of fragment-like PAMs following their receptor recognition pathways and characterizing the possible allosteric binding sites

    A network inference method for large-scale unsupervised identification of novel drug-drug interactions

    Get PDF
    Characterizing interactions between drugs is important to avoid potentially harmful combinations, to reduce off-target effects of treatments and to fight antibiotic resistant pathogens, among others. Here we present a network inference algorithm to predict uncharacterized drug-drug interactions. Our algorithm takes, as its only input, sets of previously reported interactions, and does not require any pharmacological or biochemical information about the drugs, their targets or their mechanisms of action. Because the models we use are abstract, our approach can deal with adverse interactions, synergistic/antagonistic/suppressing interactions, or any other type of drug interaction. We show that our method is able to accurately predict interactions, both in exhaustive pairwise interaction data between small sets of drugs, and in large-scale databases. We also demonstrate that our algorithm can be used efficiently to discover interactions of new drugs as part of the drug discovery process
    • …
    corecore