3,697 research outputs found

    Coarse-to-Fine Adaptive People Detection for Video Sequences by Maximizing Mutual Information

    Full text link
    Applying people detectors to unseen data is challenging since patterns distributions, such as viewpoints, motion, poses, backgrounds, occlusions and people sizes, may significantly differ from the ones of the training dataset. In this paper, we propose a coarse-to-fine framework to adapt frame by frame people detectors during runtime classification, without requiring any additional manually labeled ground truth apart from the offline training of the detection model. Such adaptation make use of multiple detectors mutual information, i.e., similarities and dissimilarities of detectors estimated and agreed by pair-wise correlating their outputs. Globally, the proposed adaptation discriminates between relevant instants in a video sequence, i.e., identifies the representative frames for an adaptation of the system. Locally, the proposed adaptation identifies the best configuration (i.e., detection threshold) of each detector under analysis, maximizing the mutual information to obtain the detection threshold of each detector. The proposed coarse-to-fine approach does not require training the detectors for each new scenario and uses standard people detector outputs, i.e., bounding boxes. The experimental results demonstrate that the proposed approach outperforms state-of-the-art detectors whose optimal threshold configurations are previously determined and fixed from offline training dataThis work has been partially supported by the Spanish government under the project TEC2014-53176-R (HAVideo

    AutoEncoder Inspired Unsupervised Feature Selection

    Full text link
    High-dimensional data in many areas such as computer vision and machine learning tasks brings in computational and analytical difficulty. Feature selection which selects a subset from observed features is a widely used approach for improving performance and effectiveness of machine learning models with high-dimensional data. In this paper, we propose a novel AutoEncoder Feature Selector (AEFS) for unsupervised feature selection which combines autoencoder regression and group lasso tasks. Compared to traditional feature selection methods, AEFS can select the most important features by excavating both linear and nonlinear information among features, which is more flexible than the conventional self-representation method for unsupervised feature selection with only linear assumptions. Experimental results on benchmark dataset show that the proposed method is superior to the state-of-the-art method.Comment: accepted by ICASSP 201

    Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering

    Get PDF
    This study introduces a new method for detecting and sorting spikes from multiunit recordings. The method combines the wavelet transform, which localizes distinctive spike features, with superparamagnetic clustering, which allows automatic classification of the data without assumptions such as low variance or gaussian distributions. Moreover, an improved method for setting amplitude thresholds for spike detection is proposed. We describe several criteria for implementation that render the algorithm unsupervised and fast. The algorithm is compared to other conventional methods using several simulated data sets whose characteristics closely resemble those of in vivo recordings. For these data sets, we found that the proposed algorithm outperformed conventional methods

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference

    An Unsupervised Method for Suspicious Regions Detection in Mammogram Images

    Get PDF
    Over the past years many researchers proposed biomedical imaging methods for computer-aided detection and classification of suspicious regions in mammograms. Mammogram interpretation is performed by radiologists by visual inspection. The large volume of mammograms to be analyzed makes such readings labour intensive and often inaccurate. For this purpose, in this paper we propose a new unsupervised method to automatically detect suspicious regions in mammogram images. The method consists mainly of two steps: preprocessing; feature extraction and selection. Preprocessing steps allow to separate background region from the breast profile region. In greater detail, gray levels mapping transform and histogram specifications are used to enhance the visual representation of mammogram details. Then, local keypoints and descriptors such as SURF have been extracted in breast profile region. The extracted keypoints are filtered by proper parameters tuning to detect suspicious regions. The results, in terms of sensitivity and confidence interval are very encouraging

    Image processing and machine learning techniques used in computer-aided detection system for mammogram screening - a review

    Get PDF
    This paper aims to review the previously developed Computer-aided detection (CAD) systems for mammogram screening because increasing death rate in women due to breast cancer is a global medical issue and it can be controlled only by early detection with regular screening. Till now mammography is the widely used breast imaging modality. CAD systems have been adopted by the radiologists to increase the accuracy of the breast cancer diagnosis by avoiding human errors and experience related issues. This study reveals that in spite of the higher accuracy obtained by the earlier proposed CAD systems for breast cancer diagnosis, they are not fully automated. Moreover, the false-positive mammogram screening cases are high in number and over-diagnosis of breast cancer exposes a patient towards harmful overtreatment for which a huge amount of money is being wasted. In addition, it is also reported that the mammogram screening result with and without CAD systems does not have noticeable difference, whereas the undetected cancer cases by CAD system are increasing. Thus, future research is required to improve the performance of CAD system for mammogram screening and make it completely automated
    corecore