78 research outputs found

    Unsupervised Data Augmentation for Less-Resourced Languages with no Standardized Spelling

    Get PDF
    International audienceNon-standardized languages are a challenge to the construction of representative linguistic resources and to the development of efficient natural language processing tools: when spelling is not determined by a consensual norm, a multiplicity of alternative written forms can be encountered for a given word, inducing a large proportion of out-of-vocabulary words. To embrace this diversity, we propose a methodology based on crowdsourcing alternative spellings from which variation rules are automatically extracted. The rules are further used to match out-of-vocabulary words with one of their spelling variants. This virtuous process enables the unsupervised augmentation of multi-variant lexicons without requiring manual rule definition by experts. We apply this multilingual methodology on Al-satian, a French regional language and provide (i) an intrinsic evaluation of the correctness of the obtained variants pairs, (ii) an extrinsic evaluation on a downstream task: part-of-speech tagging. We show that in a low-resource scenario, collecting spelling variants for only 145 words can lead to (i) the generation of 876 additional variant pairs, (ii) a diminution of out-of-vocabulary words improving the tagging performance by 1 to 4%

    Large vocabulary speech recognition for languages of Africa: multilingual modeling and self-supervised learning

    Full text link
    Almost none of the 2,000+ languages spoken in Africa have widely available automatic speech recognition systems, and the required data is also only available for a few languages. We have experimented with two techniques which may provide pathways to large vocabulary speech recognition for African languages: multilingual modeling and self-supervised learning. We gathered available open source data and collected data for 15 languages, and trained experimental models using these techniques. Our results show that pooling the small amounts of data available in multilingual end-to-end models, and pre-training on unsupervised data can help improve speech recognition quality for many African languages

    Robust Neural Machine Translation

    Full text link
    This thesis aims for general robust Neural Machine Translation (NMT) that is agnostic to the test domain. NMT has achieved high quality on benchmarks with closed datasets such as WMT and NIST but can fail when the translation input contains noise due to, for example, mismatched domains or spelling errors. The standard solution is to apply domain adaptation or data augmentation to build a domain-dependent system. However, in real life, the input noise varies in a wide range of domains and types, which is unknown in the training phase. This thesis introduces five general approaches to improve NMT accuracy and robustness, where three of them are invariant to models, test domains, and noise types. First, we describe a novel unsupervised text normalization framework Lex-Var, to reduce the lexical variations for NMT. Then, we apply the phonetic encoding as auxiliary linguistic information and obtained very significant (5 BLEU point) improvement in translation quality and robustness. Furthermore, we introduce the random clustering encoding method based on our hypothesis of Semantic Diversity by Phonetics and generalizes to all languages. We also discussed two domain adaptation models for the known test domain. Finally, we provide a measurement of translation robustness based on the consistency of translation accuracy among samples and use it to evaluate our other methods. All these approaches are verified with extensive experiments across different languages and achieved significant and consistent improvements in translation quality and robustness over the state-of-the-art NMT

    XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented Languages

    Full text link
    Data scarcity is a crucial issue for the development of highly multilingual NLP systems. Yet for many under-represented languages (ULs) -- languages for which NLP re-search is particularly far behind in meeting user needs -- it is feasible to annotate small amounts of data. Motivated by this, we propose XTREME-UP, a benchmark defined by: its focus on the scarce-data scenario rather than zero-shot; its focus on user-centric tasks -- tasks with broad adoption by speakers of high-resource languages; and its focus on under-represented languages where this scarce-data scenario tends to be most realistic. XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies including ASR, OCR, MT, and information access tasks that are of general utility. We create new datasets for OCR, autocomplete, semantic parsing, and transliteration, and build on and refine existing datasets for other tasks. XTREME-UP provides methodology for evaluating many modeling scenarios including text-only, multi-modal (vision, audio, and text),supervised parameter tuning, and in-context learning. We evaluate commonly used models on the benchmark. We release all code and scripts to train and evaluate model

    The dawn of the human-machine era: a forecast of new and emerging language technologies

    Get PDF
    New language technologies are coming, thanks to the huge and competing private investment fuelling rapid progress; we can either understand and foresee their effects, or be taken by surprise and spend our time trying to catch up. This report scketches out some transformative new technologies that are likely to fundamentally change our use of language. Some of these may feel unrealistically futuristic or far-fetched, but a central purpose of this report - and the wider LITHME network - is to illustrate that these are mostly just the logical development and maturation of technologies currently in prototype. But will everyone benefit from all these shiny new gadgets? Throughout this report we emphasise a range of groups who will be disadvantaged and issues of inequality. Important issues of security and privacy will accompany new language technologies. A further caution is to re-emphasise the current limitations of AI. Looking ahead, we see many intriguing opportunities and new capabilities, but a range of other uncertainties and inequalities. New devices will enable new ways to talk, to translate, to remember, and to learn. But advances in technology will reproduce existing inequalities among those who cannot afford these devices, among the world's smaller languages, and especially for sign language. Debates over privacy and security will flare and crackle with every new immersive gadget. We will move together into this curious new world with a mix of excitement and apprehension - reacting, debating, sharing and disagreeing as we always do. Plug in, as the human-machine era dawn

    Grapheme-based Automatic Speech Recognition using Probabilistic Lexical Modeling

    Get PDF
    Automatic speech recognition (ASR) systems incorporate expert knowledge of language or the linguistic expertise through the use of phone pronunciation lexicon (or dictionary) where each word is associated with a sequence of phones. The creation of phone pronunciation lexicon for a new language or domain is costly as it requires linguistic expertise, and includes time and money. In this thesis, we focus on effective building of ASR systems in the absence of linguistic expertise for a new domain or language. Particularly, we consider graphemes as alternate subword units for speech recognition. In a grapheme lexicon, pronunciation of a word is derived from its orthography. However, modeling graphemes for speech recognition is a challenging task for two reasons. Firstly, grapheme-to-phoneme (G2P) relationship can be ambiguous as languages continue to evolve after their spelling has been standardized. Secondly, as elucidated in this thesis, typically ASR systems directly model the relationship between graphemes and acoustic features; and the acoustic features depict the envelope of speech, which is related to phones. In this thesis, a grapheme-based ASR approach is proposed where the modeling of the relationship between graphemes and acoustic features is factored through a latent variable into two models, namely, acoustic model and lexical model. In the acoustic model the relationship between latent variables and acoustic features is modeled, while in the lexical model a probabilistic relationship between latent variables and graphemes is modeled. We refer to the proposed approach as probabilistic lexical modeling based ASR. In the thesis we show that the latent variables can be phones or multilingual phones or clustered context-dependent subword units; and an acoustic model can be trained on domain-independent or language-independent resources. The lexical model is trained on transcribed speech data from the target domain or language. In doing so, the parameters of the lexical model capture a probabilistic relationship between graphemes and phones. In the proposed grapheme-based ASR approach, lexicon learning is implicitly integrated as a phase in ASR system training as opposed to the conventional approach where first phone pronunciation lexicon is developed and then a phone-based ASR system is trained. The potential and the efficacy of the proposed approach is demonstrated through experiments and comparisons with other standard approaches on ASR for resource rich languages, nonnative and accented speech, under-resourced languages, and minority languages. The studies revealed that the proposed framework is particularly suitable when the task is challenged by the lack of both linguistic expertise and transcribed data. Furthermore, our investigations also showed that standard ASR approaches in which the lexical model is deterministic are more suitable for phones than graphemes, while probabilistic lexical model based ASR approach is suitable for both. Finally, we show that the captured grapheme-to-phoneme relationship can be exploited to perform acoustic data-driven G2P conversion

    Adaptation of speech recognition systems to selected real-world deployment conditions

    Get PDF
    Tato habilitační práce se zabývá problematikou adaptace systémů rozpoznávání řeči na vybrané reálné podmínky nasazení. Je koncipována jako sborník celkem dvanácti článků, které se touto problematikou zabývají. Jde o publikace, jejichž jsem hlavním autorem nebo spoluatorem, a které vznikly v rámci několika navazujících výzkumných projektů. Na řešení těchto projektů jsem se podílel jak v roli člena výzkumného týmu, tak i v roli řešitele nebo spoluřešitele. Publikace zařazené do tohoto sborníku lze rozdělit podle tématu do tří hlavních skupin. Jejich společným jmenovatelem je snaha přizpůsobit daný rozpoznávací systém novým podmínkám či konkrétnímu faktoru, který významným způsobem ovlivňuje jeho funkci či přesnost. První skupina článků se zabývá úlohou neřízené adaptace na mluvčího, kdy systém přizpůsobuje svoje parametry specifickým hlasovým charakteristikám dané mluvící osoby. Druhá část práce se pak věnuje problematice identifikace neřečových událostí na vstupu do systému a související úloze rozpoznávání řeči s hlukem (a zejména hudbou) na pozadí. Konečně třetí část práce se zabývá přístupy, které umožňují přepis audio signálu obsahujícího promluvy ve více než v jednom jazyce. Jde o metody adaptace existujícího rozpoznávacího systému na nový jazyk a metody identifikace jazyka z audio signálu. Obě zmíněné identifikační úlohy jsou přitom vyšetřovány zejména v náročném a méně probádaném režimu zpracování po jednotlivých rámcích vstupního signálu, který je jako jediný vhodný pro on-line nasazení, např. pro streamovaná data.This habilitation thesis deals with adaptation of automatic speech recognition (ASR) systems to selected real-world deployment conditions. It is presented in the form of a collection of twelve articles dealing with this task; I am the main author or a co-author of these articles. They were published during my work on several consecutive research projects. I have participated in the solution of them as a member of the research team as well as the investigator or a co-investigator. These articles can be divided into three main groups according to their topics. They have in common the effort to adapt a particular ASR system to a specific factor or deployment condition that affects its function or accuracy. The first group of articles is focused on an unsupervised speaker adaptation task, where the ASR system adapts its parameters to the specific voice characteristics of one particular speaker. The second part deals with a) methods allowing the system to identify non-speech events on the input, and b) the related task of recognition of speech with non-speech events, particularly music, in the background. Finally, the third part is devoted to the methods that allow the transcription of an audio signal containing multilingual utterances. It includes a) approaches for adapting the existing recognition system to a new language and b) methods for identification of the language from the audio signal. The two mentioned identification tasks are in particular investigated under the demanding and less explored frame-wise scenario, which is the only one suitable for processing of on-line data streams
    corecore