68 research outputs found

    A sample selective linear predictive analysis of speech signals

    Full text link
    The Linear Prediction Analysis is one of the popular methods of processing speech. But it has problems in estimating the vocal tract characteristics of voiced sounds uttered by females and children. This is because the conventional linear prediction method assumes that all the sample values in each analysis frame are to be approximated by a linear combination of a definite number of the previous samples whether the previous samples include excitation periods or not. Also, the Linear Prediction analysis is easily affected by source excitation; The vocal tract characteristics of signals of short pitch period can be estimated more accurately by the Sample Selective Linear Prediction (SSLP). The first stage of a SSLP analysis is the conventional linear predictive analysis and in the second stage, only those samples which are under a specified threshold are used for further analysis; This work outlines a numerically stable algorithm for performing the SSLP using the Autocorrelation method. (Abstract shortened by UMI.)

    Eigenstructure based speech processing

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (leaves 76-77).by Alice Wang.M.Eng

    Speech coding at medium bit rates using analysis by synthesis techniques

    Get PDF
    Speech coding at medium bit rates using analysis by synthesis technique

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    Techniques for the enhancement of linear predictive speech coding in adverse conditions

    Get PDF

    Tree-Structured Nonlinear Adaptive Signal Processing

    Get PDF
    In communication systems, nonlinear adaptive filtering has become increasingly popular in a variety of applications such as channel equalization, echo cancellation and speech coding. However, existing nonlinear adaptive filters such as polynomial (truncated Volterra series) filters and multilayer perceptrons suffer from a number of problems. First, although high Order polynomials can approximate complex nonlinearities, they also train very slowly. Second, there is no systematic and efficient way to select their structure. As for multilayer perceptrons, they have a very complicated structure and train extremely slowly Motivated by the success of classification and regression trees on difficult nonlinear and nonparametfic problems, we propose the idea of a tree-structured piecewise linear adaptive filter. In the proposed method each node in a tree is associated with a linear filter restricted to a polygonal domain, and this is done in such a way that each pruned subtree is associated with a piecewise linear filter. A training sequence is used to adaptively update the filter coefficients and domains at each node, and to select the best pruned subtree and the corresponding piecewise linear filter. The tree structured approach offers several advantages. First, it makes use of standard linear adaptive filtering techniques at each node to find the corresponding Conditional linear filter. Second, it allows for efficient selection of the subtree and the corresponding piecewise linear filter of appropriate complexity. Overall, the approach is computationally efficient and conceptually simple. The tree-structured piecewise linear adaptive filter bears some similarity to classification and regression trees. But it is actually quite different from a classification and regression tree. Here the terminal nodes are not just assigned a region and a class label or a regression value, but rather represent: a linear filter with restricted domain, It is also different in that classification and regression trees are determined in a batch mode offline, whereas the tree-structured adaptive filter is determined recursively in real-time. We first develop the specific structure of a tree-structured piecewise linear adaptive filter and derive a stochastic gradient-based training algorithm. We then carry out a rigorous convergence analysis of the proposed training algorithm for the tree-structured filter. Here we show the mean-square convergence of the adaptively trained tree-structured piecewise linear filter to the optimal tree-structured piecewise linear filter. Same new techniques are developed for analyzing stochastic gradient algorithms with fixed gains and (nonstandard) dependent data. Finally, numerical experiments are performed to show the computational and performance advantages of the tree-structured piecewise linear filter over linear and polynomial filters for equalization of high frequency channels with severe intersymbol interference, echo cancellation in telephone networks and predictive coding of speech signals

    Perceptual models in speech quality assessment and coding

    Get PDF
    The ever-increasing demand for good communications/toll quality speech has created a renewed interest into the perceptual impact of rate compression. Two general areas are investigated in this work, namely speech quality assessment and speech coding. In the field of speech quality assessment, a model is developed which simulates the processing stages of the peripheral auditory system. At the output of the model a "running" auditory spectrum is obtained. This represents the auditory (spectral) equivalent of any acoustic sound such as speech. Auditory spectra from coded speech segments serve as inputs to a second model. This model simulates the information centre in the brain which performs the speech quality assessment. [Continues.

    Precise Estimation of Vocal Tract and Voice Source Characteristics

    Get PDF
    This thesis addresses the problem of quality degradation in speech produced by parameter-based speech synthesis, within the framework of an articulatory-acoustic forward mapping. I first investigate current problems in speech parameterisation, and point out the fact that conventional parameterisation inaccurately extracts the vocal tract response due to interference from the harmonic structure of voiced speech. To overcome this problem, I introduce a method for estimating filter responses more precisely from periodic signals. The method achieves such estimation in the frequency domain by approximating all the harmonics observed in several frames based on a least squares criterion. It is shown that the proposed method is capable of estimating the response more accurately than widely-used frame-by-frame parameterisation, for simulations using synthetic speech and for an articulatory-acoustic mapping using actual speech. I also deal with the source-filter separation problem and independent control of the voice source characteristic during speech synthesis. I propose a statistical approach to separating out the vocal-tract filter response from the voice source characteristic using a large articulatory database. The approach realises such separation for voiced speech using an iterative approximation procedure under the assumption that the speech production process is a linear system composed of a voice source and a vocal-tract filter, and that each of the components is controlled independently by different sets of factors. Experimental results show that controlling the source characteristic greatly improves the accuracy of the articulatory-acoustic mapping, and that the spectral variation of the source characteristic is evidently influenced by the fundamental frequency or the power of speech. The thesis provides more accurate acoustical approximation of the vocal tract response, which will be beneficial in a wide range of speech technologies, and lays the groundwork in speech science for a new type of corpus-based statistical solution to the source-filter separation problem

    Nonlinear analysis of speech from a synthesis perspective

    Get PDF
    With the emergence of nonlinear dynamical systems analysis over recent years it has become clear that conventional time domain and frequency domain approaches to speech synthesis may be far from optimal. Using state space reconstructions of the time domain speech signal it is, at least in theory, possible to investigate a number of invariant geometrical measures for the underlying system which give a more thorough understanding of the dynamics of the system and therefore the form that any model should take. This thesis introduces a number of nonlinear dynamical analysis tools which are then applied to a database of vowels to extract the underlying invariant geometrical properties. The results of this analysis are then applied, using ideas taken from nonlinear dynamics, to the problem of speech synthesis and a novel synthesis technique is described and demonstrated. The tools used for the analysis are time delay embedding, singular value decomposition, correlation dimension, local singular value analysis, Lyapunov spectra and short term prediction properties. Although there have been many papers written about these tools, and algorithms proposed, there are currently no generally accepted techniques, especially for the calculation of Lyapunov spectra in the presence of noise and data length limitations. This thesis introduces all of the above tools and looks in detail at Lyapunov exponents and two major novel modifications are proposed that are demonstrated to be more robust than conventional techniques. The novel robust techniques are applied to a large database of vowel sounds showing that the vowels tested show evidence of nonlinear, low-dimensional, non-chaotic behaviour. It is particularly the evidence of non-chaotic behaviour that is of importance from a synthesis point of view and is used in the final section of the thesis which introduces a novel synthesis technique. The synthesis technique, which is based on ideas taken from nonlinear dynamics theory is detailed and demonstrated showing that it is capable of high quality natural sounding speech
    corecore