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Abstract 

This study investigates the nature of the role that zeros play in a linear predictive 

representation of speech. A configuration of pole-zero LPC filters is proposed and the 

equations are solved leading to near-optimal coefficients by the method of steepest 

descent. 

It is shown that pole-zero representation of speech is superior to all-pole representations 

for the performance measures used. The optimal combination is found to be w4ere one 

coefficient is used to model a single pole and the remaining coefficients represent zeros'. 

The zeros that are important to linear prediction are traced to the ,,,glottal pulse and a 

method is suggested to incorporate this into a new approach to linear prediction of 

speech. 
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Chapter l 
Introduction 

Speech waveforms are transmitted, stored a.nd analyzed probably more than any other 

electronic signal. There is clearly a benefit in being able to represent these waveforms in ''\. 

a manner that is economical in terms of the storage space necessary to maintain a 

record of it, or in terms of the amount of information that must be passed from the 

source to the receiver of the speech signal. In 1971, B.S. Atal [Ata71] presented a most 

economical method of representing the speech waveform, known as Linear Predictive 

Coding or LPC. This paper details the effects of a proposed refinement to LPC. 

Speech, when it is naturally produced, is a continuous sound waveform. This is easily 

converted into a continuous voltage signal using a microphone. Manipulation of this 

voltage waveform is often best done using digital computing t~chniques and thus the 

continuous, or analog, waveform is converted into a series of discrete values by sampling 

the waveform periodically. The Nyquist theorem shows that if the waveform is sampled 

at a frequency at least twice as great as the highest frequency present in the signal, then 

no information is lost by this process (Opp75]. 

Linear predictive analysis is built around the idea that the current value of a speech 

sample can be estimated by taking a weightedri combination of some limited number of 

the previous samples. The primary problem in an LPC analysis is to find how much 

weight to attach to each of the previous samples; in other words, to find the predictor 

coefficients. 
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The Speech Model 

An efficient analysis of speech signals at the waveform, or acoustic, level should take 

into account the actual method of speech production. Human speech sounds are 

produced by air being pushed from the lungs thro-ugh the throat and out the mouth. A 

distinction is made between two classes of these sounds that is very important to many 

speech modelling techniques [Rab78]. When the air is forced through the glottis (see Fig. 

1.1), it forces the vocal cords, which are under tension, to vibrate. This vibration 

introduces quasi-periodic pulses of air into the vocal tract, and causes what is known as 

voiced speech. When the vocal cords are not used, and sounds are produced by forcing 

Fig 1.1 X-ray Qf the human vocal apparatus [Fla70] 
. 

J 
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air through a constriction at some point in the vocal tract, then these sounds are called 

unvoiced, and are known linguistically as fricatives. Sometimes both methods of sound 

production are used simultaneously, giving rise to what is known as a voiced fricative 

( eg. the z sound in zebra). 

The speech production process can be divided into three elements that independently 

affect the type of sound produced. The first is the production of the glottal pulse, which 

only occurs during voiced speech, and the second is resonance within the vocal tract, 

which depends on the shape of the tract at the time of the utterance. This shape can be / 
I 

altered by movement of the tongue, changing the extension of the velum, which couples 

or uncouples the nasal tract and by moving the teeth and lips. The third element is the 

manner in which the sound sound is emitted or radiated, which involves the shape of the 

mouth and the degree to which the nostrils are used. 

Considering the frequency spectrum of this speech sound, each of these elements makes 

its own contribution to the spectrum. Production of the glottal pulse is modelled as a 

filter, G(z), operating on an impulse excitation. G(z) is an all-zero filter, thus giving a 

finite impulse response [Opp75], which is the glottal pulse. The excitation for unvoiced 

sounds is white noise, which models the air turbulance caused by the constriction in the 

vocal tract. Resonance in the vocal tract is modelled as a filter, V(z), while the spectral 

contribution of radiation is modelled as a filter given the transfer function R( z). 

· Thus a simplified model of speech production can be constructed [O'S87]. Such a model 

is shown in Fig. 1.2. This model has the flaw that voiced fricatives cannot be accurately 

represented; some of them are regarded as voiced and some as unvoiced. 
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For the purposes of Linear Prediction, the model shown in Fig. 1.2 can be simplified by 

combining the spectral effects of the glottis, tl1e vocal tract and radiation into a single 

' all-purpose filter (see Fig. 1.3); Since all speech analysis methods considered here use 

sampled signals, and because the parameters of the filter change as the configuration of 

the vocal apparatus is altered to produce different sounds, this filter is more formally 

defined as a time-varying digital filter [Rab78]. Since the filter synthesizes an 

approximation of a speech signal, this filter is called a synthesis Jilter and its transfer 

function is denoted H(z). 

PITCH 
PERIOD 

'' 
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GENERATOR 

RANDOM 
NOISE 
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I 

H(z) == G(z) V(z) R(z) 

VOICED/ 
UNVOICED 
SWITCH 

u(n} 

G 

VOCAL TRACT 
PARAMETERS 

0 
TIME-VARYING 

DIGITAL 
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Fig 1.3 Simplified mo<lel for speech production [Rab78] 
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The task of Linear Prediction is now seen to be that of obtaining the coefficients of the 

filter H(z). These coefficients can then be used to synthesize an approximation of the 

original signal, s(n), by exciting the filter with u(n), which is either an impulse train or a 

noise source as appropriate. 

S(z) = H(z) U(z) (1.2) 

To simpify this task, a set of N samples, called a frame, is defined, the length of which is 

usually of the order of a few cycles of the glottal pulse. The predictor coefficients are 

assumed to be constant over such a frame; that is, we assume the speech waveform to 

be stationary over this period [Jay84]. H(z) has, in the general case, p poles and q zeros. 

Allowing that the filter has a gain of G that compensates for the fact that U(z) has a 

constant variance while the variances of different speech sounds may vary considerably, 

.. then: 

q 

.... 1+ E bzz-z 
S(z) 

H(z) == G l==l (1.3) U(z) p 

1 - E akz-k 
k==l 

or, in the time domain: 

p q 

s(n) = L aks(n-k) + G 1 + E b1u(n-l) (1.4) 
k==l l=l 

Recall that this filter constructs an approximation of the speech waveform from an 

excitation function. In order to find the coefficients of the filter (i.e. ak and bl) one must 

pass the speech signal one is trying to model through the inverse of H(z) and find 

coefficients such that this inverse filter produces a signal as near as possible to the 
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excitation function, U(z). The numerator G in eqn. 1.5 allows for the difference in 

variance between the output of the inverse filter and the desired output, U(z). This 

inverse filter is known as an analysis filter and its transfer function is defined as A(z). 

A(z) = Hfz) (1.5) 

~hen the speech'' signal is passed through A(z), the resulting signal, e(n), is known as 

the residual or error signal, with a z-transform E(z). Thus: 

.. 
E(z) == S(z) A(z) (1.6) 

and so, · S(z) = E(z)GH(z) (1. 7) 

If one chooses the coefficient values of A(z) such that the residual e(n) has a minimum 

variance, then this residual will be very similar to an impulse train for voiced speech. 

The impulses will arise from the fact that the arrival of another glottal pulse cannot be 
r 

predicted 1 and will thus result in a largb error signal at that point. For unvoiced speech, J 

/ 
( 

this large error will not occur, and then e( n) will be similar to a small white noise source. 

For this reason random noise is used as the excitation for unvoiced sounds. In either 

case, the output of the analysis filter A(z), is a sign.al that approximates U(z) multiplied 

by the gain factor G. 

Now, since from (1.7) 

1 Attempts to predict speech based on a prediction of the arrival of the next glottal pulse 

have not been successful. 
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and, S(z) = H(z) U(z) from (1.2) 

furthermore, E(z) ~ G · U(z) 

then: S(z) ~ S(z) (1.8) 

Thus the goal of LPC analysis is now reduced to minimizing the variance of the residual 
signal when the speech waveform is passed through A(z). The smaller that this variance 
is, in principle, the closer the synthesized waveform will be to the original one. 

Note that the benefit of this procedure is that only the filter coefficients need to be 
. passed from the analysis end to the receiving end - the speech waveform itself does not 

have to be transmitted. It is usually sufficient to re-adjust these coefficients only every 
lOmsec [Ata85]. This obviously results in a tremendous reduction in the bit rate needed 
to transmit or store the signal. Study of the coefficients and the residual signal have also 
led to many other uses for LPC. For example, the pitch period can be found from the 
residual signal. The LPC coefficients can also be used as an efficient template for 
waveform matching in a speech recognition system. 

Poles and Zeros 

Before any attempt can be made to find an algorithm that optimally reduces the 
variance of the error signal, the form of the filter H(z) must be decided upon. Recall 
that, in the general case, both poles and zeros are present: 
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H(z) = G 

Virtually all LPC used commercially today uses an all-pole filter to predict. the speech 
signal (O'Sh87]. This is for two reasons: Firstly, the poles (or, more correctly, the filter 
coefficients that model the poles) can be found efficiently and accurately by any of a 
number of methods. The most popular of these are the covariance method (Ata71], the 
autocorrelation formulation (Mar73) and the lattice method [Mak77]. The computation 
of all-pole filter coefficients is efficient becau$e linear equations can be found which, when 
solved, determine the optimal predictor coefficients. When zeros are included in the 
filter, however, the eqvations to be solved are no longer linear and are thus far more 
difficult to solve (Miy86]. The second reason for using an all-pole filter is primarily a 
justification for using the simpler computation method - the effect of the zeroes can be 
approximated by modifying the poles - a process that is automatically performed in the 
solution methods currently in use [Ata85]. 

Consider the representation of some arbitrary transfer function in the z-plane. A pole 
represents a peak in the magnitude of the transfer function at the point in the z-plane 
defined as the pole position. This magnitude increases the nearer one gets to the pole. In 
fact, the pole causes an increase in the magnitude of the transfer function at all points in 
the z-plane, although this effect is small at large distances from the pole position. A 
zero, on the o~her hand produ·ces a local null in the spectrum and it tends to reduce the 

\,.,~,--."" transfer function magnitude at all other points. When a number of poles and/or zeros 
occur simultaneously in the z-plane, they will each have two effects. Firstly they will 

-9-
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cause local peaks and nulls near theit z-plaiie positions and secondly their effects at 

other points will interplay to bring about what is known as the spectral balance. 

Now, if the LPC filter H(z) is an all-pole filter, then it will only mark the positions of 
. / \ 

the poles in the z-plane. Modification of t1hese' poles can effectively account· for the 
. 

" change in the spectral balance caused by the missing zeros [Ata85], but H(z) will still fail 

to represent the local dips in the spectrum. Atal maintains that, perceptually, the overall 

spectral balance is the more important effect [Ata78]. 

There are two primary reasons why nulls occur in the natural speech spectrum. These 

nulls give rise to zeros in the transfer function of the filter representing speech 

production. The driving glottal pulse contains many nulls in its spectrum, and whenever 

the vocal tract contains two or more paths through which air can flow, its. transfer 

function, V(z), will contain more zeros. This splitting of the vocal tract occurs most 

obviously in nasal sounds, but can result from a fricative constriction or by the tongue 

position. Zeros may also result from the radiation load at the lips and from the low-pass 
(l 

filtering performed before sampling to ensure compliance with the Nyquist criterion 

(Ata78]. Since, 

H(z) = G(z) V(z) R(z) from (1.1) 

any zeros in any one of the component transfer functions will result in zeros in H(z). 

Some attempts have been made to incorporate zeros into the LPC filter. The most 

efficient of these performs a two-part analysis [Fri83]. Firstly an all-pole analysis is 

performed giving rise to a residual signal E( z). Since, 

-10-
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E(z) = S(Z) · G 
H(z) from (1. 7) 

the spectrum of this residual will contain the nulls that were present in S(z) and could 

not be represented by H(z). In Friedlander's procedure, the spectrum of the residual is 

inverted so that the nulls become peaks and then this spectrally inverted residual is 

analyzed once more, again with an all-pole filter. This second analysis finds the position 

of the peaks in the spectrally inverted residual, which correspond to the nulls of the 
(" original residual and thus the nulls of S(i). The procedure is inaccura-i~, however, in that 

.I 

when the first analysis is done, the pole positions are modified to account for the 

. spectral balance effects of the zeros, and th us when the zeros are actually .. .Jocated, the 

poles are now in the wrong position. An optimal solution for the coefficients of H(z) 

must, therefore, solve for the locations of the poles and zeros simultaneously. 

The purpose of this study is to demonstrate the effect that' zeros have . on linear 

prediction. By monitoring the improvement that the introduction of zeros brings about 

in LPC performance, it will allow determination of whether there is sufficient gain in 

performance to warrant continued effort toward finding an efficient/, means to 

simultaneously calculate the po_sitions of both poles and zeros. 

The method used to find these zeros is not an explicit solution of the equations from 

which the coefficients can be found. As stated previously, these equations are not linear 

for the general case in which both poles and zeros are present in H(z). Instead, it 

attempts to minimize the predictor error by adjusting the coefficients until the best' 

combination is found. This adj1.1stment is made based on the gradient of the residual 
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variance against the coefficient values, a procedure known as the method of steepest ,, 

decent [Jay84]. The advantage of this method is that it can be used to find the 

coefficients for any combination of poles and zeros but, being a numerical method, it will 
" 

not necessarily always find the optimum coefficients. Thus the most valid comparisons 

that can be made in this study are between the all-pole results using this method of 

steepest descent and the pole-zero combinations• also using this method. It is not 

expected that either will perform as well as the ex~licit solution methods menti61r~d 

earlier. The aim of this study, is, however, to quantify, analyze and describe the effects 

that zeros have in LPC, not to present a better method of obtaining the coefficients. 

Performance Measures 

A major factor in any comparison of systems is, of course, the rr1easure by which the 
\ 
\ \ 

system performances are gauged. There are many methods one could use to measure 

how well an LPC filter is performing; the best measure depends on the particular 

application for which the LPC is being used. This investigation concentrates on 

transmission/storage aspects of LPC and makes no attempt to decide whether the 

· inclusion of zeros assists in the use of LPC for speech recognition or speaker 

identification. 

One measure that is commonly used to determine LPG performance is to calculate the 

· va,iance of the residual signal. This is particularly appropriate when the· residual signal . 
., ' 

is to be sent along with the LPC coefficients. When the entire residual is quantized and 

transmitted, this is known as differential predictive pulse code modulation or DPCM 

[Jay84] and if only the perceptually important parts of the residual are sent it is called a 
' 

residually excited linear prediction or RELP [O'Sh87]. In the case of DPCM, the only 

-12-
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errors introduced into the system are quantization errors and if adapative quantization 

is used, then the reduction in residual variance is a direct measure of the improvement in 

the Signal to Noise Ratio (SNR), since the quantization noise introduced is directly 
·. 

proportional to the variance of the quantized signal [Rab 78]. 

However, in many of the extremely low bit-rate applications that LPC is used for, the 

residual signal is not sent at all, and the filter is excited at the receiving end by either an 

impulse train (for voiced speech) or a noise source for unvoiced sounds. In such cases, a 

system giving rise to a residual having the smallest variance could be out-performed by 

one in which the residual power is concentrated in the 'impulses' and is small elsewhere. 

In this type of application, a better measure of the system performance is a comparison 

of the reconstructed signal with the original one. This is done most effectively in the 

frequency domain since the phase insensitive human ear detects only the magnitude of a 

sound's spectrum, and not its time domain waveform. Both these performance measures 

are used in this work. 

-13-
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Chapter 2 
LP( Filter Configuration 

Recall that an LPC system consists of two filters. - the analysis filter that is used to 

determine the coefficients of the transfer function H(z), and the synthesis filter that 

reconstructs the speech signal at the recieving end. 

The All-Pole Configuration 

A standard configuration for these filters exists for the case of the all-pole filters (see 

Fig. 2.1 and Fig. 2.3). Note that since the analysis and synthesis filters are inverses of 

each other, only one, the synthesis filter, is actually an all-pole filter. The analysis filter 

contains an all-pole filter in its feedback path but is not, it~elf, an all-pole filter. The 

transfer function of the "all-pole" analysis filter, it is found, does contain zeros, but these 

zeros are dependent on the pole positions and the filter is still known in the engineering 

literature as an all-pole filter [Koo86] 

The transfer function of an all-pole synthesis filter is: 

.... 

H( z )all-pole 
S(z) 
U(z) 

G 
(2.1) 

which converts to the time-domain form: 

p 

s(n) = L aks(n-k) + G·u(n) 
k:=l 

(2.2) 

-14-



Tl1is can be constructed in terms of hardware building blocks a.s follo,vs: 

G u(n) 
s(n) 

+ 

/ 

Fig. 2.1 Block diagram Qf an all-pole svnthesis filter 

The all-pole analysis filter must be, as discussed earlier, the inverse of H( z ). Th us: 

E(z) 
A(z)all-pole = S(z) 

and so, the output e(n) as function of time is: 

p 

p 

i- L 
k==l 

e(n) = s(n) - L ak s(n-k) 
k==l 

(2.3) 

(2.4) 

Definjng a quantity S( n ), which assists in relating the equations to the diagram. 

p 

s(n) = L ak s(n-k) 
k==l 

(2.5) 

-15-
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then: e{n) = s(n) - s(n) 

Such a filter could be constructed as follows: • 

s(n) 

-1 z 

-1 z 

I 
I 
I 

(2.6) 

e(n) 

-

s(n) 

Fig. 2.2 Possible block diagram Qf an all-pole analvsis filter 

In practice, however, it turns out that a problem exists with this configuration caused 

by the fact that in a digital system ( as opposed to the discrete systems that are a result 

of sampling) the waveform must, at some point, be quantized into digital strings of 

numbers so that they can be mathematically manipulated. If the system contained only 

real-time delay units and analog methods for multiplication and addition, then Fig. 2.2 

would work correctly. Considering a quantized system, however, it is desirable that the 

analysis filter operates on quantized values of s(n) so that the analysis and synthesis 

filter are operating on the same data. 

The configuration shown in Fig. 2.3 of the all-pole analysis filter is adapted to n1ini1nize 

-16-
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the effects of quantization. ~otP the follo\ving relationships that occur in F'i.~ 2.3. 

and so 

e(n) == s(n) - s(n) 

s ' ( n) J s ( n) + e( n) 

s'(n) == s(n) + s(n) - s(n) == s(n) 

(2. 7) 

(2.8) 

(2.9) 

Thus the relationship described in eqn 2.5 still l1olds even though I-I(z) now operates on 

s'(11) instead of s(n). 

s(n) e(n) 

-

+ 
-1 z .___ __ _ -1 z ~___. -1 s' n) z 1.---=----;...._~ 

+ 

s(n) 

' . ' 

Fig. 2.3 Block diagram Qf fill all-pole analysis filter 

Now, when the quantization is shown, the analysis filter can be viewed as in Fig. 2.4. 

The effect of quantization is modelled as a source introducing a quantization noise 

signal, q(n). Thus the residual signal becomes eq(n) where: 

and 

eq(n) == e(n) + q(n) 

· e(n) == s(n) - s(n) 

-17-
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Therefore: e q ( n) = s.( 11 ) - s ( n ) + q ( n ) 

sq(n) is now defined as the sum of eq(n) and s(n). 

so: 

• or 

s(n) 

sq(n) = eq(n) + s(n) 

sq(n) == s(n) - s(n) + q(n) - s(n) 

sq(n) = s(n) + q(n) 

q(n) 

e(n) 

·, 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

-1 z ..,_ ... -1 z 
_1 Sq,(n) z 1----------1' 

... 

s(n) 

Fig. 2.4 Block dia.gram Qf all-pole analysis filter showing the effect Qf quantization noise · 

Thus the filter H(z), operating on the quantized version of e(n), can construct a replica 

of s(n) that is different from the original s(n) only by the addition of q(n). This is 

* important since at the receiving end, only the quantised version of e(n) ,vould be 

available, even i11 an AD PCI\1 system. 
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Although this study takes no further account of quantization, it does recognize that this 

problem occurs in implementation and thus the analysis filters are designed to account 

for the noise introduced by quantization error. 

The Pole-Zero Configuration 

The configurations used to build synthesis and analysis filters for the case where H(z) 

contains only poles can be extended to the situation in which H(z) contains both poles 

and zeros. 

The transfer function of the synthesis filter is now: 

q 
... 1+ L bzz-l 
S(z) H(z) = G l==l 

(2.15) U(z) p 

1 - L -k akz 
k=l 

and so the time-domain representation of the relationship of the output to the input is: 

p 

s(n) = L aks(n-k) + G 
k=l 

q 

u(n) + L bzu(n-1) 
l==l 

(2.16) 

It can be seen that the configuration in Fig 2.5 gives rise to such an output S(n), given 

the input u(n). 
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b2 

I 
I 
I 
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s(n) 

-1 z 

-1 z 

I 
I 
I 

-1 z 

Fig 2.5 Block dia.gram Qf a pole-zero svnthesis filter 

In order to find a configuration for the analysis filter, the transfer function A(z) must be 

found, where: 

G 
A(z) = H( 

Therefore, with H(z) defined as in eqn. 2.15, we have: 

p 

i - L 
E(z) 

A(z) = k=l 
q 

a z-k 
k 

S(z) 
1+ L bzz-l 

l== 1 

from (1.5) 

(2.17) 

In order to design a system with such a transfer function the output and input should be 

related in the time-domain: 

p q 

e(n) = s(n) - L ak s(n-k) - L b1 e(n-1) 
k= 1 l==l 

(2.18) 
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Now it can be seen that the system proposed in Fig. 2.6 has a relationship het.\\'f'f'll its 

input and output as described in eqn 2.18. This filter has a design basf'd on the 

modification included in Fig. 2.3 so that it, too, will work correctly in the presence of 

quantization noise. 

s(n) + 

-

s(n) 

-1 z 

-1 z 

- - -

- - -

-1 z 

-1 z 

-1 
t---t z 

-1 z 
s'(n) 

Fig. 2.6 Rlock diagram Qf i1 pole-zero a.nalvsis filter 

e(n) 

" It was shown in Chapter 1 that the procedure one follows to obtain the optimal filter 
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coefficients is to minimize e(n). A procedure to do this is presented in Chapter 3. The 

residual signal that is to be minimized is the output of the pole-zero analysis filter. Thus, 

from eqn 2.18. 
p q 

e(n) = s(n) - E ak s(n-k) - E b1 e(n-1) 
k=l . l=l 

is the function that must be minimized. 
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Chapter .3. 

The Method Qf ~teepest Descent 

The method of steepest descent, first proposed by Cauchy in 1847, is a means to solve 

" for the minimization of any function, including functions of many variables. It does this 

by finding the gradient of the function with respect to each of the variables and then 

adjusting that variable proportionally to the negative of the gradient ( see Fig. 3.1 ). As 

long as the function decreases monotonically towards its minimi.im, this method will 

converge on the absolute minimum oft.he function; if not, it may be 'trapped' in a local 

minimum [vViI67J. 

---- -- ----- -

( a ) 

{ b) 

0 

a-2 
X 

A 

C 

h 1 ,opt 

Fig 3.1 Minimization bv the method Qf steepest descent (Jay84] 
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Consider some function. 

y = f ( X 1 , X 2 , . . . , Xi , • • • , Xn ) (3.1) 

where ( x1 ••• xn) are independent variables. 

The gradient of this function, V, is defined as a vector in n-dimensional space, where 

V= 8y 
8(xn) (3.2) 

It has been shown [Kre83] that this gradient vector has the direction of the steepest 

descent of the function y. Th us each variable, xi , should be adjusted in the direction of 

8y 
8(xi) 

Thus, in general, the adjustment that must be made to the variable xi when trying to 

find the minimum of the function is: 

x . U+ 1) = x. U) - K · 
i z 

U) 8y 
8x. 

i 

where: xU) is the value of the variable x after j adjustments 

and: K is a proportionality constant 

(3.3) 

Each time that this adjustment is made, the function will move closer to its minimum. 

Steepest descent is thus an iterative method· in which a compromise must be made 

between computation time and the desired accuracy. 
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/ . An Example Qf the Method Qf Steepest Descent 

To see ho'tv this works in a simple case, consider the function: 

y( X) = ( X - 3) 2 

Now, finding the gradient with respect to x: 

By = 2(x - 3) 8x · 

Picking some initial value of the variable from which to start the analysis: 

x<0> = 0 

then: 

and so x must be changed: 

where K is, say 0.4. 

x< 1 ) = x< 0 ) - { K · ( - 6) } 

then: 

now, 

and so: 

and 

x< 1) = 0 - { 0. 2 · ( - 6) } = 2 .4 

[
8 J(l) a! = 2 . ( 2.4 - 3) = - 1.2 

x<2) = x<1) - { K . ( - 1.2) } = 2.88 

x(3) = xC2) - { K · ( - 0.24) } = 2.976 

In this way, it can be seen, the variable x will approach the value, 3 at which point y( x) 

is at a minimum. 

.. 
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It should be noted that in this simple example, two assumptions were made which will 

be explored later in greater detail. These were the initial value of the variable and the 
I 

value of the proportionality constant K. The same assumptions must be made in the 
.-,-.j -

more complex ~pplication for which the method of steepest descent is used in this study 

- the minimization of the residual variance. 

The Application Qf Steepest Descent !.Q Linear Predictive Coding 

In Chapter 2 it was shown that in a pole-zero analysis filte~, the residual signal can be 

expressed as: 
p q 

e(n) = s(n) - E ak s(n-k) - E bl e(n-1) (3.4) 
k=l l=l 

The discussion in Chapter 1 showed that to obtain the best results from linear 

prediction, the variance of this residual must be minimised. 

Defining the variance of the residual, u 2 , as the expected value of the square of e(n). 

(3.5) 

p q 
then, s(n) - E ak s(n-k) - E bl e(n-1) (3.6) 

k=l l=l 
fl 

This is a function that has ( p + q ) variables. To solve the differentiation, the use of· 

the following general calculus result is required: 
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l} ( ) ( )( n-1) 8 ( ) (x) f(x) n = n · . f(x) . · O(x) f(x) (3.7) 

so, for th,e case of n=2: 
,/ 

of x) (r(x)) 2 = 2 . f(x)· of x) (r(x)) (3.8) 

Therefore: 

( 
•. ) 

(3.9) 

Since this is a solution for the partial differential, all other variables are considered to be 

constant for this differentiation. 

p q 
s(n) - L ak s(n-k) -L b1 e(n-l) · {) · ( ak s(n-k)) k=l l=l 8( ak) 

(3.10) 

Noting that the expression in the large round brackets is simply e(n) from eqn 3.4 and 

solving the partial differential on the right hand side of the equation: 

(3.11) 

A similar result can be obtained for the coefficients modelling the zeros: ' 
. 
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(3.12) 

8(0-2) 
a(hi)= 2 · E [e(n) · e(n-1)] (3.13) 

• • g1v1ng, 

The residual variance can now be minimized by adjusting each variable as described in · 
eqn 3.3. 

(3.14) 

Therefore: 
(3.15) (Pt' . 

and: b U+1) - b U) - K . l - l b (3.16) 

so: 
(3.17) 

A simple method of calculating the quantities indicated in eqn 3.15, for the all-pole case, 
has been proprosed by [Wid76] in which the difference signal used for min.imization is 
the instantaneous difference, as opposed to the expected value used in the derivation 
above. This gives the simplification that 

(3.18) 

and this can be readily applied to the zero-modelling coefficients, giving 

t 
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b1 U+t) = b1 (j) - Kb , e(n) · e(D.-1) (3.19) 

As in the steepest descent example worked through above, when the adaption equations 

3.18 and 3.19 are put into practice, assumptions must be made regarding the initial 

values of the coefficients and the value of K. 

The initial values of the variables affects the performance of the steepest descent 

procedure in two ways. Most importantly, i~ a local minimum occurs between the 'initial 

guess' and the optimal value, then the procedure may be 'trapped' in this local 

minimum. Clearly, if the initial guess is close to the optimal value, then there is less 

chance that a local minimum will occur between the two. Secondly, the iterative 

procedure will converge on the optimal value more quickly if the initial gliess is good. 

Thus, for a set number of iterations, the final value obtained will be closer to the 

/ optimal value . 
.. 

At the start of some particular frame, a good initial guess for the coefficient value would 

be the final value found at the end of the previous frame since the optimal coefficient 

values are known to be vary slowly with time. In fact, many systems do not even 

recalculate the coefficients for each frame, adjusting the coefficients only every lOms or 

so [Ata85]. This is because, these coefficients model the shape of the vocal tract - a 

physical system that can only vary slowly. A better guess for the initial value might 

even be some linear combination of the previous values of that. c.oefficient! 

In this study, however, the initial value of each coefficient at the start of each frame is 
~~ . 

\ 
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chosen to be zero. This increases the simplicity of the study considerably since a single 

frame can be analysed in depth independently of the surrounding frames. Since the 

method of steepest descent is not presented as an optimal solution for the coefficient 

values, but rather as the means by which the effect of the zeros can be studied, it is felt 

that this simplification is justified. The value of zero was selected since the coefficient 

values can be either positive or negative. 

', ~ The value selected for the proportionality constant K also has important effects on the 

performance of the steepest descent method. If K is set at a very small value, then more 

iterations will be needed to eventually reach the optimal value. Again, for a set number 

of iterations, this means that the final value reached will not be as close to the optimal 

value as it could be. If K is chosen to be too large, however, then the method of steepst 

descent may become unstable. This is because K relates the adjustment in the variable 

value to the gradient. If K is too large then the variable may be adjusted, not just 

beyond the optimal value (in which case it would be adjusted back in the next iteration) 

but so far beyond the optimal value that it is further away than it was before the 
~ 

adjustment. Now, in the next iteration, the coefficient will be adjusted by an even larger 

amount (assuming, not unreasonably, that the gradient is larger further from optimal 

value), back over the optimal value and even further away. In this situation, the method 

of steepest descent diverges from the optimal value rather than converging towards it. 

The choice of K may be compared to that facing a golfer making a stroke near the 

green. If he swings too softly then he will need many strokes to reach the green. If he 

uses too much power, on the other hand, he will overshoot the green, possible ending up 

further away from the hole than when he started. 
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It should be noted that the instability caused by a proportionality constant that is too 
large, is entirely different· from the filter instability that results from encountering poles 
that are outside the unit circle in the z-plane. 

This value for K is simply determined experimentally. Certain constraints are placed on 
it, however, so that in this study· it is not really a constant but rather a proportionality~ 
value that is re-determined for each frame and even for each iteration. 

The most important adjustment of K concerns a compensation for the variance of the 
input signal. Note that both the equation for adjusting ak and for bz ( eqns. 3.18 and 
3.19) have an adjustment that is directly proportional to the input variance, since the 
variance of e(n) is increased proportionally to that of s(n), following from 

E(z) == S(z) A(z) from (1.6) 

The optimal coefficients, however, are not affected by the input variance and so the size 
of the adjustment made to them should not be changed. Thus K in this study, is some 
experimentally determined base value, divided by the input variance. 

A second adjustment that is made helps prevent a steady-state oscillation of the variable 
around the optimal value. This is done by reducing the value of K in each iteration -
accomplished by dividing K by the iteration number. This is justified since as the 
method converges on the optimal value, large adjustments will no longer be necessary - a 
principle is akin to the golfer aluded to earlier, selecting a higher club for shots nearer 
the hol~. 
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These two refinements are the only ones made for Ka. Even with these adjustments, 

however, it was found that when the method of steepest descent was used to find the b 

coefficients which model the zeros, it could still become unstable. This instabilty was 

most pronounced when the number of zeros was small and when the number of samples 

in the frame was large. Thus Kb should be reduced for these two cases, an effect 

introduced by dividing Kb by the frame length and multiplying it by the number of 

zeros. 

Thus, in this study, the follo·wing proportionality values are used in eqns 3.17 and 3.18. 

0.05 
(3.20) E [s(n)2] · IT 

and 0.05 · q 
Kb = E [s(n)2] • IT · N 

(3.21) 

where: 

E [s(n)2] = the variance of the input signal s(n) 

IT = the iteration number of the the method of steepest descent 

q = the number of zeros 

N = the number of samples in the frame 

Finally, it is necessary to determine how many iterations should be made for this 
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application of the method of steepest descent. Since the optimal values · for the 

coefficients are unknown, it is impossible to measure directly how close the method has 

come to this optimal solution. With many other numerical methods, for example 

Newton's method to solve for the roots of a polynomial, substitution of the current "best 

value" into the original equation will yield a number that is a direct measure of how 

close the solutiuon is to the optimal solution. In Linear Predictive Coding, however, even 

the optimal values will not yield perfect prediction (and thus a residual with zero 

variance) - they will merely yield a residual variance that is the minimum possible. 

Since the method of steepest descent will converge on the minimum solution ( assuming 

it is stable) an indirect, yet accurate, measure of how, close the solution is to the optimal 

one is how much further improvement each iteration yields. When the improvement 

becomes negligible, the present solutions can be assumed to be as close to the optimum 

as the system will approach. A trade-off must be made here between computation time 

and the desired accuracy. 

The number of iterations necessary was determined experimentally by plotting results 

after each iteration and thus determining when improvement becomes negligible. 

This experiment was carried out on a samples of real speech, both voiced and unvoiced, 
' 

for a 12-pole filter, a 6-})ole-6-zero filter and a 12-zero filter. The results are presented in 

Appendix A. They have been averaged and this average is presented below. The "Gain" 

plotted on the y-axis is the ratio of the input variance to the residual variance on a 

decibel scale, a common measure of LPC performance. 
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Fig 3.2 LPC Performance improvement with number Qf iterations 

15 

Based on the graphical information shown in Fig 2.3, it was decided to use six iterations 

for the rest of this study, as a good compromise between performance and computation 

time. 
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Chapter! 
Experimental Background 

In this study, Linear Predictive filters are simulated using a digital computer. The 

simulation programs were·· written in BASIC since rapid run-time is not a consideration 

in this study, and BASIC allows the algorithms developed to be quickly and easily 

converted into program code. 

Speech Data 

Two types of speech data are operated on in this study. The first is synthetic speech 

produced by C.S. Holzinger [Hol88]. This speech waveform is derived by modelling the 

vocal tract as a concatenated series of lossless acoustic tubes [Rab78]. This model leads 

to a vocal tract that has a transfer function that contains only poles. The lossless tube 

model is excited by a signal that resembles a glottal pulse. This "glottal pulse" has a 

finite length, and thus must be the result of some Finite Impulse Response (FIR), 

leading one to conclude that the spectrum of the "glottal pulse" contains only nulls 

(Opp75]. The spectrum of this synthetic speech thus contains peaks due to the vocal 

tract response and nulls due to the glottal excitation. A second type of synthetic speech 

was obtained by modifying Holzinger's program to derive the synthetic speech above so 

that the lossless tube model is now excited by an impulse. The spectrum of this (less 

realistic) synthetic speech should thus contain no nulls at all - a property that will be 

useful to demonstrate some of the effects that zeros in the LPC filter responses does 

have on the system performance. Examples of both types of synthetic speech may be 

located in Appendix B. 
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Real speech data is also used in this study. This speech was captured and quantized by 

C. Woloszynski (Wol86], whose programs have been adapted in this study to ensure the 

data is compatable with the Basic programs that are used to analyze them. From the 

voluminous data captured by Woloszynski, sixteen samples have been selected: ten of 

these are examples of voiced speech and six are examples of unvoiced speech. These 

samples were selected to represent a wide range of waveshapes, amplitudes and, for the 

case of the unvoiced samples, zero-crossing rates. The samples are not further 

differentiated into the speech sounds that produced them since at this stage in an LPC 

analysis, the only information usually available about the sample is whether it is voiced 

r· or unvoiced. 1"'he speech is low-pass filtered ( to prevent aliasing) at 34 Kijz and is 
\ 

/ 

sampled at 15 KHz. The examples selected for processing are each 128 samples long and 

thus correspond to 8.5 milliseconds of speech. These samples can be found in Appendix 

B. As was explained in Chapter 1, it is expected that the real speech samples will have 
.. 

spectra containing both peaks and valleys. 

Computer Programs Used 

Two previously written BASIC programs have been adapted for use in this study. A 

plotting routine is based on a program originally written by Holzinger [Hol88] and a 

program · to perform the Digital Fourier Transform of time-domain waveforms 

incorporates much of a program written by Wagener. The program used to find the 

optimal all-pole coefficients is based on Durbin 's recursive method as presented in 

[Rab78]. 

i 
. i. 

,, 
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Chapter 5 
Simulations and Results 

At this stage, it should be recalled that the purpose of this study is to investigate the 

effect that incorporating zeros into the transfer function of the synthesis and analysis 

filters has on the performance of the LP.C system. This is done by simulating the pole­

zero filters proposed in Figures 2.5 and 2.6. These general-case filters can be easily 

converted into all-pole or all-zero filters by setting to zero the number of zeros and poles 

' respectively. A test was performed to ensure that the pole-zero model with no zeros 

behaved in exactly the same manner as the all-pole model as described in Figures
1 
2.1 

and 2.3, and this was found to be true. 

The first of the tests described here establishes the effect that replacing some or all of 

the coefficients that model poles with coefficients that model zeros. 

Test 1 ° -

( P + Q ) = 12 : Ratio varied 

Voiced Speech 
• J 

The simulation program was written so that each time an analysis was done, the same 

data was analyzed using differing ratios of poles to zeros. The sum of the number of 

·poles and zeros, however, was held constant so that the total amount of predictive 

information is unchanged. A common standard for the number of poles in an all-pole 

model is twelve [O'Sh87] and thus in the first simulation the sum of the number of poles 

and zeros is held at twelve. A test is performed for each combination of poles and zeros 
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within this limit, on each of the ten samples of voiced speech shown in Appendix B. As a 

comparison, an all-pole analysis was performed on each sample using Durbin's metho9 to 
,, 

obtain the optimal coefficients. 

,, 

The performance measure used for these tests is the ratio of the variance of the input 

signal to the variance of the residual waveform. This is known as the gain and is 

expressed here in decibels. A comparatively large gain indicates that the system is . 
I performing well in predicting the current speech sample. 

r! 

The results of these tests are presented in Appendix C. The results have been averaged 

separately and are graphed in Figure 5.1. 

The results presented here show clearly that, at least for the case of voiced speech, there 

is a definite advantage in using pole-zero LPC filters instead of all-pole LPC filters. This 
) 

is not entirely surprising in light of the discussion in Chapter 1 on the production of 

natural speech. A more surprising aspect of the results is that the optimal combination 

of poles and zeros is one pole and eleven zeros. Detailed examination of the results in 

Appendix C show that this combination was the best in 80% of the tests conducted and 

a ratio of two poles to ten zeros was most successful in 10% of cases, as was the ratio of 

three poles to nine zeros. All cases where the best combination was not one pole and 

eleven zeros occurred when the input waveform had been clipped because the amplitude 

was larger than the quantizer used could account for. The significance of this will be 

discussed later. 
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Fig 5.1 Gains for Voiced Speech 

Another important fact that can be drawn from Fig. 5.1 is that any combination of 

poles and zeros performs better than the all-pole case including the all-zero model. This 

would seem to give lie to any justification for using the all-pole model other than the 

speed and accuracy with which the coefficients can be obtained. This all-zero model, 

however, performed significantly worse than when just one pole was includea. 

The last preliminary conclusion from Fig. 5.1 is that the best combinations of the pole-



zero model outperform even the optimal all-pole models derived from Durbin's 

equations. This occurred even ·though the method of steepest descent used for the pole­

zero model is not an optimum solution and only a strictly limited number of iterations 

have been used! It should be noted, however, that computation time to find the pole­

zero coefficients was significantly longer than that needed to find the Durbin coefficients. 

Test 2 ---

( P + Q ) = 12 : Ratio varied 

Unvoiced Speech 

A second test was performed under exactly the same conditions as Test 1, except that 

the speech data analyzed are now samples of real unvoiced speech (see Appendix B for 

plots of these samples). As in Test 1, the sum of the number of poles and zeros is twelve 

and the performance measure used is the ratio of input variance to residual variance. 
~ 

The test results are presented in Appendix C and have been averaged to form the graph 

in Fig 5.2. 
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0 

The results obtained here for unvoiced speech are not nearly as clear or as conclusive as 
those obtained in Fig 5.1 for voiced speech. It does seem that some tiny advantage exists 
in using some form of pole-zero combination but it is not even clear what this 
combination should be. A combination of three poles and nine zeros produced the best 
result on average but this was the optimalicombination in only 33% of the samples 
taken. 
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The effective conclusion drawn from Fig. 5.2 is that all-pole and pole-zero analyses 
• 

perform approximately as well as each other for unvoiced speech and thus only voiced 

speech is considered further in this study. 

The results of Test 2 also hint that the improved performance of the pole-zero 

combination lies primarily with its ability to model the zeros that occur as a result of 

the glottal pulse, and whfch are thus not present in unvoiced sounds, as opposed to the 

zeros due to the vocal tract traJJ.sfer function ( or the effects of radiation or low-pass 

filtering), which are present in unvoiced speech. This possibility is explored further in 

Chapter 6. 

Test 3 ---

( P + Q ) = 12 : Ratio varied 

Synthetic Speech ( Glottal excitation) 

The procedures used in Tests 1 and 2 are used again in Test 3, except that the speech 

sample operated on is an example of voiced synthetic speech. This speech has been 

synthesized using an excitation resembling a glottal pulse. The parameters and 

performance measures are as before, the raw results can be found in Appendix C and 

they are presented graphically in Fig. 5.3. 
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Fig 5.3 Gains for Synthetic Speech (Glottal) 

The results of Test 3 again show a significant improvement in performance when zeros 
are included in the transfer functions of the LPC filters. The improvement is very 
similar to, although slightly less marked than it was in the case of real voiced speech and 
tl1e optimum combination of coefficients is still found to be one pole and eleven zeros. To 
understand tl1e particular significance of this experiment, it should be recalled from 
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Chapter 4 that this synthetic .. speech is created with an all-pole model of the vocal tract. 

Thus the only spectral valleys in the synthetic waveform occur as a result of the glottal 

pulse excitation, but still the modelling of these zeros seemed to be of significantly more 

importance than modelling the poles that occur due to the response of the vocal tract. 

This result thus concurs well with the initial conclusion drawn from the unvoiced speech 

results, that the most important zeros to model are those that occur due to the glottal 

pulse. 

Test 4 -

( P + Q ) = 12 : Ratio varied 

Synthetic Speech (Impulse excitation) 

The final test in this set performs the same analysis as in Tests 1-3, except that the data 

now analyzed is synthetic speech~where the vocal tract model is identical to that used 

to produce the synthetic speech of Test 3, but the excitation is now an impulse. It was 

found that the proportionality constant used in the method of steepest descent had to be 

reduced from the value presented in eqn 3.21 to prevent instabilty in this special case 

where no the data analyzed has no nulls. Again the raw data may be found in Appendix 

C, and is presented in graphical form in Fig. 5.4. 
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The graph in Fig 5.4 shows that, for this particular example of synthetic sp.eeclt, a pole- . 

zero combination performs worse than the all-pole filters, even when these all-pole 

coefficients are found using the sub-optimal method of steepest descent. The slightly 

better result for the 11-pole-l-zero case is explained later by the· results of Test 5. The 

overall result comes as no surprise ,vhen it is recalled that the impulse excited synthetic 

speech should have no nulls at all in its spectrum. The excitation function ( an impulse) 

has a flat frequency spectrum and the vocal tract is modelled as a·n all-pole filter. ,vhen 
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compared with the results obtained in Test 3 for the glotally-excited synthetic speech, a 

more substantial basis is built for the contention that the zeros that are important in 
.... 

LPC analysis are those that derive from the glottal pu.lse. 

The large difference in performance between the nine-pole and ten-pole cases can be 

attributed to the fact that the vocal tract model used in the synthesis of this speech has 

exactly ten poles in its transfer function. 

/ 

Test 5 ---
Q = 0 : P Vi:i,ried 

Synthetic Speech (Impulse excitation) 

--, .. ---. The fact that a pole-zero combination fared more poorly than the all-zero model in Test 

4 does not mean that the zeros, themselves, degraded the performance of the system, or 

even that they the had no effect. Each zero in Test 4, displaced a pole from the 

combination and thus the result shows that, in Test 4, the addition of a zero did not 

fully compensate for the loss of a pole. To obtain a clearer idea of what the independent 

effect of the zeros was, Test 5 shows the system performance with no zeros at all, but 

for a decreasing number of poles, again using the impulse excited synthetic speech. 

When this result is compared to that obtained in Test 4, the effect of the,.i._zeros can be ...._ 

clearly seen. To assist in this comparison, the results from Test 4 are replotted in Fig. 

5.5, along with the new, all-pole data. 
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Figure 5.5 shows that when a relatively large number of poles are used to model H(z), 
then the addition of zeros has little effect. When only a small number of poles is used, 

however, the addition of zeros does show significant improvement, even though there are 

theoetically no zeros in the signal. This can be explained in terms of the spectral balance 

- a large number of zeros can be used to model missing poles in the same way that an 

all-pole LPC filter µses additional poles to model the missing zeros. In each case the 

spectral balance is preserved better than the local peaks and nulls. 
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The simulation also shows the ten-pole case performing slightly better than the twelve-

pole case which contains more predictive. information. This is because the vocal tract 
u 

model used to synthesize the speech has only ten resonances and thus exactly ten poles 

occur in its transfer function. The flat spectrum of the impulse excitation will add no 

further poles to the system and thus coefficients to represent additional poles serve no 

purpose and should ideally be set to zero or else they will degrade performance. This 

result, it should be observed, is specific to impulse excited synthetic speech but it 

provides an insight into the accuracy with which the method of steepest descent is able 

to model the speech production mechanism. 

Test 6 ---
( P + Q ) = 6 : Ratio varied 

Voiced Speech 

In this test, the same conditions and data are used as in Test 1. The difference here is 

that the combined number of poles and zeros is reduced to six. This is done to ensure 

that the important results obtained in Test 1 are not specific to the use of twelve 

coefficients. Again, the performance test is the ratio of the input variance to the 

variance of the residual. 
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The graph in Fig. 5.6 shows results that are very similar to those obtained in Test 1. 

Again, tl1e optimal co~bination of poles and zeros is to include only one pole and to use 

the remaining coefficients to represent zeros. 

Similar results \Vere obtained \vhen the sum of the poles and zeros was set to other 

values but it is felt that repetition of these does not serve to illuminate the matter 
f 
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further. 

Test 7 ---
( P + Q ) = 12 : Ratio varied 

Voiced Speech 

\) 

In Test 7, and in all the remaining tests conducted in this study, the measure used to 

gauge the performance of the system is changed. As described in Chapter 1, the ratio of 

the input variance to the residual variance is a highly accurate measure of the 

performance of an ADPCM system, but it may not best represent the performance of an 

LPC system (in which the residual is not used at all). 

In this test, the entire LPC system is simulated, as opposed to simply the analysis filter 

that was sufficient in Tests 1 to 6. The waveform is analyzed to determine the optimal 

coefficients, and then an approximation of the waveform is re-created by exciting the 

synthesis filter with an impulse train (since voiced speech is being analyzed). The 

original and reconstructed waveforms should be compared in the frequency domain, not 

the time domain, since this parallels more closely the human hearing process in which 

only the magnitude of the spectrum is detected. (As it turns out, the time-domain 

waveforms of the reconstructed signal and the original signal are usually very different, 

even when their spectra are similar.) Thus Digital Fourier Transforms are then taken of 

both the reconstructed waveform and the original data sample ( as a reference) to obtain 

their spectra, and the magnitudes of _these are then compared. 

The gain of the system is accounted for by ensuring that the variance of the 
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reconstructed signal matches that of the original signal, thus making the height of the 

impulse excitation irrelevent. (It should be noted .that this is clearly impossible to do in a 

real system where the original signal is not available to the receiver and many schemes 

have been developed to determine the height of the excitation impulse train [Rab78], but 

these are felt to irrelevent to this study). Problems occurred in the detection of the pitch 

period from the residual (in reality, the pitch is determined from a number of sources, 

including the residual [O'Sh87] ) and again, since the pitch period is only tangential to 

this study, a crude simplifying assumption was made and the pitch was set to a constant 

of 128 samples. This value of 128 was determined by inspection of the data waveforms 
' 

used. This assumption is expected to degrade overall system performance but it is not 

expected that it should affect the balance between the contributions of the poles and the 

zeros. The actual performance measure used is the ratio of the variance of the original 

spectrum to the variance of the difference between the original and reconstructed 

spectra. This ratio is expressed in decibels. As before, this test was performed on all ten 

samples of real, voiced speech. A total of twelve coefficients are used, and they are used 

to represent varying ratios of poles and zeros. The full results are presented in Appendix 

' 
C, and have been averaged to obtain the data shown in Fig. 5.7. 
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Figure 5. 7 would indicate, once again, that there is a definite advantage to be had in 

using a combination of poles and zeros. An interesting feature of the graph is that the 

optimal combination is found to be no longer one-pole and and eleven zeros as occurred 

in Test 1, (which uses the same data and constraints, only a d,ifferent performance 

measure) but now a more evenly balanced mixture, peaking at seven poles and five 

zeros. Once again, tl1ere is considerable degradation for tl1e all-zero case. Figure 5. 7 is 
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misleading, however, in that few of the voice samples analyzed showed this relationship 

between gain aR'd pole-zero combination - in fact only 10% of the sam pies had a best 

ratio of seven poles and five zeros .. Most of the voice samples were of one of two types. 

either peaking at the all-pole case (20%) or at the l-pole-11-zero com bi nation (30% ). 

This gave rise to individual graphs falling, broadly, into one of the two types shown in 

Fig. 5.8. The graphs in Fig. 5.8 are the gain against pole-zero combination plots for the 

voiced samples 5 and 1 shown in Appendix B. 
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When plots of these types were averaged, they combined to form the relationship shown 

in Fig. 5.7. 

Examination of the voice samples showed that the all-pole model was superior for those 

voice samples which had been clipped due to the input waveform being too large, while 
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the single-pole-many-zero model performed better when no clipping occurred. Note that 

amplitude itself did not account for this change - it Was the presence of clipping that 

caused the better all-pole performances. A reasonable explanation of this is that the 

clipping introduces erroneous high frequency components into the spectrum of the input 

waveform and these erroneous components may well be better represented by poles than 

by zeros. It should be recalled that a similar change occurred using the earlier 

performance measure (Test 1) when the single-pole-eleven zero model could be bettered 

only when in the presence of clipping. When only the samples in which no clipping 

occurred are considered, the average of the results is now shown in Fig 5.9. 

These results, for unclipped input waveforms, now show the result that is expected from 

Test 1 - that a definite advantage occurs when both poles and zeros are used and that 

the optimal combination of these poles and zeros is, again, one pole and eleven zeros. 

This has shown that the simpler measure of performance, using the ratio of the input 

variance to that of the residual, gives rise to essentially the same results as the more 

complex reconstruction measure. 
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Test 8 ----- -

( P + Q ) = 12 : Ratio varied 

Synthetic Speech (Glottal excitation) 

12 

I 
0 

The same procedure as was followed in Test 7, is no\v performed in tl1is test, \vith the 
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exception tl1at the data examined is the glotally excited synthetic speech. This speech is 

not clipped at any point. The results are to be found in App'endix C and are plotted in 

Fig. 5.10. 
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Once again it is shown that the results obtained i11 Test 3 using tl1e simple performance 
l 

measure are repeated when ,, the performance measure is a com·parison of the 

reconstructed ,vaveforms. 
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Chapter 6 
Conclusion 

The results of Test 1 ( described in Chapter 5) provide the most important conclusion of 

this study, viz. a pole-zero representation of speech can out-perform the classic all-pole 

representation. 

It is clear that the addition of zeros to an all-pole model will improve performance, and 

this has been superbly illustrated by B. Atal in [Ata78] in which reconstructed spectra 

are compared graphically with the input spectra. Such a result is no surprise - the 

addition of zeros has increased the amount of predictive information available. It is also 

well known that the performance of an all-pole LPC filter improves with every pole 

added [Ata71] - again the result of an increase in predictive information. Atal's studies 

raised the question of whether the addition of a zero increases performance as much as 

the addition of another pole. Put another way, will the replacement of a pole by a zero 

improve or degrade performance? This study shows that the answer is that 

improvement will occur. 

This conclusion was also arrived at by Koo and Gibson [Koo86] but these researchers 

failed tq.,, address the question of how many poles could be replaced by zeros while still 

maintaining improved performance. To quote from their paper "it was not clear which of 

the combinations of pole and zero orders ... would yield the best results." The results 

from Test 1 show that the best combination of poles and zeros is one pole and the 

remaining predictive information modelling zeros. This is surprising in its suggestion that 

modelling the zeros is more important than modelling the poles when almost all LPC 
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systems use all-pole representations. 

A conclusion about whether an all-pole or all-zero predictor is more efficient is difficult 

to arrive at from the data gathered in this study. Test 1 shows a slightly better 

performance from the all-pole predictor, but the reverse was found to be true in Test 6 

for a smaller number of predictor taps, and in Test 7 where reconstruction is considered. 

Koo found a slightly improved performance for the all-zero case [Koo86] and then 

proceeded to show how the all-zero predictor performs far better when transmission 

occurred over a noisy channel since the finite response of an all-zero filter means that the 

effect of a channel error is more quickly eradicated. This advantage of the all-zero 

predictor in a noisy environment can be expected to be passed on, in part, to the pole-

zero predictors, giving them a further advantage to that described in this study. 

Test 2 repeats the study undertaken in Test 1 except that the data analyzed is unvoiced 

speech as oppposed to the voiced speech of Test 1. For this case, it was found that the 

all-pole, pole-zero and all-z~ro predictors all performed at a very similar level. This 
Jr 

discrepancy indicates that the advantage found in pole-zero representation of voiced 

speech stems from the spectral nulls that occur as a result of the glottal excitation, 

which is not present in unvoiced speech. It should be noted that a theoretical study of 
'. 

the shape of the vocal tract indicates that the sounds for which zeros occur most 

prominantly in the transfer function of the vocal tract are nasal sounds and fricatives 

[O'Sh87]. Unvoiced sounds are almost exclusively fricatives, and so, if the vocal tract 

was contributing significantly to the spectral nulls, then a pole-zero representation 

should show an advantage for fricatives. Since this was found to be not the case, it can· 

be concluded that the vocal tract can be adequately modelled by an all-pole filter, but 
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that the glottal excitation is best represented by a transfer function that includes zeros 
.,. 

This hypothesis is further investigated in Test 3, in which synthetic data is examined. 

This synthetic data been produced using a finite glottal pulse (which thus has an all-zero 

transfer function) and an all-pole model of the vocal tract. The results of this test are 

very similar to those obtained for real voiced speech indicating once again that the 

glottal pulse is the source of the representationally important zeros. By this reasoning, if 

the1 same v.Dcal tract model is used but the excitation no longer contains spectral nulls, 

then a pole-zero representation should perform comparatively poorly. This is . .,shown to 

be the case in Test 4 where the vocal tract model is excited by an impulse. The 

significance of this test is that is traces the pole-zero representation improvement in the 

_glottally excited sythetic speech directly to the glottal pulse since this is the only change 

in test conditions. 

The clarity of the results shown in these tests is tempered by the fact that these tests, in 

an effort to reduce the influence of external factors, are a simplification of the complete 

LPC process. The performance measure used is the ratio of the residual variance to that 

of the input waveform. The results obtained thus will correlate directly to an 

improvement in an ADPCM system (where the synthesis filter is excited by the residual) 

in which quantization of the coefficients and channel noise is negligible. Koo's work has 

shown an improvement in the performance of an all-zero ADPCM system over an all­

pole one in the presence of channel noise and so it is reasonable to assume that a pole­

zero ADPCM system will perform better than an all-pole one in the same noisy 

conditions. Quantization of the coefficients (for low bit-rate transmission) has been 

found to have two degrading effects for all-pole analysis filters. By shifting the pole 
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positions they make the model of the speech production process less accurate, but more 

importantly, if the poles are _shifted outside the unit circle on the z-plane, then the all­

pole filter will become unstable. No evidence has been gathered here to suggest that zero 

positions are affected by quantization more or less than pole positions and no reasoning 

has been proposed in the literature why either case should occur. Stability should be less 

of a concern for the pole-zero representations since if the synthesis filter is still stable 

when zeros occur outside the unit circle. Thus it is indicated that the pole-zero 

representations will show an even larger gain over the all-pole representations when 

'real-life' factors are considered, although experimental confirmation of this is beyond 

the scope of this study. 

Further complications occur when the ADPCM system is replaced by an LPC one, in 

which the synthesis filter is excited by an impulse train or an noise source rather than 

the residual. Now it is no longer sufficient that the residual is minimised - it must be 

brought as close to the shape of an impulse train as is possible (for voiced speech). It is 

also no longer clear exactly how the performance of the system should be measured. 

Perhaps the best measure is a listening test, while some researchers have used visual 

comparison of the spectra. Both these mesaures are, however, subjective and thus 

repeatable results can only be obtained by taking the statistical average of a large 

number of tests. The measure used here is a ratio of the variance of the input spectrum 

( or the reconstructed spectrum since the gain factor ensures these are the same) to the 

variance of the difference between the input and the reconstructed spectra. This is called 

the Signal to Noise Ratio. 

....) 

When reconstruction was performed using an impulse train excitation, in Tests 6 and 7, 
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it was found that the pole-zero representation still performed better than the all-pole 

case, for the SNR meas11re described above. As explained in Chapter 5, this result is 

most pronounced for unclipped input waveforms. That the pole-zero improvement can 

be found in the reconstructed spectrum indicates that the shape of the residual is not an 

important factor here. It does not necessarily follow that these same results will occur in 

subjective listening tests. A pole-zero representation minimizes the numerical difference 

between the input and reconstructed waveforms but studies have shown [Ata85] that, in 

subjective listening tests, the human ear is more responsive to spectral peaks and the 

overall spectral balance than it is to the spectral valleys. Zeros represent these valleys 

and so it i~ quite conceivable that even though the SNR has been reduced, this will not 

result in improved subjective results. Another way of looking at this is ·to recall from the 

results presented above that the spectral valleys result primarily from. the glottal pulse. 

This pulse is quasi-periodic and so it does not provide the listener with much new 

information whereas the spectral peaks result mostly from the shape of the vocal tract -

the changing of which is what differentiates the phonetic sounds 61' our language. Thus 

information about the vocal tract is more salient to discrimination between language 

sounds: the measures used in this study treat the speech signal without regard to .its 

function as a complex encoder of meaning. Determination of whether pole-zero gains 

could be extended as far as subjective listening tests was, again, beyond the scope of this 

study and no evidence has been presented in the engineering literature to prove the 

matter one way or the other. 

Finally, this study takes only passing regard of the reason why all-pole prediction is the 

widely preferred method at this time - that the all-pole coefficients can be found quickly 

and accurately by the solution of linear equations, while pole-zero and all-zero r,. .. 
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coefficients must be found by the solution of non-linear equations. This is done in this 

study by the numerical method of steepest descent. The same procedure is followed for 

the all-pole case so that valid comparisons can be made and, indeed, the gains made by 

exchanging some poles for zeros more than compensated, in some cases, for the losses 

caused by the inaccuracy with which the coefficients could be found. (These losses 

should be reduced when quantization of the coefficients is included because in that case 

there is only a set limit of accuracy possible.) Comparisons of the all-pole, pole-zero and 

all-zero systems are done at this lower level of accuracy under the assumption that when 

more accurate methods are developed to find the pole-zero coefficients, the relationships 

found at the level of this study will continue to hold. This study has shown that the 

gains are there to be made. 

The tracing of the important valleys in the speech spectrum to the glottal pulse also 

suggests a different approach to the modelling of the speech system. If the synthesis 

filter were to be excited by a pseudo-glottal pulse instead of an impulse, then the LPC 

analysis need only be responsible for modelling the vocal tract which, it has been shown 

in this study, can be accurately done by an all-pole filter. This has been attempted, 

although with limited success [Hed84]. The problem is that minimization of the residual 

by the analysis filter drives the residual to an impulse, not a glottal pulse and so it is 

incorrect to now excite the synthesis filter with a glottal pulse. The spectrum of the 

glottal pulse must be removed from the speech spectrum (by deconvolution in the time­

domain) before the signal reaches the LPC analysis filter, and then the addition of this 

spectrum by exciting the synthesis filter \Vith a glottal pulse is logical. Such a scheme · 

avoids the need to include zeros in the LPC- filters and deserves further attention. 
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In summary, this study shows that·improved performance is pOssible by the inclusion of 

zeros in linear predictive representations of speech and describes the limits and Possible 

counterbalancing effects of this pole-zero representation. An optimal combination of one 

pole and eleven zeros is shown for the twelve coefficient system. The effect is traced 

primarily to the glot~aj pulse and a scheme for the representation of speech based on 

this cause is sug~6!-------"-, 

\ 
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Appendix A 

LPC Simulation Results showing Performance againstl'Number Qf Iterations 

VOICED SAMPLE 

Data Points Poles Zeros Iterations Gain( dB) 

128 12 0 1 10.499 
128 12 0 2 11.539 
128 12 0 3 12.141 
128 12 0 4 12.625 
128 12 0 5 12.985 
128 12 0 6 13.254 
128 {' 12 0 7 13.462 
128 12 0 8 13.626 
128 12 0 9 13.760 
128 12 0 10 13.871 
128 12 0 11 13.965 
128 ~ 12 0 12 14.045 
128 12 0 13 14.116 
128 12 0 14 14.177 
128 12 0 15 14.232 

VOICED SAMPLE 

Data Points Poles Zeros Iterations Gain( dB) 't 
• 

128 6 6 1 10.834 
128 6 6 2 13.903 
128 6 6 3 14.383 
128 6 6 4 14.636 
128 6 6 5 14.807 
128 6 6 6 14.936 
128 6 6 7 15.039 
128 6 6 8 15.124 
128 6 6 9 15.195 
128 6 6 10 15.257 
128 6 6 11 15.311 
128 6 6 12 15.359 

· 128 / ... 6 6 13 15.402 
'128 6 6 f 14 15.440 
128 6 6 15 15.476 

" 
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VOICED SAMPLE 

Data Points Poles Zeros Iterations Gain(dB) 

128 0 12 1 8. 7037 
128 0 12 2 12.379 
128 0 12 3 13.058 
128 0 12 4 13.424 
128 0 12 5 13.663 
128 0 12 6 13.836 
128 0 12 7 13.969 

. 

128 0 12 8 14.075 
128 0 12 9 14.162 
128 0 12 10 14.235 

~ 

128 0 12 11 14.297 
128 0 12 12 14.351 
128 0 12 13 14.398 
128 0 12 14 14.440 
128 0 12 15 14.478 

)! 
·, 
' 

UNVOICED SAMPLE 

Data Points Poles Zeros Iterations Gain( dB) 
.. 

128 12 0 1 1.891 
128 12 0 2 2.968 
128 12 0 3 3.291 
128 12 0 4 3.491 
128 12 0 5 3.619 
128 12 0 6 3.708 
128 12 0 7 3.772 
128 12 0 8 3.821 
128 12 0 9 3.859 
128 12 0 10 

1( 
3.890 

128 12 0 11 ~ 3.915 
128 12 0 12 3.936 
128 12 0 13 3.954 
128 12 0 14 3.969 
128 12 0 15 3.982 
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UNVOICED SAMPLE 

Data Points Poles Zeros Iterations Gain(dB) 

128 6 6 1 2.365 
128 6 •. 6 2 3.029 
128 6 6 3 3.315 
128 6 6 4 3.452 
128 6 6 5 3.534 
128 6 6 6 3.589 
128 6 6 7 3.629 
128 6 6 8 ,~,.,../ 3.658 
128 6 6, 9 3.682 
128 6 6 10 3.701 
128 6 6 11 3.716 
128 6 6 12 3.730 
128 6 6 13 3.741 
128 6 6 14 3.751 
128 6 6 15 3.759 

UNVOICED SAMPLE 

Data Points Poles Zeros Iterations Gain( dB) 

128 12 0 1 1.600 
128 12 0 2 2.522 
128 12 0 3 3.265 
128 12 0 4 3.415 
128 12 0 5 3.509 
128 12 0 6 3.570 
128 12 0 7 3.612 
128 12 0 8 3.644 
128 12 0 9 3.668 
128 12 0 10 3.687 
128 12 0 11 3.703 
128 12 0 12 3.716 
128 . 12 0 13 3.726 
128 12 0 14 3.735 
128 12 0 15 3.743 
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,Appendix R 

Plots of the fleal ancl Svnthetic Sp<'<'ch Samples u~P<l ill this st.11d\' 

VOICED SA1t1PLE 1 

Variance - 4.7 X 104 

111 II II II 1111••'"11111111111111111r•111lll 11 I 11I I I I I I I 11111111 

Zero-crossing rate = 8% 

Clipping 0% 

VOICED SAMPLE 2 

Variance - 2.1 X 104 

... , .1IIIIi, .. ,,,1111111 I I II 111.111 I 111111111111111111111.1111111111· i11 .. ,11 • 1111 l111.II' ,,,.o1d 11lllll1i..11 lllll l11i 'I Zero-crossing rate == 11 % 

Clipping 0% 

VOICED SAMPLE 3 

Variance - 5.1 X 104 
11,.,l lm.11111111' •·' · llllllllllll 'I IIJ Ill ll,.,111 "•11'•111111 II 1111111 

Zero-crossing rate = 9% 

Clipping 0% ,, 

VOICED SAMPLE 4 

Variance 2.3 X 105 

II 111111.11 .. ,1,1111111111 ·1··~"' 1 I I • 

Zero-crossing rate = 7% 

Clipping 0% 
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\'0ICED SA~IPLE 5 

Variance 1.2 X 106 

Zero-crossing rate = 9% 

Clipping 8% I I 
r 

i' I J 11 . 

VOICED SA1\1PLE 6 
., 

Variance 1.5 X 106 

\ 
\ 

Zero-crossing rate = 7% 

Clipping 15% 1,,1 r' i' '111 

f I 

VOICED SAMPLE 7 

Variance 4.1 x 104 

Zero-crossing rate = 11 % 

Clipping 0 0% 
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VOICED SAMPLE 8 
................ 11111111 

/" 

Variance 1.2 X 106 

Zero-crossing rate = 4% 
, 

( 

Clipping 3% 

VOICED SAl\f PLE 9 

9.8 X 105 Variance 

Zero-crossing rate = 4% 
lllll1.,

11111111

r1lll1111111111111 

Clipping 3% 

VOICED SA1\1PLE 10 

Variance 
j 

3.0 X 105 

Zero-crossing rate = 4% 

Clipping 0% 
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UNVOICED SAl\1PLE 1 

Variance - 3.6 X 104 

Zero-crossing rate = 39% 

// 

UNVOICED SAl\IPLE 2 

Variance - 7.9 X 104 

Zero-crossing rate = 55% 

UNVOICED SAMPLE 3 

Variance - 1.1 X 104 

Zero-crossing rate = 40% 

UNVOICED SA1\1PLE 4 

Variance - 2.9 X 104 

Zero-crossing rate = 14% 

UNVOICED SAMPLE 5 

Variance - 4.4 X 104 

Zero-crossing rate = 45% 

UNVOICED SAivIPLE 6 

Variance = 2.5 X 105 

Zero-crossing rate = 44% 
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I Ill.. 

1

, I, I 1111 

SYNTHETIC SPEECH (GLOTTAL) 

.... 

i' .. 

11..1 . '!111111111111 

111111111111111111111111111 

11111 

SYNTHETIC SPEECH (IMPULSE) 
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Appendix .C. 
( 

Test One 

VOICED SAMPLE ONE 
q 

Data Points· Poles Zeros Iterations Gain(dB) 

128 12 0 6 12.577 · 

128 11 1 6 13.096 

128 10 2 6 13.619 

128 9 3 6 13.931 

128 8 4 6 14.211 

128 7 5 6 14.563 

128 6 6 6 14.924 

128 5 7 6 15.196 

128 4) 8 6 15.392 

128 3 9 6 15.445 

128 2 10 6 15.552 

128 1 11 6 16.642 

128 0 12 6 13.904 

VOICED SAMPLE TWO ,, 

Data Points Poles Zeros , Iterations Gain( dB) 

128 12 0 6 11.058 

128 11 1 6 11.402 

128 10 2 6 11.628 

128 9 3 6 11.858 

128 8 4 6 12.133 

128 7 5 6 12.283 

128 6 6 "' 6 12.413 

128 5 7 ,6 12.576 

128 4 8 6 12.749 
' 

128 3 9 6 12.952 

128 2 10 6 13.004 
' 

128 1 11 6 13.331 

128 0 12 6 11.667 
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VOICED SAMPLE THREE 
I 

Data Points Poles Zeros Iterations Gain(dB) 

128 12 0 6 11.421 

128 11 1 6 12.035 

128 10 2 6 12.517 
I 

128 9 3 6 12.883 

128 8 4 6 13.172 

128 7 5 6 13.353 

128 6 6 6 13.523 

128 /- 5 7 6 13.692 

128 4 8 6 13.818 

128 3 9 6 13.913 

128 2 10 6 13.940 

128 1 11 6 14.542 

128 0 12 6 12. 772 

VOICED SAMPLE FOUR 

Data Points Poles Zeros Iterations Gain( dB) 

128 12 0 6 13.018 

128 11 1 6 13.137 

128 10 2 6 13.245 

128 9 3 6 13.352 

128 8 4 6 13.415 

128 7 5 6 13.502 

128 6 6 6 13.555 
1)' 128 5 7 6 ;O 13.589 

128- 4 8 6 13.651 

128 3 9 6 13.706 

128 2 10 6 13. 778 

128 1 11 6 13. 761 

128 0 12 6 12.489 
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VOICED SAMPLE FIVE 
·. 

Data Points ·· Poles Zeros Iterations · Gain(dB) 
. 

128 12 0 6 14.720 

128 11 1 6 14.850\ 

128 10 2 6 14.907 

128 9 3 6 14.965 

128 8 4 6 15.197 

128 7 5 6 15.568 

128 6 6 6 15.958 

128 5 7 6 16.539 

128 4 8 6 17.406 

128 3 9 6 17.588 

128 2 10 6 16.458 

128 1 11 6 17.033 

128 0 12 6 13.489 

VOICED SAMPLE SIX 

Data Points Poles Zeros Iterations Gain(dB) 

128 12 0 6 9.9376 . 
.. 

128 11 1 6 10.598 

128 10 2 6 11.110 

128 9 3 6 11.393 

128 8 4 6 11.596 

128 7 5 6 11.895 

128 6 6 6 12.191 

128 5 7 6 12.344 

128 4 8 6 12.463 

128 3 9 6 12.737 

128 2 10 6 12.856 ..... ' 

128 1 11 6 12.977 

128 0 12 6 11.422 

-77-



VOICED SAMPLE SEVEN 

Data Points Poles Zeros Iterations Gain(dB) 

128 12 0 6 11.512 

128 11 1 6 11.944 

128 10 2 6 12.310 

128 9 3 6 12.479 

128 8 4 
! 

6 12.571 

128 7 5 6 12.736 

128 6 6 6 12.902 

128 5 7 6 13.084 

128 4 8 6 13.170 

128 3 9 6 13.311 

128 2 10 6 13.320 
128 1 11 6 13.633 

128 0 12 6 12.076 

VOICED SAMPLE EIGHT 

Data Points Poles Zeros Iterations Gain(dB) 
128 12 0 6 11.337 
128 11 1 6 11.566 
128 10 2 6 11.677 
128 9 3 6 11.764 
128 8 4 6 11.883 
128 7 5 6 12.055 
128 6 6 6 12.224 
128 5 7 6 12.279 
128 4 8 6 12.368 
128 3 9 6 12.472 
128 2 10 6 12.488 
128 1 11 6 12.695 
128 0 12 6 11.658 

~ 
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. VOICED SAMPLE NINE } 

Data Points Poles Zeros Iterations Gain(dB) 

128 12 o ... 6 15.657 

128 11 1 6 16.249 

128 10 2 0 6 17.133 

128 9 3 6 17.958 

128 8 4 6 18.763 

128 7 5 6 19.379 ., 

. 

128 6 6 6 19.529 

128 5 7 6 19.134 

128 4 8 6 18.748 

128 3 9 6 18. 714 

128 2 10 6 19.415 

128 1 11 6 21.677 

128 
IQ' 

0 12 6 15. 777 

VOICED SAMPLE TEN 

Data Points Poles Zeros Iterations Gain(dB) 

128 12 0 6 17.679 

128 11 1 6 17. 792 

128 10 2 6 18.288 

128 9 3 6 ' 18.836 

128 8 ·4 6 19.550 

128 7 
.I 

5 6 20.209 

128 6 6 6 20.480 

128 5 7 6 20.084 

128 4 8 6 19 .. 491 

128 3 9 6 19.431 

128 2 10. 6 20.453 
, 

128 1 11 6 23.275 

128 0 12 6 16.164 
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Durbin's Recursive Method Q.!l Voiced Samples 1-10 

DURBIN'S RECURSIVE METHOD 
Data Points Poles Zeros Sample No. Gain(dB) 

128 12 12 1 17.543 
128 12 12 2 14.014 
128 12 12 3 1-1.586 

. 

128 12 12 4 11.835 
128 12 12 5 17.108 
128 12 12 6 13.580 
128 12 12 7 13.739 
128 12 12 8 12.913 
128 12 12 9 22.030 
128 12 12 10 21.520 

-80-



Test 2 -----
UNVOICED SAMPLE ONE 

Data Points Poles Zeros Iterations Gain(dB) 
128 12 0 6 4.631 
128 11 1 6 4.574 
128 10 2 6 4.597 
128 9 3 6 4.675 
128 8 4 6 4.672 
128 7 5 6 4.711 
128 6 6 6 4.749 
128 5 7 6 4.809 
128 4 8 6 4.838 
128 3 9 6 4.969 
128 2 10 6 4.325 \( 

128 1 11 6 3.970 
128 0 12 6 4.030 

UNVOICED SAMPLE TWO 
Data Points Poles Zeros Iterations Gain(dB) 

128 12 0 6 3.773 
128 11 1 6 3.803 
128 10 2 6 3.866 

' 128 9 3 6 3.899 
128 8 4 6 3.651 
128 7 5 6 3.860 
128 6 6 6 3.843 
128 5 7 6 3.888 
128 4 8 6 3.724 
128 3 9 6 3.634 
128 2 10 6 3.669 
128 1 11 6 3.507 
128 0 12 6 3.109 
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UNVOICED SAMPLE THREE 
Data Points Poles Zeros Iterations Gain(dB) 

.__,, 

128 12 0 6 5.379 
128 11 1 6 ' 5.368 
128 10 2 6 5.418 
128 9 3 6 5.476 
128 8 4 6 5.534 
128 7 5 6 5.527 
128 6 6 6 5.489 
128 5 7 6 5.378 

. 

, . 

128 4 8 6 5.355 
. 128 3 9 6 5.515 

128 2 10 6 4.582 
128 1 11 6 5.315 
128 0 12 6 5.319 

UNVOICED SAMPLE FOUR 
Data Points Poles Zeros Iterations Gain( dB) 

128 I , 12 0 6 8.636 
128 11 1 6 8.858 
128 10 2 6 9.000 
128 9 3 6 9.157 
128 8 4 6 9.234 

. 

128 7 5 6 9.247 
128 6 6 6 9.345 
128 5 7 6 9.344 
128 4 8 6 9.456 

-128 3 9 6 9.584 
128 2 10 6 9.551 
128 , 1 11 6 9.465 
128 0 12 6 9.139 
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UNVOICED SAMPLE FIVE I 
Data Points Poles Zeros Iterations Gain(dB) 

128 12 0 6 3.979 
128 11 1 6 4.033 
128 10 2 6 4.064 
' 

·128 9 3 6 3.867 
128 8 4 6 3.770 

. 128 7 5 6 3.700 
128 6 6 6 3.788 
128 5 7 6 3.717 
128 4 8 <· 6 3.885 
128 3 9 6 3.726 
128 2 10 6 3.298 
128 1 11 6 3.527 
128 0 12 6 3.697 

i 
UNVOICED SAMPLE SIX 

Data Points Poles Zeros Iterations Gain(dB) 
128 12 0 6 2.069 
128 11 1 6 2.087 
128 10 2 6 2.078 
128 9 3 6 2.071 
128 8 4 6 2.046 
128 7 5 6 2.004 
128 6 6 6 2.008 

11 128 5 7 6 2.004 
128 4 8 6 1.954 
128 3 9 6 2.106 
128 2 10 6 2.128 

' 

128 1 11 6 2.225 
128 0 12 6 2.242 
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Test a 
SYNTHETIC SPEECH ( GLOTTAL) . 

Data Points Poles Zeros Iterations Gain(dB) 
128 12 0 6 13.026 
128 11 1 6 13.299 
128 10 2 6 13.867 

. 

128 9 3 6 14.525 
128 8 4 6 15.225 
128 7 5 6 15.366 
128 6 6 6 15.111 
128 5 7 6 15.215 

' 128 4 8 6 15.609 
128 3 9 6 15.751 -
128 2 10 6 15.421 
128 1 11 6 15.951 
128 0 12 6 12.309 

Test 4 -
SYNTHETIC SPEECH (IMPULSE) 

Data Points Poles Zeros Iterations Gain(dB) 
128 12 0 6 6.538 
128 11 1 6 6.587 
128 10 2 6 6.306 
128 9 3 6 3.315 I 

128 8 4 6 3.176 
128 7 5 6 3.306 

. 128 6 6 6 3.267 
128 5 7 6 3.382 
128 4 8 6 3.938 
128 3 9 6 3.625 
128 2 10 6 3.865 . . 

128 1 11 6 3.510 
128 0 12 6 3.538 
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Test .Q 
I ' 

SYNTHETIC SPEECH (IMPULSE) 

Data Points Poles Zeros Iterations Gain( dB) 

128 12 0 6 6.538 

128 11 0 6 6.585 

128 10 0 6 6.582 
' 

128 9 0 6 3.299 

128 8 0 6 3.261 

128 7 0 6 3.279 

128 6 0 6 3.187 

128 5 0 6 2.804 

128 4 0 6 2.659 

128 3 0 6 2.284 

128 2 0 6 1.859 

128 1 0 6 0.235 
' 

128 0 0 6 0.000 

Test 6 -

VOICED SAMPLE ONE 

Data Points Poles Zeros Iterations Gain( dB) 
\ 

128 6 0 6 13.628 

128 5 1 6 14.311 

128 4 2 6 14.620 

128 3 3 6 14.574 

128 2 4 6 14.667 

128 1 5 6 16.045 

128 0 6 6 11.899 

,, 
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VOICED SAMPLE TWO 
Data Points Poles Zeros Iterations Gain(dB) 

128 6 0 6 11.079' 
128 5 1 6 11.382 
128 4. 2 6 11.639 
128 3 3 6 12.004 
128 2 4 6 12.148 
128 1 5 6 12.507 
128 0 6 6 10.603 

VOICED SAMPLE THREE 
Data Points Poles Zeros Iterations Gain(dB) 

tl 

128 6 0 6 12.493 
128 5 1 6 12.788 
128 4 2 6, 13.001 
128 3 3 6 13.135 
128 2 4 6 13.168 
128 1 5 6 13.973 
128 0 6 6 10.906 

VOICED SAMPLE FOUR 
Data Points Poles Zeros Iterations Gain(dB) 

128 6 0 6 13.122 I 

128 5 1 6 13.216 , . I 

' 128 4 2 6 13.300 
128 3 3 6 13.369 
128 2 4 6 13.523 

. ) 
,,,- ---· 

.0 128 1 5 6 13. 799 
128 0 6 6 10.995 
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VOICED SAMPLE FIVE 

Data Points Poles Zeros Iterations Gain(dB) 
128 6 0 6 14.328 
128 5 1 6 15.128 
128 4 2 6 16.390 I 

128 3 '3 6 . ' 17.176 ' 

128 2 4 6 14.857 
128 1 5 6 14.809 
128 0 6 6 11.532 

VOICED SAMPLE SIX 
Data Points Poles Zeros Iterations Gain(dB) 

128 6 0 6 11.069 
128 5 1 6 11.293 

.. ' 128 4 2 6 11.339 
128 3 3 6 11. 711 
128 2 4 6 11.987 
128 1 5 6 12.150 
128 0 6 6 10.264 

... 
VOICED SAMPLE SEVEN 

Data Points Poles Zeros Iterations Gain(dB) 
128 6 0 6 11.817 
128 5 1 6 12.162 
128 4 2 6 12.491 
128 3 3 6 12.685 
128 2 4 6 12.506 
128 1 5 6 12. 745 
128 0 6 6 10.711 
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VOICED SAMPLE EIGHT 

Data Points Poles Zeros Iterations Gain{dB) 
\ 

I , 128 6 0 6 11.436 

128 5 1 6 11.591 

128 4 2 6 11.658 
-

128 3 3 6 11.840 ' 

128 2 4 6 11.956 

128 1 5 6 12.391 

128 0 6 6 10.439 
. 

VOICED SAMPLE NINE 

Data Points Poles Zeros Iterations Gain( dB) 

128 ,6 0 6 18.819 

128 5 1 6 18.544 

128 4 2 6 17.383 

128 3 3 6 16.934 

128 2 4 6 17.805 

128 1 5 6 20.664 

128 0 6 6 13.169 

VOICED SAMPLE TEN 

Data Points Poles l' Zeros Iterations Gain(dB) 

128 6 0 6 18.931 
--

128 5 1 6 18.370 

128 4 2 6 17.293 • 

128 3 3 6 17.217 

128 2 4 6 18.859 

128 1 5 6 2ll988 

128 0 6 6 13.437 
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Test Seven 

VOICED SAMPLE ONE 

Data Points Poles Zeros Iterations SNR(dB) 

128 12 0 6 4.418 
I 

4.808 128 11 I 1 6 l 

128 10 2 6 5.376 

128 9 3 6 5.845 

128 8 4 6 6.246 

128 7 5 ~ 6.642 

128 6 6 6 7.011 

128 5 7 6 7.169 
·, 

128 4 8 6 7.070 

128 3 9 6 6.925 
I. 128 2 10 6 6.950 'J 
•' 

128 1 11 6 7.494 

128 0 12 6 4.630 

VOICED SAMPLE TWO 

Data Points Poles Zeros Iterations SNR(dB) 
.~ 

128 12 0 6 6.248 
. 

128 11 1 6 6.116 

128 10 2 6 6.194 

128 9 3 6 6.425. 

128 8 4 6 6.7Q8 .. 

;< 128 7 5 6 I 6.750 

128 6 6 6 6.554 ' ' 
'. 

128 5 7 6 6.576 {j' I) ,,, 

128 4 8 6 " 6.752 
'c. 

128 3 9 6 6'.948 

128 2 10 6 7.159 I 
,,. 

128 1 11 6 7.215 .. 

128 ' c, 0 12 6 4.728 . 

' 
' . " 
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VOICED SAMPLE THREE 

Data Points Poles Zeros Iterations I SNR(dB) 

128 12 0 6 4.7176 

128 11 1 6 6.3937 

128 10 2 6 8.5692 

128 9 3 6 10.914 

128 8 4 6 12.293 

.I 128 7 5 6 12.267 

128 6 6 6 11.132 

128 5 7 6 10.665 

128 4 8 6 · 10.825 
" 

128 3 9 6 10.709 

128 2 10 6 10.638 

128 1 11 6 10.761 

128 0 12 6 6.0186 

i 
-~ .. ,'-Cc_ I 

--- - ( 
' 

·' 
/ 

VOICED SAMPLE--:~:UR 

Data Points Poles Zeros Iterations SNR(dB) 

128 12 0 6 1.686 

128 11 1 6 1.185 

128 10 2 6 0.185 

128 9 3 6 - 1.04 7 

128 8 4. 6 - 2.399 

128 7 5 6 - 2. 748 

128 6 6 6 - 3.893 

128 5 7 6 - 4.160 

128 4 8 6 - 2.192 

128 3 ' 9 6 - 0.591 

128 2 10 6 2.004 

128 1 11 6 5.253 

128 0 12 6 ~ 2.584 
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Data Points 

128 

128 

128 

128 

128 

128 

128 

128 

128 

128 

128 

128 

128 

Data Points 

128 

128 

128 

128 

128 

128 

128 

128 

128 

128 

128 

128 

128 

Poles 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

Poles 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

i 
I 

VOICED SAMPLE FIVE 

Zeros Iterations SNR(dB) 
0 6 9.018 

I 1 6 7.201 

2 6 6.340 

3 6 5.944 

4 6 5.734 

5 6 5.534 

6 6 5.145 

7 6 5.005 

8 6 5.085 

9 6 3.779 

10 6 2.967 

11 6 2.929 

12 6 3.191 

VOICED SAMPLE SIX 

Zeros Iterations SNR(dB) 
0 6 5.707 

1 6 6.395 

2 6 6.854 

3 6 6.836 

4 6 6.509 

5 6 
" 
6.184 

6, 6 5.441 '1 

7 6 4.845 

8 6 4.549 
. 

9 6 4.388 
10 6 4.240 

11 6 4.286 
12 6 3.493 
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VOICED SAMPLE SEVEN 
Data Points Poles Zeros Iterations SNR(dB) 

128 12 0 6 7.693 ,, 
' 

128 11 1 6 8.144 
128 10 2 6 8.580 
128 9 ~ 3 6 8.552 
128 8 4 6 8.309 
128 7 5 6 8.450 
128 6 6 6 8.911 ! 

128 5 7 6 9.124 
128 4 8 6 8.394 
128 3 9 6 7.476 
128 2 10 6 7.079 

-J 128 1 11 6 7.308 
l 

128 0 12 6 5.549 

VOICED SAMPLE EIGHT 
Data Points Poles Zeros Iterations SNR(dB) 

128 12 0 6 8.809 ,f 
128 11 1 6 8.729 
128 10 2 6 7.959 
128 9 3 6 7.190 tr 

128 8 4 6 6.614 
128 7 5 6 6.137 
128 6 ' 6 6 5.472 

" 128 5 ·7 6 4.766 
128 4 

' 'f' 

8 6 4.298 
128 3 9 6 4.134 
128 2· 10 6 3.941 
128 1 11 6 4.247 
128 0 12 6 4.198 
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' VOICED SAMPLE NINE 
I 

, 

1Data Points Poles Zeros Iterations SNR(dB) 
128 .... I 12 0 6 3.848 
128 11 

) 

1 6 3.829 
128 10 2 6 4.288 
128 9 3 6 5.200 
128 8 4 6 6.986 

\ 

128 7 5 6 ) 9.134 
128 6 6 6 8.134 
128 5 7 6 6.921 
128 4 8 6 6.331 
128 3 9 6 6.163 
128 2 10 6 6.257 
128 l' 11 6 7.069 
128 0 12 6 3.957 

VOICED SAMPLE TEN 
Data Points Poles Zeros Iterations SNR(dB) 

128 12 0 6 5.295 
128 11 1 6 6.984 
128 10 2 6 7.100 
128 9 3 6 6.952 c,,..·· .• 

~ _!) ' 

128 8 4 6 6.~750 
128 7 5 6 6.484 

I 128 6 6 6 6.074 
128 5 7 6 f ·, ~. 5.587 I 

128 4 8 6 5.213 
128 3 9 6 4.963 
128 2 10 6 4.846 
128 1 11 6 5.518 
128 0 12 6 3.482 
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Test Eight 

Data Points Poles 

128 12 

128 11 

128 10 1 

128 9 

128 8 

128 7 

128 6 

128 5 

128 4 

128 3 

128 2 

128 1 

128 0 

I' 

. 

SYNTHETIC SPEECH (GLOTTAL) 

I 

I 
l' "(' 

Zeros 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Iterations 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

-94-

SNR(dB) 

- 1.'909 ' 

- 1.330 

- 0.372 

0.674 

2.318 

3.933 

4.318 

4.267 

4.352 

4.262 

3.850 

4.344 

2.896 
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