1,161 research outputs found

    Parallel-Machine Scheduling Problems with Past-Sequence-Dependent Delivery Times and Aging Maintenance

    Get PDF
    We consider parallel-machine scheduling problems with past-sequence-dependent (psd) delivery times and aging maintenance. The delivery time is proportional to the waiting time in the system. Each machine has an aging maintenance activity. We develop polynomial algorithms to three versions of the problem to minimize the total absolute deviation of job completion times, the total load, and the total completion time

    Heuristic algorithms for the unrelated parallel machine scheduling problem with one scarce additional resource

    Full text link
    [EN] In this paper, we study the unrelated parallel machine scheduling problem with one scarce additional resource to minimise the maximum completion time of the jobs or makespan. Several heuristics are proposed following two strategies: the first one is based on the consideration of the resource constraint during the whole solution construction process. The second one starts from several assignment rules without considering the resource constraint, and repairs the non feasible assignments in order to obtain a feasible solution. Several computation experiments are carried out over an extensive benchmark. A comparative evaluation against previously proposed mathematical models and matheuristics (combination of mathematical models and heuristics) is carried out. From the results, we can conclude that our methods outperform the existing ones, and the second strategy performs better, especially for large instances. (C) 2017 Elsevier Ltd. All rights reserved.The authors are supported by the Spanish Ministry of Economy and Competitiveness, under the projects "SCHEYARD - Optimization of Scheduling Problems in Container Yards" (No. DPI2015-65895-R) and "OPTEMAC - Optimizacion de Procesos en Terminales Maritimas de Contenedores" (No. DPI2014-53665-P), all of them partially financed with FEDER funds. The authors are also partially supported by the EU Horizon 2020 research and innovation programme under grant agreement no. 731932 "Transforming Transport: Big Data Value in Mobility and Logistics". Interested readers can download contents from http://soa.iti.es, like the instances used and a software for generating further instances. Source codes are available upon justified request from the authors.Villa Juliá, MF.; Vallada Regalado, E.; Fanjul Peyró, L. (2018). Heuristic algorithms for the unrelated parallel machine scheduling problem with one scarce additional resource. Expert Systems with Applications. 93:28-38. https://doi.org/10.1016/j.eswa.2017.09.054S28389

    Integrated Maintenance and Production Scheduling

    Get PDF

    A multi objective volleyball premier league algorithm for green scheduling identical parallel machines with splitting jobs

    Get PDF
    Parallel machine scheduling is one of the most common studied problems in recent years, however, this classic optimization problem has to achieve two conflicting objectives, i.e. minimizing the total tardiness and minimizing the total wastes, if the scheduling is done in the context of plastic injection industry where jobs are splitting and molds are important constraints. This paper proposes a mathematical model for scheduling parallel machines with splitting jobs and resource constraints. Two minimization objectives - the total tardiness and the number of waste - are considered, simultaneously. The obtained model is a bi-objective integer linear programming model that is shown to be of NP-hard class optimization problems. In this paper, a novel Multi-Objective Volleyball Premier League (MOVPL) algorithm is presented for solving the aforementioned problem. This algorithm uses the crowding distance concept used in NSGA-II as an extension of the Volleyball Premier League (VPL) that we recently introduced. Furthermore, the results are compared with six multi-objective metaheuristic algorithms of MOPSO, NSGA-II, MOGWO, MOALO, MOEA/D, and SPEA2. Using five standard metrics and ten test problems, the performance of the Pareto-based algorithms was investigated. The results demonstrate that in general, the proposed algorithm has supremacy than the other four algorithms

    Scheduling Jobs with Variable Job Processing Times on Unrelated Parallel Machines

    Get PDF
    m unrelated parallel machines scheduling problems with variable job processing times are considered, where the processing time of a job is a function of its position in a sequence, its starting time, and its resource allocation. The objective is to determine the optimal resource allocation and the optimal schedule to minimize a total cost function that dependents on the total completion (waiting) time, the total machine load, the total absolute differences in completion (waiting) times on all machines, and total resource cost. If the number of machines is a given constant number, we propose a polynomial time algorithm to solve the problem

    A common framework and taxonomy for multicriteria scheduling problems with Interfering and competing Jobs: Multi-agent scheduling problems

    Get PDF
    Most classical scheduling research assumes that the objectives sought are common to all jobs to be scheduled. However, many real-life applications can be modeled by considering different sets of jobs, each one with its own objective(s), and an increasing number of papers addressing these problems has appeared over the last few years. Since so far the area lacks a uni ed view, the studied problems have received different names (such as interfering jobs, multi-agent scheduling, mixed-criteria, etc), some authors do not seem to be aware of important contributions in related problems, and solution procedures are often developed without taking into account existing ones. Therefore, the topic is in need of a common framework that allows for a systematic recollection of existing contributions, as well as a clear de nition of the main research avenues. In this paper we review multicriteria scheduling problems involving two or more sets of jobs and propose an uni ed framework providing a common de nition, name and notation for these problems. Moreover, we systematically review and classify the existing contributions in terms of the complexity of the problems and the proposed solution procedures, discuss the main advances, and point out future research lines in the topic

    Weighted tardiness minimization for unrelated machines with sequence-dependent and resource-constrained setups

    Full text link
    Motivated by the need of quick job (re-)scheduling, we examine an elaborate scheduling environment under the objective of total weighted tardiness minimization. The examined problem variant moves well beyond existing literature, as it considers unrelated machines, sequence-dependent and machine-dependent setup times and a renewable resource constraint on the number of simultaneous setups. For this variant, we provide a relaxed MILP to calculate lower bounds, thus estimating a worst-case optimality gap. As a fast exact approach appears not plausible for instances of practical importance, we extend known (meta-)heuristics to deal with the problem at hand, coupling them with a Constraint Programming (CP) component - vital to guarantee the non-violation of the problem's constraints - which optimally allocates resources with respect to tardiness minimization. The validity and versatility of employing different (meta-)heuristics exploiting a relaxed MILP as a quality measure is revealed by our extensive experimental study, which shows that the methods deployed have complementary strengths depending on the instance parameters. Since the problem description has been obtained from a textile manufacturer where jobs of diverse size arrive continuously under tight deadlines, we also discuss the practical impact of our approach in terms of both tardiness decrease and broader managerial insights

    Serial-batch scheduling – the special case of laser-cutting machines

    Get PDF
    The dissertation deals with a problem in the field of short-term production planning, namely the scheduling of laser-cutting machines. The object of decision is the grouping of production orders (batching) and the sequencing of these order groups on one or more machines (scheduling). This problem is also known in the literature as "batch scheduling problem" and belongs to the class of combinatorial optimization problems due to the interdependencies between the batching and the scheduling decisions. The concepts and methods used are mainly from production planning, operations research and machine learning

    Multiobjective Order Acceptance and Scheduling on Unrelated Parallel Machines with Machine Eligibility Constraints

    Get PDF
    This paper studies the order acceptance and scheduling problem on unrelated parallel machines with machine eligibility constraints. Two objectives are considered to maximize total net profit and minimize the makespan, and the mathematical model of this problem is formulated as multiobjective mixed integer linear programming. Some properties with respect to the objectives are analysed, and then a classic list scheduling (LS) rule named the first available machine rule is extended, and three new LS rules are presented, which focus on the maximization of the net profit, the minimization of the makespan, and the trade-off between the two objectives, respectively. Furthermore, a list-scheduling-based multiobjective parthenogenetic algorithm (LS-MPGA) is presented with parthenogenetic operators and Pareto-ranking and selection method. Computational experiments on randomly generated instances are carried out to assess the effectiveness and efficiency of the four LS rules under the framework of LS-MPGA and discuss their application environments. Results demonstrate that the performance of the LS-MPGA developed for trade-off is superior to the other three algorithms

    Joint optimization of production and maintenance scheduling for unrelated parallel machine using hybrid discrete spider monkey optimization algorithm

    Get PDF
    This paper considers an unrelated parallel machine scheduling problem with variable maintenance based on machine reliability to minimize the maximum completion time. To obtain the optimal solution of small-scale problems, we firstly establish a mixed integer programming model. To solve the medium and large-scale problems efficiently and effectively, we develop a hybrid discrete spider monkey optimization algorithm (HDSMO), which combines discrete spider monkey optimization (DSMO) with genetic algorithm (GA). A few additional features are embedded in the HDSMO: a three-phase constructive heuristic is proposed to generate better initial solution, and an individual updating method considering the inertia weight is used to balance the exploration and exploitation capabilities. Moreover, a problem-oriented neighborhood search method is designed to improve the search efficiency. Experiments are conducted on a set of randomly generated instances. The performance of the proposed HDSMO algorithm is investigated and compared with that of other existing algorithms. The detailed results show that the proposed HDSMO algorithm can obtain significantly better solutions than the DSMO and GA algorithms
    • …
    corecore