160,035 research outputs found

    Fluid Particle Accelerations in Fully Developed Turbulence

    Full text link
    The motion of fluid particles as they are pushed along erratic trajectories by fluctuating pressure gradients is fundamental to transport and mixing in turbulence. It is essential in cloud formation and atmospheric transport, processes in stirred chemical reactors and combustion systems, and in the industrial production of nanoparticles. The perspective of particle trajectories has been used successfully to describe mixing and transport in turbulence, but issues of fundamental importance remain unresolved. One such issue is the Heisenberg-Yaglom prediction of fluid particle accelerations, based on the 1941 scaling theory of Kolmogorov (K41). Here we report acceleration measurements using a detector adapted from high-energy physics to track particles in a laboratory water flow at Reynolds numbers up to 63,000. We find that universal K41 scaling of the acceleration variance is attained at high Reynolds numbers. Our data show strong intermittency---particles are observed with accelerations of up to 1,500 times the acceleration of gravity (40 times the root mean square value). Finally, we find that accelerations manifest the anisotropy of the large scale flow at all Reynolds numbers studied.Comment: 7 pages, 4 figure

    A Hybrid RANS/LES Approach for Predicting Jet Noise

    Get PDF
    Hybrid acoustic prediction methods have an important advantage over the current Reynolds averaged Navier-Stokes (RANS) based methods in that they only involve modeling of the relatively universal subscale motion and not the configuration dependent larger scale turbulence. Unfortunately, they are unable to account for the high frequency sound generated by the turbulence in the initial mixing layers. This paper introduces an alternative approach that directly calculates the sound from a hybrid RANS/LES flow model (which can resolve the steep gradients in the initial mixing layers near the nozzle lip) and adopts modeling techniques similar to those used in current RANS based noise prediction methods to determine the unknown sources in the equations for the remaining unresolved components of the sound field. The resulting prediction method would then be intermediate between the current noise prediction codes and previously proposed hybrid noise prediction methods

    Simple analytical model for the magnetophoretic separation of superparamagnetic dispersions in a uniform magnetic gradient

    Get PDF
    Magnetophoresis-the motion of magnetic particles under applied magnetic gradient-is a process of great interest in novel applications of magnetic nanoparticles and colloids. In general, there are two main different types of magnetophoresis processes: cooperative magnetophoresis (a fast process enhanced by particle-particle interactions) and noncooperative magnetophoresis (driven by the motion of individual particles in magnetic fields). In the case of noncooperative magnetophoresis, we have obtained a simple analytical solution which allows the prediction of the magnetophoresis kinetics from particle characterization data (size and magnetization). Our comparison with new experimental results shows good quantitative agreement. In addition, we show the existence of a universal curve onto which all experimental results should collapse after proper rescaling. The range of applicability of the analytical solution is discussed in light of the predictions of a magnetic aggregation model

    Analysis of the Accuracy of Prediction of the Celestial Pole Motion

    Full text link
    VLBI observations carried out by global networks provide the most accurate values of the precession-nutation angles determining the position of the celestial pole; as a rule, these results become available two to four weeks after the observations. Therefore, numerous applications, such as satellite navigation systems, operational determination of Universal Time, and space navigation, use predictions of the coordinates of the celestial pole. In connection with this, the accuracy of predictions of the precession- nutation angles based on observational data obtained over the last three years is analyzed for the first time, using three empiric nutation models---namely, those developed at the US Naval Observatory, the Paris Observatory, and the Pulkovo Observatory. This analysis shows that the last model has the best of accuracy in predicting the coordinates of the celestial pole. The rms error for a one-month prediction proposed by this model is below 100 microarcsecond.Comment: 13 p
    • …
    corecore