4 research outputs found

    Density Evolution for the Design of Non-Binary Low Density Parity Check Codes for Slepian-Wolf Coding

    Get PDF
    International audienceIn this paper, we investigate the problem of designing good non-binary LDPC codes for Slepian-Wolf coding. The design method is based on Density Evolution which gives the asymptotic error probability of the decoder for given code degree distributions. Density Evolution was originally introduced for channel coding under the assumption that the channel is symmetric. In Slepian-Wolf coding, the correlation channel is not necessarily symmetric and the source distribution has to be taken into account. In this paper, we express the non-binary Density Evolution recursion for Slepian-Wolf coding. From Density Evolution, we then perform code degree distribution optimization using an optimization algorithm called differential evolution. Both asymptotic performance evaluation and finite-length simulations show the gain at considering optimized degree distributions for SW coding

    Codage de sources avec information adjacente et connaissance incertaine des corrélations

    Get PDF
    Dans cette thèse, nous nous sommes intéressés au problème de codage de sources avec information adjacente au décodeur seulement. Plus précisément, nous avons considéré le cas où la distribution jointe entre la source et l'information adjacente n'est pas bien connue. Dans ce contexte, pour un problème de codage sans pertes, nous avons d'abord effectué une analyse de performance à l'aide d'outils de la théorie de l'information. Nous avons ensuite proposé un schéma de codage pratique efficace malgré le manque de connaissance sur la distribution de probabilité jointe. Ce schéma de codage s'appuie sur des codes LDPC non-binaires et sur un algorithme de type Espérance-Maximisation. Le problème du schéma de codage proposé, c'est que les codes LDPC non-binaires utilisés doivent être performants. C'est à dire qu'ils doivent être construits à partir de distributions de degrés qui permettent d'atteindre un débit proche des performances théoriques. Nous avons donc proposé une méthode d'optimisation des distributions de degrés des codes LDPC. Enfin, nous nous sommes intéressés à un cas de codage avec pertes. Nous avons supposé que le modèle de corrélation entre la source et l'information adjacente était décrit par un modèle de Markov caché à émissions Gaussiennes. Pour ce modèle, nous avons également effectué une analyse de performance, puis nous avons proposé un schéma de codage pratique. Ce schéma de codage s'appuie sur des codes LDPC non-binaires et sur une reconstruction MMSE. Ces deux composantes exploitent la structure avec mémoire du modèle de Markov caché.In this thesis, we considered the problem of source coding with side information available at the decoder only. More in details, we considered the case where the joint distribution between the source and the side information is not perfectly known. In this context, we performed a performance analysis of the lossless source coding scheme. This performance analysis was realized from information theory tools. Then, we proposed a practical coding scheme able to deal with the uncertainty on the joint probability distribution. This coding scheme is based on non-binary LDPC codes and on an Expectation-Maximization algorithm. For this problem, a key issue is to design efficient LDPC codes. In particular, good code degree distributions have to be selected. Consequently, we proposed an optimization method for the selection of good degree distributions. To finish, we considered a lossy coding scheme. In this case, we assumed that the correlation channel between the source and the side information is described by a Hidden Markov Model with Gaussian emissions. For this model, we performed again some performance analysis and proposed a practical coding scheme. The proposed scheme is based on non-binary LDPC codes and on MMSE reconstruction using an MCMC method. In our solution, these two components are able to exploit the memory induced by the Hidden Markov model.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Quantization in acquisition and computation networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 151-165).In modern systems, it is often desirable to extract relevant information from large amounts of data collected at different spatial locations. Applications include sensor networks, wearable health-monitoring devices and a variety of other systems for inference. Several existing source coding techniques, such as Slepian-Wolf and Wyner-Ziv coding, achieve asymptotic compression optimality in distributed systems. However, these techniques are rarely used in sensor networks because of decoding complexity and prohibitively long code length. Moreover, the fundamental limits that arise from existing techniques are intractable to describe for a complicated network topology or when the objective of the system is to perform some computation on the data rather than to reproduce the data. This thesis bridges the technological gap between the needs of real-world systems and the optimistic bounds derived from asymptotic analysis. Specifically, we characterize fundamental trade-offs when the desired computation is incorporated into the compression design and the code length is one. To obtain both performance guarantees and achievable schemes, we use high-resolution quantization theory, which is complementary to the Shannon-theoretic analyses previously used to study distributed systems. We account for varied network topologies, such as those where sensors are allowed to collaborate or the communication links are heterogeneous. In these settings, a small amount of intersensor communication can provide a significant improvement in compression performance. As a result, this work suggests new compression principles and network design for modern distributed systems. Although the ideas in the thesis are motivated by current and future sensor network implementations, the framework applies to a wide range of signal processing questions. We draw connections between the fidelity criteria studied in the thesis and distortion measures used in perceptual coding. As a consequence, we determine the optimal quantizer for expected relative error (ERE), a measure that is widely useful but is often neglected in the source coding community. We further demonstrate that applying the ERE criterion to psychophysical models can explain the Weber-Fechner law, a longstanding hypothesis of how humans perceive the external world. Our results are consistent with the hypothesis that human perception is Bayesian optimal for information acquisition conditioned on limited cognitive resources, thereby supporting the notion that the brain is efficient at acquisition and adaptation.by John Z. Sun.Ph.D
    corecore