203,842 research outputs found

    Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

    Get PDF
    A graph UU is an induced universal graph for a family FF of graphs if every graph in FF is a vertex-induced subgraph of UU. For the family of all undirected graphs on nn vertices Alstrup, Kaplan, Thorup, and Zwick [STOC 2015] give an induced universal graph with O ⁣(2n/2)O\!\left(2^{n/2}\right) vertices, matching a lower bound by Moon [Proc. Glasgow Math. Assoc. 1965]. Let k=D/2k= \lceil D/2 \rceil. Improving asymptotically on previous results by Butler [Graphs and Combinatorics 2009] and Esperet, Arnaud and Ochem [IPL 2008], we give an induced universal graph with O ⁣(k2kk!nk)O\!\left(\frac{k2^k}{k!}n^k \right) vertices for the family of graphs with nn vertices of maximum degree DD. For constant DD, Butler gives a lower bound of Ω ⁣(nD/2)\Omega\!\left(n^{D/2}\right). For an odd constant D3D\geq 3, Esperet et al. and Alon and Capalbo [SODA 2008] give a graph with O ⁣(nk1D)O\!\left(n^{k-\frac{1}{D}}\right) vertices. Using their techniques for any (including constant) even values of DD gives asymptotically worse bounds than we present. For large DD, i.e. when D=Ω(log3n)D = \Omega\left(\log^3 n\right), the previous best upper bound was (nD/2)nO(1){n\choose\lceil D/2\rceil} n^{O(1)} due to Adjiashvili and Rotbart [ICALP 2014]. We give upper and lower bounds showing that the size is (n/2D/2)2±O~(D){\lfloor n/2\rfloor\choose\lfloor D/2 \rfloor}2^{\pm\tilde{O}\left(\sqrt{D}\right)}. Hence the optimal size is 2O~(D)2^{\tilde{O}(D)} and our construction is within a factor of 2O~(D)2^{\tilde{O}\left(\sqrt{D}\right)} from this. The previous results were larger by at least a factor of 2Ω(D)2^{\Omega(D)}. As a part of the above, proving a conjecture by Esperet et al., we construct an induced universal graph with 2n12n-1 vertices for the family of graphs with max degree 22. In addition, we give results for acyclic graphs with max degree 22 and cycle graphs. Our results imply the first labeling schemes that for any DD are at most o(n)o(n) bits from optimal

    Universality for graphs of bounded degeneracy

    Full text link
    Given a family H\mathcal{H} of graphs, a graph GG is called H\mathcal{H}-universal if GG contains every graph of H\mathcal{H} as a subgraph. Following the extensive research on universal graphs of small size for bounded-degree graphs, Alon asked what is the minimum number of edges that a graph must have to be universal for the class of all nn-vertex graphs that are DD-degenerate. In this paper, we answer this question up to a factor that is polylogarithmic in n.n.Comment: 17 page

    Superpatterns and Universal Point Sets

    Full text link
    An old open problem in graph drawing asks for the size of a universal point set, a set of points that can be used as vertices for straight-line drawings of all n-vertex planar graphs. We connect this problem to the theory of permutation patterns, where another open problem concerns the size of superpatterns, permutations that contain all patterns of a given size. We generalize superpatterns to classes of permutations determined by forbidden patterns, and we construct superpatterns of size n^2/4 + Theta(n) for the 213-avoiding permutations, half the size of known superpatterns for unconstrained permutations. We use our superpatterns to construct universal point sets of size n^2/4 - Theta(n), smaller than the previous bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding permutations has superpatterns of size O(n log^O(1) n), which we use to prove that the planar graphs of bounded pathwidth have near-linear universal point sets.Comment: GD 2013 special issue of JGA

    Universal Factor Graphs for Every NP-Hard Boolean CSP

    Get PDF
    An instance of a Boolean constraint satisfaction problem can be divided into two parts. One part, that we refer to as the factor graph of the instance, specifies for each clause the set of variables that are associated with the clause. The other part, specifies for each of the given clauses what is the constraint that is evaluated on the respective variables. Depending on the allowed choices of constraints, it is known that Boolean constraint satisfaction problems fall into one of two classes, being either NP-hard or in P. This paper shows that every NP-hard Boolean constraint satisfaction problem (except for an easy to characterize set of natural exceptions) has a universal factor graph. That is, for every NP-hard Boolean constraint satisfaction problem, there is a family of at most one factor graph of each size, such that the problem, restricted to instances that have a factor graph from this family, cannot be solved in polynomial time unless NP is contained in P/poly. Moreover, we extend this classification to one that establishes hardness of approximation

    Towards Universal Probabilistic Programming with Message Passing on Factor Graphs

    Get PDF

    Towards Universal Probabilistic Programming with Message Passing on Factor Graphs

    Get PDF

    Max-3-Lin over Non-Abelian Groups with Universal Factor Graphs

    Get PDF
    Factor graph of an instance of a constraint satisfaction problem with n variables and m constraints is the bipartite graph between [m] and [n] describing which variable appears in which constraints. Thus, an instance of a CSP is completely defined by its factor graph and the list of predicates. We show inapproximability of Max-3-LIN over non-abelian groups (both in the perfect completeness case and in the imperfect completeness case), with the same inapproximability factor as in the general case, even when the factor graph is fixed. Along the way, we also show that these optimal hardness results hold even when we restrict the linear equations in the Max-3-LIN instances to the form x? y? z = g, where x,y,z are the variables and g is a group element. We use representation theory and Fourier analysis over non-abelian groups to analyze the reductions
    corecore