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Abstract
An instance of a Boolean constraint satisfaction problem can be divided into two parts. One part,
that we refer to as the factor graph of the instance, specifies for each clause the set of variables
that are associated with the clause. The other part, specifies for each of the given clauses what is
the constraint that is evaluated on the respective variables. Depending on the allowed choices of
constraints, it is known that Boolean constraint satisfaction problems fall into one of two classes,
being either NP-hard or in P.

This paper shows that every NP-hard Boolean constraint satisfaction problem (except for an
easy to characterize set of natural exceptions) has a universal factor graph. That is, for every
NP-hard Boolean constraint satisfaction problem, there is a family of at most one factor graph of
each size, such that the problem, restricted to instances that have a factor graph from this family,
cannot be solved in polynomial time unless NP ⊂ P/poly. Moreover, we extend this classification
to one that establishes hardness of approximation.
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1 Introduction

A Boolean constraint satisfaction problem (CSP) C is defined by a set of allowable constraints.
An instance of C consists of m constraints (from the set of allowable constraints) over n
variables. The goal is to assign Boolean values to the variables in order to maximize the
number of satisfied constraints. [9, 4] showed CSPs can be divided into three types:

CSPs for which there is a constant ς < 1 such that it is NP-hard to decide if there is a
assignment satisfying all constraints or every assignment satisfies at most ς-fraction of
the constraints.
CSPs for which there is a polynomial time algorithm finding an assignment satisfying
all constraints if it exists, but there are constants ς < κ < 1 such that it is NP-hard to
decide if there is an assignment that satisfies at least κ-fraction of the constraints or every
assignment satisfies at most ς-fraction of the constraints.
CSPs for which there is a polynomial time algorithm finding an assignment satisfying the
maximum number of constraints.

An instance of a CSP can be divided into two parts; the graph structure connecting the
constraints and the variables, and the choice of the specific constraints from the set of
allowable constraints. We call the structure of a CSP a factor graph. If the factor graph is
known, what can be said about the hardness of solving or approximating a CSP instance?

This question is formalized in the following way: given a CSP C, a family F of factor
graphs for C (at most one for each size) is called a universal factor graph (UFG) for C if it
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is NP-hard to decide if an instance of C with a factor graph from F is satisfiable. If it is
NP-hard to decide if the instance is at least κ-satisfiable or at most ς-satisfiable, F is called
a (κ, ς)-universal factor graph for C.

The existence of a UFG for C implies that at least some of the hardness of solving
instances of C does not come from the structure of the instances. The existence of (κ, ς)-UFG
for C implies that at least part of the hardness of maximizing the number of satisfied
constraints does not come from the structure of instances. On the other hand, if no UFG for
C exists and C is NP-hard to solve, the hardness of solving C comes from the structure of
the instances.

In this paper, we continue the work of [6], that introduced the notion of UFG and showed
UFGs for several CSPs. We show similar results to those of [9, 5]. Specifically, every CSP
that is NP-hard has a (κ, ς)-UFG, for some 0 < ς < κ ≤ 1 that depend on the CSP (unless the
existence of such a UFG trivially implies that NP ⊂ P/poly). Additionally, if it is NP-hard
to decide if a CSP instance has an assignment satisfying all clauses, then this CSP has a
(1, ς)-UFG.

1.1 Definitions

The definitions used here are similar to those of [5].

I Definition 1. A constraint is a function f : {0, 1}k → {0, 1}. k is the arity of the constraint.
The constraint is satisfied by an assignment x if f (x) = 1 .

We define the following constraints: FALSEk : {0, 1}k → {0}, TRUEk : {0, 1}k → {1}.
The arity will be known from the context, so the subscript will usually be omitted. The
constraints ID and NOT have arity 1 and return the input and its negation, respectively.
We call a constraint that is not FALSE a satisfiable constraint.

I Definition 2. A constraint set is a finite set of constraints, all with the same arity. The
arity of a constraint set is the arity of the constraints it contains.

For example, the constraint set corresponding to 2LIN contains two constraints, f1 and f2,
with f1 (x, y) = x⊕ y and f2 (x, y) = x⊕ y ⊕ 1. The constraint set corresponding to 3SAT
contains eight constraints, which are all the possible 3CNF clauses on three variables.

I Definition 3. A constraint application is an ordered set 〈f, i1, · · · , ik〉, where f is a
constraint of arity k, and each ij is a natural number indicating the name of the variable.

The same variable name may appear several times in a constraint application.

I Definition 4. Given a constraint set S, a formula over S with n variables is a (multi)set
P containing constraint applications. For each c ∈ P , c = 〈f, i1, · · · , ik〉, where k is the arity
of S, f ∈ S, and i ∈ [n]. Usually, S and n will be implied from the context.

An assignment x ∈ {0, 1}n satisfies a constraint application 〈f, i1, · · · , ik〉 if f (xi1 , · · · , xik)
= 1. A formula is α-satisfied by an assignment x if an α-fraction of the constraints in the
formula are satisfied. A formula is α-satisfiable if there is an assignment that α-satisfies it.
In the case of α = 1 we may omit α.

A formula may contain several copies of the same constraint application. This is modeled as
giving each constraint application an integer weight, that is, if a constraint application has
weight w, there are w copies of it in the formula.

APPROX/RANDOM’14



276 Universal Factor Graphs for Every NP-Hard Boolean CSP

IDefinition 5. A constraint set S will be called NP-hard if it is NP-hard to decide satisfiability
for formulas over S. A constraint set S will be called APX-hard if there are constants
0 ≤ ς < κ ≤ 1 such that it is NP-hard to decide whether a formula over S is at least
κ-satisfiable or at most ς-satisfiable. The approximation hardness of S is st least ς/κ.

I Definition 6. Given a formula P over n variables, its corresponding factor graph is a
bipartite graph G = (V

⊎
C,E). The edges of each vertex in C are ordered. |V | = n, and

each vertex in V is associated with a variable. |C| = |P |, and each vertex of C is associated
with an element of P . For each c = 〈f, i1, · · · , ik〉 and j ∈ [k], there is an edge (c, ij), the
j’th edge of c.

The size of a factor graph G = (V
⊎
C,E) is |V |+ |C|+ |E|.

Since a variable name may appear in a constraint application several times, the factor
graph may have parallel edges.

I Definition 7. Given an APX-hard constraint set S, a (κ, ς)-universal factor graph (UFG)
over S is a family of factor graphs G = {Gn}, at most one graph of each size, such that
deciding if a formula over S that has a factor graph from the family is at least κ-satisfiable
or at most ς-satisfiable is NP-hard. If κ = 1 we say that the UFG has perfect completeness.

1.2 Our Results
I Theorem 8. Assume that NP 6⊂ P/poly.
1. If a constraint set S is NP-hard and has at least two satisfiable constraints, then S has a

(1, ς)-universal factor graph with a constant ς < 1 that depends only on S.
2. If a constraint set S is APX-hard and has at least two constraints, then S has a (κ, ς)-

universal factor graph with constants 0 < ς < κ < 1 that depends only on S.

There are CSPs that have only one constraint in their corresponding constraint set.
For example, ONE_IN_THREE and 2XOR (see [5] for proofs that ONE_IN_THREE is
NP-hard and 2XOR is APX-hard). If a constraint set contains only one constraint, then
each instance is defined completely by its factor graph. A UFG for such a CSP will contain
only one instance for each size. Thus, having a UFG for a CSP that has only one constraint
implies that NP ⊂ P/poly, as the answer for each instance can be given by the advice.

We show that if an NP-hard constraint set has at least two constraints (excluding the
constraint FALSE) then it has a UFG with perfect completeness and constant approximation
hardness. Similarly, every constraint set that is APX-hard with at least two constraints (in
this case, one of them can be FALSE) has a UFG with constant approximation hardness.
Note that the constants depend on the constraint set.

1.3 Related Work
The term universal factor graph was introduced in [6]. A (1, 77/80)-UFG for 3SAT was
constructed, and was used used to construct UFGs for several other CSPs, but the existence
of a UFG for all CSPs remained an open question.

The notion of hardness of preprocessing (see [2, 7], for example) considers problems
where the input can naturally be partitioned into two parts, and one of them is known in
advance. For example, the problem of nearest codeword: given an input (A, s) where A is a
generating matrix for a linear codeword, the goal is to find the closest codeword to s. In
certain scenarios, it is natural to assume that A is known in advance and will be used for
many instances. In such cases, investing time in preprocessing A may be beneficial. However,
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it turns out that even preprocessing A does not help to find the nearest codeword to s in
polynomial time (but preprocessing may improve the approximation ratio). Similarly, the
existence of UFG for a CSP C shows that preprocessing the structure of an instance of C
does not give rise to a polynomial time solution to instances of C. See [6] for a more in-depth
discussion about the connection between UFGs and hardness with preprocessing.

Classifying Boolean CSPs into NP-hard to solve and solvable in P was done by Schaefer
[9]. Schaefer has shown that there are only NP-hard CSPs and CSPs that are solvable in P.
Creignou [4] have later shown that all Boolean CSPs are either NP-hard to approximate or
can be maximized in P. Classifying non-Boolean CSPs is still an open question and an area
of active research, see [3] for a survey on the subject.

Another type of classification is that of approximation resistance. Loosely speaking,
a problem is approximation resistant if it is hard to approximate it better than the ap-
proximation ratio of a random assignment. To date, there is no complete classification of
approximation resistant CSPs. However, there is a complete classification of related notions
of strong inapproximability [8] and usefulness [1] assuming the Unique Games Conjecture.

2 Proofs

2.1 Preliminaries
I Definition 9. Let f be a constraint of arity k, and g be a formula over S with n ≥ k

variables. The variables of g are x1, · · · , xk and yk+1, · · · , yn. The formula g is called an
f (x1, · · · , xk)c,s-formula over S if the following conditions hold:
1. Every assignment to the variables cannot satisfy more than c of the constraint applications

in g.
2. (Completeness) For every assignment to the x variables that satisfies f , there must be an

assignment to the y variables that satisfies c of the constraint applications in g.
3. (Soundness) Given an assignment to the x variables that does not satisfy f and any

assignment to the y variables, at most s of the constraint applications in g are satisfied.
4. For every assignment to the x variables that does not satisfy f , there must be an

assignment to the y variables that satisfies s of the constraint applications in g.
The x variables are called the primary variables and the y variables are called the auxiliary
variables.

I Definition 10. An f (x1, · · · , xk)-formula over S is similar to a f (x1, · · · , xk)c,s-formula
over S in the special case that c is the number of constraints in g, s < c and moreover,
condition 4 need not hold.

For example, the formula over 2SAT {x1 ∨ y3, x2 ∨ y3} is a 2SAT (x1, x2)2,1-formula over
2SAT. x1 and x2 are the primary variables, and y3 is the auxiliary variable. If x1 ∨ x2 is
true, y3 can be set in a way to satisfy both clauses (true if x1 is false, false if x2 is false).
Otherwise, exactly one clause will be satisfied.

The basic building blocks of a UFG for a general CSP are templates. Templates can be
thought of as a set of placeholders for constraints, and, depending on the constraints chosen
to be used, the template is instantiated to be one of several specific formulas.

Consider a set of t formulas {gi}ti=1, where gi is an fi (x1, · · · , xk)c,s-formula over S. Fur-
thermore, gi =

{〈
gji , r

j
1, · · · , rjm

〉}q
j=1

. That is, each gi has the same number of constraints,
and the j’th constraint application of gi depends on exactly the same variables as the j’th
constraint application of gi′ , in the same order. This means that all formulas {gi} have the

APPROX/RANDOM’14



278 Universal Factor Graphs for Every NP-Hard Boolean CSP

same factor graph G, the same completeness and soundness, and they all depend on the
same set of primary and auxiliary variables, in the same order. We call the factor graph G
an (f1, · · · , ft)c,s-template over S.

If the same conditions hold, except that each gi is an fi (x1, · · · , xk)-formula over S
instead of an fi (x1, · · · , xk)c,s-formula over S, we call the factor graph G an (f1, · · · , ft)-
template over S. In this case, the formulas {gi} may not have the same soundness, but
they still have the same completeness, and they all depend on the same set of primary and
auxiliary variables, in the same order.

In order to simplify the proofs, we will expand the definition of formulas and allow to
force some variables to have a certain constant value (0 or 1). Later, we will show how to
get rid of this use of constants.

I Lemma 11. If a constraint set S has two different satisfiable constraints, and we can use
constants in place of variables, then at least one of the following templates over S exists:
(ID,NOT)1,0, (NOT,TRUE)1,0, (ID,TRUE)1,0.

Before proving the lemma, we show a simple example: Suppose S contains the constraints
2XOR and 2SAT. There is an assignment satisfying 2SAT but not 2XOR, 〈1, 1〉. There is an
assignment satisfying 2XOR, for example 〈0, 1〉. Both assignments have 1 in the second bit.
2XOR (x, 1) is NOT (x) and 2SAT (x, 1) is TRUE (x), so this is a (NOT,TRUE)1,0-template.
As another example, suppose that S contains 2EQ (the complement of 2XOR) and 2XOR.
2EQ (x, 1) is ID (x) and 2XOR (x, 1) is NOT (x), so this is an (ID,NOT)1,0-template.

Proof. Let c1, c2 be two different satisfiable constraints in S. Let a, b be two assignments,
b satisfying c2 but not c1, and a satisfying c1 (if the set of the assignments satisfying c2 is
contained in the set of assignments satisfying c1, switch between them). We will create two
formulas with the same factor graph that will show the existence of one of the templates.
The formula g1 only contains c1, and the formula g2 only contains c2. Both formulas have
one primary variable.

In the indices where a and b are 0, we put the constant 0. In the indices where a and b
are 1, we put the constant 1. In the indices where a is 1 and b is 0, we put the (new) variable
t10. In the indices where a is 0 and b is 1, we put the (new) variable t01. Since a 6= b, the
variable t01 or the variable t10 must appear.
1. If t10 does not appear, the primary variable is t01. Since all the other variables are

constants, the only assignment where t01 is 0 is a, and b is the only assignment where
t01 is 1. c1 (b) = 0 but c2 (b) = 1. c1 (a) = 1, but we don’t know what c2 (a) is. g1 is
a NOT1,0-formula and g2 is either an ID1,0-formula or a TRUE1,0-formula. Thus, we
get either a (NOT, ID)1,0-template (which is the same as an (ID,NOT)1,0-template) or a
(NOT,TRUE)1,0-template, depending on whether c2 (a) is false or true, respectively.

2. If t01 does not appear, the primary variable is t10. Since all the other variables are
constants, the only assignment where t10 is 1 is a, and b is the only assignment where
t10 is 0. c1 (b) = 0 but c2 (b) = 1. c1 (a) = 1, but we don’t know what c2 (a) is. g1 is
an ID1,0-formula and g2 is either a NOT1,0-formula or a TRUE1,0-formula. Thus, we
get either a (ID,NOT)1,0-template or a (ID,TRUE)1,0-template, depending on whether
c2 (a) is false or true, respectively.

3. If both t01 and t10 appear, we have two possibilities. If c1 can be satisfied with t01 = 1
(then t10 must be assigned 1 as well, since c1 (b) is not true), we define the assignment
a′ to be equal to a except in indices of t01, where a′ will be 1. Using a′ instead of
a, we are now in case 2. If c1 cannot be satisfied with t01 = 1, the only satisfying
assignments to c1 (t01, t10) are ones where t01 = 0, while c2 can be satisfied with t01 = 1.
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The primary variable is t01 and t10 is an auxiliary variable. g1 is a NOT1,0-formula
and g2 is either a TRUE1,0-formula or an ID1,0-formula. This shows the existence of a
(NOT,TRUE)1,0-template or a (NOT, ID)1,0-template, depending on whether c2 can be
satisfied with t01 = 0 or not, respectively.

J

2.2 UFGs for All NP-Hard CSPs
In this section we prove Theorem 8.1. The proof follows from the next three lemmas.

I Lemma 12. If there is an (x ∨ y ∨ z, x ∨ y ∨ z̄, · · · , x̄ ∨ ȳ ∨ z̄)-template over S, then S has
a universal factor graph.

Proof. Let H be a UFG for 3SAT (such as the (1, 77/80)-UFG for 3SAT from [6]). Replace the
edges representing every 3CNF clause in H with the edges of the (x ∨ y ∨ z, · · · , x̄ ∨ ȳ ∨ z̄)-
template, where the auxiliary variables are new and unique to each constraint, and the
primary variables are the same variables of the 3CNF clause. We get the factor graph HG

and it is universal; Given a formula ϕ that has factor graph H, we can instantiate in HG

each template corresponding to a 3CNF clause to represent the same 3CNF clause as in H.
Hence, we get a formula that is equivalent to the satisfiability of ϕ.

Let C be the number of the constraint vertices in the (x ∨ y ∨ z, x ∨ y ∨ z̄, · · · , x̄ ∨ ȳ ∨ z̄)-
template. Then, if ϕ is at most α-satisfiable, our instantiation of HG is at most(
α+ (C−1)

C (1− α)
)
-satisfiable. J

I Lemma 13 (see [9, 5]). For every NP-hard constraint set S and every truth table f over a
set of variables X, there is a f (X)-formula over S. Some of the (auxiliary) variables may
be forced to be constants.

I Lemma 14. If a constraint set S is NP-hard, has two different satisfiable constraints, and we
can use constants in place of variables, then there is an (x ∨ y ∨ z, x ∨ y ∨ z̄, · · · , x̄ ∨ ȳ ∨ z̄)-
template over S.

Proof. Suppose that t̃, the template given by Lemma 11, is (ID,TRUE)1,0.
Let f be the following truth table (over variables x, y, z, s000, s001, s010, s011, s100, s101, s110,

s111):

(s000 ∨ x ∨ y ∨ z) ∧ (s001 ∨ x ∨ y ∨ z̄) ∧ (s010 ∨ x ∨ ȳ ∨ z) ∧ (s011 ∨ x ∨ ȳ ∨ z̄)∧

∧ (s100 ∨ x̄ ∨ y ∨ z) ∧ (s101 ∨ x̄ ∨ y ∨ z̄) ∧ (s110 ∨ x̄ ∨ ȳ ∨ z) ∧ (s111 ∨ x̄ ∨ ȳ ∨ z̄)

From Lemma 13, there is an f -formula over S. Add the template t̃ over each of the s
variables (recall that the template t̃ has only one primary variable) with new and unique
auxiliary variables for each copy of the template. We claim that the constructed graph is the
(x ∨ y ∨ z, x ∨ y ∨ z̄, · · · , x̄ ∨ ȳ ∨ z̄)-template over S: Instantiate t̃ (su) to be ID (su) and all
other t̃ (sv) to be TRUE (sv) for v 6= u. To satisfy the formula, su must be 1. sv for v 6= u

can be 0, and setting sv = 0 only improves the satisfiability of the formula. By setting the s
variables in this way, the formula is satisfiable iff the clause on x, y, z corresponding to u is
true (for example, if u = 000, then s000 must be 1 due to the constraint ID (s000), setting all
other s variables to 0 satisfies sv ∨ · · · and TRUE (sv), so the formula is satisfied only when
x ∨ y ∨ z is true).

If t̃ is (NOT, ID)1,0 then the same proof works except we use NOT (sv) instead of
TRUE (sv), which also means that the sv’s must be 0 (instead of can be 0).

APPROX/RANDOM’14
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If t̃ is (NOT,TRUE)1,0 we define f to be a similar truth table, except with the s variables
non-negated. Using NOT (su) instead of ID (su) gives the same result, except su must be 0
and sv should be 1. J

Proof of Theorem 8.1. Given an NP-hard constraint set S with at least two satisfiable
constraints, if we are allowed to use the constants 0 and 1, using Lemmas 12 and 14 we have
proven the Theorem. To simulate the usage of constants, we use the same method used in
[9, 5]; we put a new variable z in all locations where we used the constant 0, and a new
variable o in all locations we used the constant 1. From Lemma 13, there is a 2XOR-formula
over S. We use o and z as the two primary variables of the 2XOR-formula, and give the
constraints of the formula a large weight.

If there is a constraint c in S and an assignment a such that c (a) = 1 but c (ā) = 0,
where ā is the complement of a, then we add the constraint c and put o in all the indices for
which a is one, and z in all other indices. We give c a large weight as well. If there is no
such constraint, then for every formula over S, an assignment and its complement satisfy
exactly the same constraints, thus we may assume WLOG that o = 1 and z = 0. J

2.3 UFGs for All APX-Hard CSPs
In this section we prove Theorem 8.2. The proof follows from the next four lemmas.

I Lemma 15 (Lemma 5.37 in [5]). For every APX-hard constraint set S there are constants
cS > sS and a 2XORcS ,sS -formula over S.

I Lemma 16. There is a (κ, ς)-universal factor graph for maximum directed cut, for some
0 < ς < κ < 1.

Proof. Let H0 be a UFG for 3SAT (such as the (1, 77/80)-UFG for 3SAT from [6]). Using
the standard gadget reduction (adding a single variable z to all clauses), we can transform
H0 to be H1, a UFG for 4NAE. Using another standard gadget reduction (splitting each
constraint 4NAE (a, b, c, d) into two constraints 3NAE (a, b, e) and 3NAE (e, c, d), where e is
a new variable for each vertex), we transform H1 into H2, a UFG for 3NAE.

By transforming each constraint 3NAE (a, b, c) into three linear equations a ⊕ b = 1,
b⊕c = 1 and c⊕a = 1 (here, since a, b, c are literals, the 1 may be changed into a 0, depending
on the parity of the number of negations), we get three equations for each clause, where the
clause is NAE-satisfied iff two of the equations are satisfied, and it is not NAE-satisfied iff
none of the equations are satisfied. This transforms H2 into H3, a UFG for 2LIN.

Let kLIN+ be the set of constraints of kLIN with the addition of the constraint NOT
(which does not have the arity k, but we may add inputs on which NOT does not depend).
We add a single variable w to all equations, that is, every equation x+ y = b (for b ∈ {0, 1})
is transformed into an equation x+ y + w = b (and, conditioned on w = 0, every assignment
satisfies the exact same set of constraints before and after the transformation). We also add
the constraint NOT (w) (with large enough weight so satisfying it will always improve the
number of satisfied constraints), and this transforms H3 into H4, a UFG for 3LIN+.

Trevisan and al. [10] show (using their terminology) an optimal and strict 6.5-gadgets
reducing PC0 and PC1 to DICUT. That is, they generate two directed weighted graphs on
ten vertices, of which three are special and named x1, x2, x3. In one graph, if x1⊕x2⊕x3 = 0,
the maximum cut has weight 13, otherwise the maximum cut has weight 12. In the other
graph, if x1 ⊕ x2 ⊕ x3 = 1, the maximum cut has weight 13, otherwise the maximum cut has
weight 12. Moreover, the graphs are similar, except the directions of the edges are reversed
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in one graph compared to the other. Using this gadget on every 3LIN formula, we transform
H4 into a UFG for MAXDICUT, except for the NOT (w) constraint. However, we can easily
simulate this constraint, by adding a new vertex w′ and an edge from w′ to w with the same
weight as the NOT (w) constraint (since w′ has no incoming edges, the number of satisfied
constraint cannot decrease by assigning it 1, so the edge is in the cut iff NOT (w)). J

The constraint xy y means cutting an edge of a directed graph. That is, the constraint
is satisfied iff x = 1 and y = 0.

I Lemma 17. If there is an (xy y, y y x)c,s-template over S, then S has a universal factor
graph (without perfect completeness).

Proof. Let H be a UFG for MAXDICUT from Lemma 16. Replace each edge of H with the
edges of the (xy y, y y x)c,s-template, where the auxiliary variables are new and unique
to each constraint, and the two primary variables of the template are the variables of the
original edge. We get the factor graph HG and it it universal; Given a direction for the edges
of the factor graph H, we can choose each of the (xy y, y y x)c,s-templates to correspond
to one of the directions of a directed edge. Let C be the number of the constraint vertices in
the template. If the maximum directed cut has weight α, at most αc+(1−α)s

C constraints of
the corresponding formula over S can be satisfied, and exactly that amount can be satisfied,
by the definition of a (xy y, y y x)c,s-template. Therefore, if H is a (κ, ς)-UFG, HG is a(
κc+(1−κ)s

C , ςc+(1−ς)s
C

)
-UFG for S. J

I Lemma 18. If a constraint set S that contains two satisfiable constraints is APX-hard,
and we can use constants in place of variables, then there is an (xy y, y y x)c,s-template
over S.

Proof. Since S is APX-hard, there is a 2XORcS ,sS -formula over S. Let t̃ be the template
given by Lemma 11 and suppose it is (ID,NOT)1,0. We can use the two formulas derived
from this template and the 2XORcS ,sS -formula to implement xy y by

2XOR (x, y) ∧ ID (x) ∧NOT (y)

and we set formulas derived from t̃ (that is, ID and NOT) have weight cS − sS .
If x y y is satisfied, then all constraints are satisfied, so the total weight of satisfied

constraints is 3cS − 2sS .
If x = y, then 2XOR (x, y) is unsatisfied and the ID (x) or NOT (y) constraint are satisfied,

but not both, so the total weight of satisfied constraints is cS . If x = 0 and y = 1, then
2XOR (x, y) is satisfied, but both the ID (x) or NOT (y) constraint are unsatisfied, so the total
weight of satisfied constraints is cS . Therefore, this implementation is a x→ yc,s-formula,
for c = 3cS − 2sS and s = cS .

y y x can be implemented by

2XOR (x, y) ∧NOT (x) ∧ ID (y)

and again, the constraints derived from t̃ have weight cS − sS . By the same argument, if
y y x is satisfied, then all constraints are satisfied, so the total weight of satisfied constraints
is 3cS − 2sS . If y y x is unsatisfied, the total weight of satisfied constraints is cS . Therefore,
this implementation is a y y xc,s-formula, for c = 3cS − 2sS and s = cS .

Since we have shown a x y yc,s-formula and a y y xc,s-formula with the same factor
graph, we have a (xy y, y y x)c,s-template over S in the case that t̃ is (ID,NOT)1,0.
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If t̃ is (NOT,TRUE)1,0, we implement xy y by

2XOR (x, y)∧2XOR (x, x′)∧2XOR (y, y′)∧TRUE (x)∧NOT (x′)∧NOT (y)∧TRUE (y′)

and y y x by

2XOR (x, y)∧2XOR (x, x′)∧2XOR (y, y′)∧NOT (x)∧TRUE (x′)∧TRUE (y)∧NOT (y′)

where x′ and y′ are auxiliary variables. We set constraints derived from t̃ have weight cS−sS .
We now show that our implementation of x y y satisfies the conditions of a x y yc,s-

formula, for specific c and s. If xy y is satisfied, then all constraints are satisfied by setting
x′ = 0,y′ = 1, so the total weight of satisfied constraints is 7cS − 4sS .

If x = y, 2XOR (x, y) is not satisfied. We show that one more constraint must be
unsatisfied, and we can ensure that only one more is unsatisfied. 2XOR (x, x′) or NOT (x′)
can be satisfied by changing x′, without harming the other constraints, so there are three
cases to consider:
1. 2XOR (x, x′) and NOT (x′) are satisfied. Then, 0 = x′ 6= x = y = 1, so NOT (y)

is unsatisfied (2XOR (y, y′) is satisfied by setting y′ = 0 without harming the other
constraints). The total weight of satisfied constraints is 5cS − 2sS .

2. 2XOR (x, x′) is unsatisfied and NOT (x′) is satisfied. Then, 0 = x′ = x = y, so NOT (y)
is satisfied, and 2XOR (y, y′) is satisfied by setting y′ = 0. The total weight of satisfied
constraints is 5cS − 2sS .

3. 2XOR (x, x′) is satisfied and NOT (x′) is unsatisfied. Then, 1 = x′ 6= x = y = 0, so
NOT (y) is satisfied, and 2XOR (y, y′) is satisfied by setting y′ = 0. The total weight of
satisfied constraints is 5cS − 2sS .

Lastly, if x = 0, y = 1, NOT (y) is unsatisfied. By setting y′ = 0 we satisfy 2XOR (y, y′)
without harming the other constraints. Since x = 0, either 2XOR (x, x′) or NOT (x′) must
be unsatisfied, so the total weight of satisfied constraints is 5cS − 2sS .

Therefore, the implementation to x y y is a x y yc,s-formula, for c = 7cS − 4sS and
s = 5cS − 2sS . Similar arguments show that the implementation to y y x is a y y xc,s-
formula, for the same c and s. Since we have shown a xy yc,s-formula and a y y xc,s-formula
with the same factor graph, we have a (xy y, y y x)c,s-template over S in the case that t̃
is (NOT,TRUE)1,0.

Finally, in the case that t̃ is (ID,TRUE)1,0, we implement xy y by

2XOR (x, y) ∧ 2XOR (x, x′) ∧ 2XOR (y, y′) ∧ ID (x) ∧ TRUE (x′) ∧ TRUE (y) ∧ ID (y′)

and y y x by

2XOR (x, y) ∧ 2XOR (x, x′) ∧ 2XOR (y, y′) ∧ TRUE (x) ∧ ID (x′) ∧ ID (y) ∧ TRUE (y′)

and we set constraints derived from t̃ have weight cS − sS . Similar arguments as before show
that we have a xy yc,s-formula and a y y xc,s-formula, for c = 7cS−4sS and s = 5cS−2sS .
Hence, there is a (xy y, y y x)c,s-template over S in this case as well. J

Proof of Theorem 8.2. Given an APX-hard constraint set S, with at least two satisfiable
constraints, if we are allowed to use the constants 0 and 1, Lemmas 17 and 18 show that
S has a (κ, ς)-UFG (for some constants 1 ≥ κ > ς ≥ 0). In order to bypass the use of the
constants 0 and 1, we use the same method as in the proof of Theorem 8.1 to simulate the
constants (and we use Lemma 15 to show the existence of a 2XOR-formula).
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What remains to prove the theorem is to handle the case that S has two constraints but
one of them is FALSE. Since 2XOR can always be implemented by an APX-hard constraint
set, and we have a constraint that is never satisfied, we have a (2XOR,FALSE)c,s-template
(in the second case, we only use the FALSE constraint). By replacing all edges of a clique on
n vertices by this constraint we get the required UFG; every 2XOR instance over n variables
can be represented by a subset E′ of the edges of the clique on n vertices. By setting the all
(2XOR,FALSE)c,s-template that correspond to edges in E′ to be 2XOR, and all others to
be FALSE, we get a formula over S corresponding to the 2XOR instance. J
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