An old open problem in graph drawing asks for the size of a universal point
set, a set of points that can be used as vertices for straight-line drawings of
all n-vertex planar graphs. We connect this problem to the theory of
permutation patterns, where another open problem concerns the size of
superpatterns, permutations that contain all patterns of a given size. We
generalize superpatterns to classes of permutations determined by forbidden
patterns, and we construct superpatterns of size n^2/4 + Theta(n) for the
213-avoiding permutations, half the size of known superpatterns for
unconstrained permutations. We use our superpatterns to construct universal
point sets of size n^2/4 - Theta(n), smaller than the previous bound by a 9/16
factor. We prove that every proper subclass of the 213-avoiding permutations
has superpatterns of size O(n log^O(1) n), which we use to prove that the
planar graphs of bounded pathwidth have near-linear universal point sets.Comment: GD 2013 special issue of JGA