453 research outputs found

    Safety and Security oriented design for reliable Industrial IoT applications based on WSNs

    Full text link
    [EN] Internet of Things based technologies are enabling the digital transformation in many sectors. However, in order to use this type of solutions, such as wireless sensor networks, in scenarios like transport, industry or smart cities, the deployed networks must meet sensible safety and security requirements. This article describes a Wireless Sensor Network design that applies multi-layered mechanisms and tools to ensure security, safety and reliability while maintaining usability in Rail and Industrial IoT scenarios. The proposed solution provides guidelines for choosing the best implementations given usual restrictions, offering a modular stack so it can be combined with other solutions.This work has been supported by the SCOTT project (Secure COnnected Trustable Things) (www.scottproject.eu), which has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 737422. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, and from Austria, Spain, Finland, Ireland, Sweden, Germany, Poland, Portugal, Netherlands, Belgium and Norway. It has also been funded by Generalitat Valenciana through the ¿Instituto Valenciano de Competitividad Empresarial ¿ IVACE¿, and by the MCyU (Spanish Ministry of Science and Universities) under the project ATLAS (PGC2018-094151-BI00), which is partially funded by AEI, FEDER and EU.Vera-Pérez, J.; Todoli Ferrandis, D.; Sempere Paya, VM.; Ponce Tortajada, R.; Mujica, G.; Portilla, J. (2019). Safety and Security oriented design for reliable Industrial IoT applications based on WSNs. IEEE. 1774-1781. https://doi.org/10.1109/ETFA.2019.8869204S1774178

    Security Analysis and Evaluation of Smart Toys

    Get PDF
    During the last years, interconnectivity and merging the physical and digital technological dimensions have become a topic attracting the interest of the modern world. Internet of Things (IoT) is rapidly evolving as it manages to transform physical devices into communicating agents which can consecutively create complete interconnected systems. A sub-category of the IoT technology is smart toys, which are devices with networking capabilities, created for and used in play. Smart toys’ targeting group is usually children and they attempt to provide a higher level of entertainment and education by offering an enhanced and more interactive experience. Due to the nature and technical limitations of IoT devices, security experts have expressed concerns over the effectiveness and security level of smart devices. The importance of securing IoT devices has an increased weight when it pertains to smart toys, since sensitive information of children and teenagers can potentially be compromised. Furthermore, various security analyses on smart toys have discovered a worryingly high number of important security flaws. The master thesis focuses on the topic of smart toys’ security by first presenting and analyzing the necessary literature background. Furthermore, it presents a case study where a smart toy is selected and analyzed statically and dynamically utilizing a Raspberry Pi. The aim of this thesis is to examine and apply methods of analysis used in the relevant literature, in order to identify security flaws in the examined smart toy. The smart toy is a fitness band whose target consumers involve children and teenagers. The fitness band is communicating through Bluetooth with a mobile device and is accompanied by a mobile application. The mobile application has been installed and tested on an Android device. Finally, the analyses as well as their emerged results are presented and described in detail. Several security risks have been identified indicating that developers must increase their efforts in ensuring the optimal level of security in smart toys. Furthermore, several solutions that could minimize security risks and are related to our findings are suggested, along with potentially interesting topics for future work and further research

    On Using Blockchains for Safety-Critical Systems

    Full text link
    Innovation in the world of today is mainly driven by software. Companies need to continuously rejuvenate their product portfolios with new features to stay ahead of their competitors. For example, recent trends explore the application of blockchains to domains other than finance. This paper analyzes the state-of-the-art for safety-critical systems as found in modern vehicles like self-driving cars, smart energy systems, and home automation focusing on specific challenges where key ideas behind blockchains might be applicable. Next, potential benefits unlocked by applying such ideas are presented and discussed for the respective usage scenario. Finally, a research agenda is outlined to summarize remaining challenges for successfully applying blockchains to safety-critical cyber-physical systems

    Defense in Depth of Resource-Constrained Devices

    Get PDF
    The emergent next generation of computing, the so-called Internet of Things (IoT), presents significant challenges to security, privacy, and trust. The devices commonly used in IoT scenarios are often resource-constrained with reduced computational strength, limited power consumption, and stringent availability requirements. Additionally, at least in the consumer arena, time-to-market is often prioritized at the expense of quality assurance and security. An initial lack of standards has compounded the problems arising from this rapid development. However, the explosive growth in the number and types of IoT devices has now created a multitude of competing standards and technology silos resulting in a highly fragmented threat model. Tens of billions of these devices have been deployed in consumers\u27 homes and industrial settings. From smart toasters and personal health monitors to industrial controls in energy delivery networks, these devices wield significant influence on our daily lives. They are privy to highly sensitive, often personal data and responsible for real-world, security-critical, physical processes. As such, these internet-connected things are highly valuable and vulnerable targets for exploitation. Current security measures, such as reactionary policies and ad hoc patching, are not adequate at this scale. This thesis presents a multi-layered, defense in depth, approach to preventing and mitigating a myriad of vulnerabilities associated with the above challenges. To secure the pre-boot environment, we demonstrate a hardware-based secure boot process for devices lacking secure memory. We introduce a novel implementation of remote attestation backed by blockchain technologies to address hardware and software integrity concerns for the long-running, unsupervised, and rarely patched systems found in industrial IoT settings. Moving into the software layer, we present a unique method of intraprocess memory isolation as a barrier to several prevalent classes of software vulnerabilities. Finally, we exhibit work on network analysis and intrusion detection for the low-power, low-latency, and low-bandwidth wireless networks common to IoT applications. By targeting these areas of the hardware-software stack, we seek to establish a trustworthy system that extends from power-on through application runtime

    A Proactive Approach to Detect IoT Based Flooding Attacks by Using Software Defined Networks and Manufacturer Usage Descriptions

    Get PDF
    abstract: The advent of the Internet of Things (IoT) and its increasing appearances in Small Office/Home Office (SOHO) networks pose a unique issue to the availability and health of the Internet at large. Many of these devices are shipped insecurely, with poor default user and password credentials and oftentimes the general consumer does not have the technical knowledge of how they may secure their devices and networks. The many vulnerabilities of the IoT coupled with the immense number of existing devices provide opportunities for malicious actors to compromise such devices and use them in large scale distributed denial of service attacks, preventing legitimate users from using services and degrading the health of the Internet in general. This thesis presents an approach that leverages the benefits of an Internet Engineering Task Force (IETF) proposed standard named Manufacturer Usage Descriptions, that is used in conjunction with the concept of Software Defined Networks (SDN) in order to detect malicious traffic generated from IoT devices suspected of being utilized in coordinated flooding attacks. The approach then works towards the ability to detect these attacks at their sources through periodic monitoring of preemptively permitted flow rules and determining which of the flows within the permitted set are misbehaving by using an acceptable traffic range using Exponentially Weighted Moving Averages (EWMA).Dissertation/ThesisMasters Thesis Computer Science 201

    Infrastructure as Code for Cybersecurity Training

    Get PDF
    An organization\u27s infrastructure rests upon the premise that cybersecurity professionals have specific knowledge in administrating and protecting it against outside threats. Without this expertise, sensitive information could be leaked to malicious actors and cause damage to critical systems. These attacks tend to become increasingly specialized, meaning cybersecurity professionals must ensure proficiency in specific areas. Naturally, recommendations include creating advanced practical training scenarios considering realistic situations to help trainees gain detailed knowledge. However, the caveats of high-cost infrastructure and difficulties in the deployment process of this kind of system, primarily due to the manual process of pre-configuring software needed for the training and relying on a set of static Virtual Machines, may take much work to circumvent. In order to facilitate this process, our work addresses the use of Infrastructure as Code (IaC) and DevOps to automate the deployment of cyber ranges. An approach closely related to virtualization and containerization as the code\u27s underlying infrastructure helps lay down this burden. Notably, placing emphasis on using IaC tools like Ansible eases the process of configuration management and provisioning of a network. Therefore, we start by focusing on understanding what the State of the Art perspectives lack and showcasing the benefits of this new working outlook. Lastly, we explore several up-to-date vulnerabilities that are constantly messing with the lives of individuals and organizations, most related to Privilege Escalation, Remote Code Execution attacks, and Incident Forensics, allowing the improvement of skills concerning Red team and Blue team scenarios. The analysis of the attacks and exploitation of such vulnerabilities are carried out safely due to a sandbox environment. The expected results revolve around using IaC to deploy a set of purposely-designed cyber ranges with specific challenges. The main objective is to guarantee a complexity of scenarios similar to what we can observe in enterprise-level networks. Thus, this entails having a set of playbooks that can be run in a machine or laboratory, assuring the final state of the network is consistent. We expect this deployment strategy to be cost-effective, allowing the trainee to get deep insight into a wide range of situations. Nowadays, DevOps solutions work as a silver bullet against the issues derived from old-case-driven approaches for setting up scenarios. In short, one of the key takeaways of this work is contributing to better prepare specialists in ensuring that the principles of the National Institute of Standards and Technology (NIST) Cybersecurity Framework hold, namely: prevent, detect, mitigate, and recover

    Semi­Automatic Generation of Tests for Assessing Correct Integration of Security Mechanisms in the Internet of Things

    Get PDF
    Internet of Things (IoT) is expanding at a global level and its influence in our daily lives is increasing. This fast expansion, with companies competing to be the first to deploy new IoT systems, has led to the majority of the software being created and produced without due attention being given to security considerations and without adequate security testing. Software quality and security testing are inextricably linked. The most successful approach to achieve secure software is to adhere to secure development, deployment, and maintenance principles and practices throughout the development process. Security testing is a procedure for ensuring that a system keeps the users data secure and performs as expected. However, extensively testing a system can be a very daunting task, that usually requires professionals to be well versed in the subject, so as to be performed correctly. Moreover, not all development teams can have access to a security expert to perform security testing in their IoT systems. The need to automate security testing emerged as a potential means to solve this issue. This dissertation describes the process undertaken to design and develop a module entitled Assessing Correct Integration of Security Mechanisms (ACISM) that aims to provide system developers with the means to improve system security by anticipating and preventing potential attacks. Using the list of threats that the system is vulnerable as inputs, this tool provides developers with a set of security tests and tools that will allow testing how susceptible the system is to each of those threats. This tool outputs a set of possible attacks derived from the threats and what tools could be used to simulate these attacks. The tool developed in this dissertation has the purpose to function as a plugin of a framework called Security Advising Modules (SAM). It has the objective of advising users in the development of secure IoT, cloud and mobile systems during the design phases of these systems. SAM is a modular framework composed by a set of modules that advise the user in different stages of the security engineering process. To validate the usefulness of the ACISM module in real life, it was tested by 17 computer science practitioners. The feedback received from these users was very positive. The great majority of the participants found the tool to be extremely helpful in facilitating the execution of security tests in IoT. The principal contributions achieved with this dissertation were: the creation of a tool that outputs a set of attacks and penetration tools to execute the attacks mentioned, all starting from the threats an IoT system is susceptible to. Each of the identified attacking tools will be accompanied with a brief instructional guide; all summing up to an extensive review of the state of the art in testing.A Internet das Coisas (IoT) é um dos paradigmas com maior expansão mundial à data de escrita da dissertação, traduzindo­se numa influência incontornável no quotidiano. As empresas pretendem ser as primeiras a implantar novos sistemas de IoT como resultado da sua rápida expansão, o que faz com que a maior parte do software seja criado e produzido sem considerações de segurança ou testes de segurança adequados. A qualidade do software e os testes de segurança estão intimamente ligados. A abordagem mais bemsucedida para obter software seguro é aderir aos princípios e práticas de desenvolvimento, implantação e manutenção seguros em todo o processo de desenvolvimento. O teste de segurança é um procedimento para garantir que um sistema proteja os dados do utilizador e execute conforme o esperado. Esta dissertação descreve o esforço despendido na concepção e desenvolvimento de uma ferramenta que, tendo em consideração as ameaças às quais um sistema é vulnerável, produz um conjunto de testes e identifica um conjunto de ferramentas de segurança para verificar a susceptibilidade do sistema às mesmas. A ferramenta mencionada anteriormente foi desenvolvida em Python e tem como valores de entrada uma lista de ameaças às quais o sistema é vulnerável. Depois de processar estas informações, a ferramenta produz um conjunto de ataques derivados das ameaças e possíveis ferramentas a serem usadas para simular esses ataques. Para verificar a utilidade da ferramenta em cenários reais, esta foi testada por 17 pessoas com conhecimento na área de informática. A ferramenta foi avaliada pelos sujeitos de teste de uma forma muito positiva. A grande maioria dos participantes considerou a ferramenta extremamente útil para auxiliar a realização de testes de segurança em IoT. As principais contribuições alcançadas com esta dissertação foram: a criação de uma ferramenta que, através das ameaças às quais um sistema IoT é susceptível, produzirá um conjunto de ataques e ferramentas de penetração para executar os ataques mencionados. Cada uma das ferramentas será acompanhada por um breve guia de instruções; uma extensa revisão do estado da arte em testes.The work described in this dissertation was carried out at the Instituto de Telecomunicações, Multimedia Signal Processing – Covilhã Laboratory, in Universidade da Beira Interior, at Covilhã, Portugal. This research work was funded by the S E C U R I o T E S I G N Project through FCT/COMPETE/FEDER under Reference Number POCI­01­0145­FEDER030657 and by Fundação para Ciência e Tecnologia (FCT) research grant with reference BIL/Nº11/2019­B00701

    Holistic security 4.0

    Get PDF
    The future computer climate will represent an ever more aligned world of integrating technologies, affecting consumer, business and industry sectors. The vision was first outlined in the Industry 4.0 conception. The elements which comprise smart systems or embedded devices have been investigated to determine the technological climate. The emerging technologies revolve around core concepts, and specifically in this project, the uses of Internet of Things (IoT), Industrial Internet of Things (IIoT) and Internet of Everything (IoE). The application of bare metal and logical technology qualities are put under the microscope to provide an effective blue print of the technological field. The systems and governance surrounding smart systems are also examined. Such an approach helps to explain the beneficial or negative elements of smart devices. Consequently, this ensures a comprehensive review of standards, laws, policy and guidance to enable security and cybersecurity of the 4.0 systems

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms
    corecore