
UNIVERSIDADE DA BEIRA INTERIOR
Engenharia

SemiAutomatic Generation of Tests for
Assessing Correct Integration of Security

Mechanisms in the Internet of Things

Carolina Galvão Lopes

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática
(2º ciclo de estudos)

Orientador: Professor Doutor Pedro Ricardo Morais Inácio
Coorientador: Professor Doutor Tiago Miguel Carrola Simões

Covilhã, julho de 2021

ii

Acknowledgements

I would first like to thank my family for all the unconditional love and support during

this stage of my life. Without their continuous efforts, I could not have reached this far.

Having that said, thank you mother, Júlia, father, Frederico, and sister, Beatriz, you are

the reason I keep moving forward and trying to reach higher.

Another very special thanks goes tomy aunt, Ana Patricia Ferreira, for all the love, support

and advice given during the last years ofmy academic life. Without her guidance, this goal

would have been a lot harder to reach.

No less important, I would like to thankmy advisor and coadvisor Pedro Inácio and Tiago

Simões, respectively, for giving me the opportunity to work/learn with them and for al

ways being available when I had doubts or ideas to discuss.

I am also thankful for the support, suggestions and availability provided bymy colleagues

Bernardo Sequeiros and Joana Costa.

Last but not least, I would like to thank all my friends for being there and for making this

journey more easy and lighthearted. An honourable mention goes to my friend Eduardo

Almeida, who has been accompanying me on this journey since day one Thank you for

the muchneeded coffee breaks without you this journey would have been tremendously

more hard and stressful.

The work described in this dissertation was carried out at the Instituto de Telecomuni

cações, Multimedia Signal Processing – Covilhã Laboratory, in Universidade da Beira In

terior, at Covilhã, Portugal. This research work was funded by the S E C U R I o T E S I G N

Project throughFCT/COMPETE/FEDERunderReferenceNumberPOCI010145FEDER

030657 and by Fundação para Ciência e Tecnologia (FCT) research grant with reference

BIL/Nº11/2019B00701.

iii

iv

Resumo

A Internet das Coisas (IoT) é um dos paradigmas commaior expansão mundial à data de

escrita da dissertação, traduzindose numa influência incontornável no quotidiano. As

empresas pretendem ser as primeiras a implantar novos sistemas de IoT como resultado

da sua rápida expansão, o que faz com que a maior parte do software seja criado e pro

duzido sem considerações de segurança ou testes de segurança adequados. A qualidade

do software e os testes de segurança estão intimamente ligados. A abordagemmais bem

sucedida para obter software seguro é aderir aos princípios e práticas de desenvolvimento,

implantação e manutenção seguros em todo o processo de desenvolvimento. O teste de

segurança é umprocedimento para garantir que um sistema proteja os dados do utilizador

e execute conforme o esperado.

Esta dissertação descreve o esforço despendido na concepção e desenvolvimento de uma

ferramenta que, tendo em consideração as ameaças às quais um sistema é vulnerável, pro

duz um conjunto de testes e identifica um conjunto de ferramentas de segurança para ver

ificar a susceptibilidade do sistema às mesmas. A ferramenta mencionada anteriormente

foi desenvolvida em Python e tem como valores de entrada uma lista de ameaças às quais

o sistema é vulnerável. Depois de processar estas informações, a ferramenta produz um

conjunto de ataques derivados das ameaças e possíveis ferramentas a serem usadas para

simular esses ataques.

Para verificar a utilidade da ferramenta em cenários reais, esta foi testada por 17 pessoas

com conhecimento na área de informática. A ferramenta foi avaliada pelos sujeitos de

teste de uma forma muito positiva. A grande maioria dos participantes considerou a fer

ramenta extremamente útil para auxiliar a realização de testes de segurança em IoT.

As principais contribuições alcançadas com esta dissertação foram: a criação de uma fer

ramenta que, através das ameaças às quais um sistema IoT é susceptível, produzirá um

conjunto de ataques e ferramentas de penetração para executar os ataques mencionados.

Cada uma das ferramentas será acompanhada por um breve guia de instruções; uma ex

tensa revisão do estado da arte em testes.

Palavraschave

Automatização de Testes, Internet das Coisas, IoT, Testes, Testes de Segurança.

v

vi

Resumo alargado

Introdução

Esta secção da dissertação têm como principal objectivo apresentar, em português, um

resumo alargado da dissertação de mestrado elaborada, visto que a mesma está escrita

integralmente na língua inglesa.

Enquadramento, Descrição do Problema e Objectivos

A Internet das Coisas (IoT) está a crescer a um ritmo acelerado em todo omundo, criando

um impacto na nossa vida quotidiana, em 2025 acreditase que o total de conexões IoT

chegará a 22 biliões [Lue18].

Com este crescimento elevado, as empresas competem para ser as primeiras a lançar

novos sistemas de IoT, o que leva a que a maioria do software seja projectado e desen

volvido sem medidas e testes adequadas para garantir a segurança. Relatórios indicam

que 70% dos dispositivos IoT são vulneráveis out of the box [Mat20]. Este tipo de prática

pode ser prejudicial para as empresas, visto que o software ou sistema é susceptível a

ataques, fazendo com que o cliente perca a confiança na marca/empresa.

Os testes de segurança estão directamente relacionados com a qualidade do software. A

forma mais eficaz de obter um software seguro é quando o seu processo de desenvolvi

mento é executado de uma forma rigorosa em conformidade com os princípios e práticas

seguras de desenvolvimento, implementação e manutenção. Os testes de segurança são

um processo para garantir que um sistema protege os dados do utilizador e que o mesmo

mantém as suas funcionalidades principais conforme o necessário. Num ambiente com

um ritmo tão acelerado, os testes precisam de ser rápidos e com baixo consumo de re

cursos. Para lidar com essa necessidade, a automatização de testes é uma ferramenta

essencial.

Objectivos

Oobjectivo principal desta dissertação é avançar no estado da arte nos tópicos de automa

tização de testes, testes baseados em requisitos e emmodelos. O trabalho de investigação

realizado para este objectivo deve levar à criação de uma ferramenta que aconselhe os uti

lizadores nos métodos de teste específicos para a IoT que estão a desenvolver, ferramen

tas específicas que eles podem usar para executar o referido teste e, por fim, apresentar

ao utilizador alguns detalhes de teste.

Os seguintes objectivos secundários foram definidos para atingir o objectivo principal

desta dissertação:

• Levantamento de informação sobre automatização de testes em sistemas IoT, um

dos objectivos desta dissertação é contextualizar os testes de segurança no ambiente

IoT;

vii

• Uma pesquisa sobre ferramentas de teste de penetração compatíveis com IoT. As

ferramentas investigadas nesta etapa serão utilizadas como ferramentas recomen

dadas para apresentar aos utilizadores;

• O terceiro e último objectivo é o de desenvolver uma ferramenta que, de acordo com

o tipo de ataques a que o sistema seja susceptível, produza um relatório com es

pecificações de teste e ferramentas que possam testar o sistema contra essa possível

vulnerabilidade.

Principais Contribuições

De acordo com os objectivos estabelecidos na secção anterior, as principais contribuições

desta dissertação são: uma revisão extensa do estado da arte nos tópicos mencionados

acima; o levantamento de um conjunto de ferramentas de testes compatíveis com IoT; um

protótipo de ferramenta que, de acordo com o tipo de ameaças a que o sistema é suscep

tível, crie uma lista de possíveis ataques associados a testes de penetração e ferramentas

que executem os mesmos.

Background e Conceitos Principais

Neste segundo capítulo são abordados os conceitos fundamentais para o desenvolvimento

desta dissertação de mestrado. É apresentada a definição de IoT e a sua arquitectura bem

como as suas principais vulnerabilidades e ataques a que esta susceptível. De seguida,

explorase área de testes de software e os vários níveis existentes dentro deste tópico.

IoT é definida como um paradigma em que um conjunto dispositivos comunicam através

de tecnologiawireless e partilham dados/informações para atingir um objectivo [SJK17].

Estes dispositivos, habitualmente, possuem uma arquitectura de três camadas, sendo

elas: Perception Layer, Network Layer e Application Layer. Tal como grande parte das

tecnologias emergentes, os dispositivos IoT estão sujeitos a vulnerabilidades que os po

dem incapacitar. De acordo comaOWASP, o top 10 das vulnerabilidadesmais comuns em

IoT são: Passwords fracas, fáceis de adivinhar ou hardcoded; Serviços de rede inseguros;

Interfaces com ecossistemas inseguros; Falta de mecanismos de atualização seguros; Uso

de componentes inseguros ou desactualizados; Protecção física insuficiente; Protecção

de privacidade insuficiente; Transferência e armazenamento de dados inseguro; Falta de

gestão de dispositivos; Configurações por defeito inseguras; Falta de robustimento físico

(physical hardening). Após esta análise das principais vulnerabilidades, é feito um lev

antamento dos principais ataques a que os dispositivos IoT estão sujeitos. Reuniuse um

total de 20 ataques acompanhados de uma breve descrição e de possíveis formas de miti

gação dos mesmos.

Teste de software é o processo de verificação e validação de que uma aplicação ou pro

grama vai de encontro aos requisitos comerciais e técnicos que orientaram o seu design e

desenvolvimento. O processo de teste garante que o software está a funcionar conforme

o esperado e também revela possíveis falhas ou erros no sistema [SPPS17]. Testar soft

viii

ware é uma tarefa muito complexa e extensa, sendo esta dividida em três níveis de teste

[JP16]: testes unitários, testes de integração e testes de sistema. Uma breve explicação

de cada nível é feita acompanhada de uma apresentação dos vários testes que se podem

fazer dentro de cada nível. Finalmente, é feita a associação entre os vários tipos de teste e

em que fase do ciclo de vida de desenvolvimento de software é que estes se devem aplicar.

Trabalho Relacionado e Ferramentas

Nesta terceira secção é apresentado o estado da arte dentro de vários tópicos na área de

testes, nomeadamente: Testes baseados em modelo; testes baseados em requisitos; au

tomatização de testes. Por fim, é feito um levantamento de várias ferramentas de testes

de segurança automáticas.

No tópico de testes baseados emmodelo destacamse os trabalhos deNaveed et al. [Nav17],

de Matić et al. [MNA+19] e de Mahmoodi et al. [MRV+18]. Na área de testes baseados

em requisitos os trabalhos de Freudenstein et al.[FJR+18], Li et al. [LMY+19], Eo et al.

[ECG+15] e de Aniculaesei et al. [AHDR18] foram abordados. Por último, os trabalhos de

Swain et al. [SMM10], Darmaillacq et al. [DRG08], Gafurov et al. [GHM18], Yatskiv et

al.[YVY+19] foram estudados no âmbito de automatização de testes, com especial ênfase

nos trabalhos de Varghese et al. [VS20] , Yadav et al. [YPAO20] e Hwang et al.[HAS+20]

que são específicos para automatização em IoT.

Para terminar esta secção, são apresentados um conjunto de ferramentas de testes au

tomáticas compatíveis com IoT. Foram apresentadas um total 18 ferramentas cada uma

acompanhada de uma breve descrição e para que tipos de ataques a mesma pode ser uti

lizada.

Projeto, implementação e demonstração do sistema

Nesta secção são identificados os principais requisitos funcionais e nãofuncionais do sis

tema proposto. Esta definição é feita com o intuito guiar o autor no seu desenvolvimento

da ferramenta proposta, de modo a que esta produza os resultados esperados e se insira

correctamente na plataforma onde vai ser alojada. Os principais requisitos identificados

são: a produção de uma ferramenta que produza, de acordo com ameaças possíveis ao sis

tema, um conjunto de ataques associados a ferramentas de penetração; a solução deve ser

modular e utilizar ao máximo os recursos já disponibilizados pela plataforma. De seguida

é apresentada uma visão geral do design do sistema a desenvolver juntamente com as

relações entre o mesmo e os outros componentes da plataforma.

São, também, discutidos os detalhes da implementação da ferramenta desenvolvida no

âmbito desta dissertação demestrado. Primeiramente, é feita uma breve apresentação da

Security Advising Module (SAM), a plataforma onde foi alojado o módulo desenvolvido.

De seguida é apresentado o módulo desenvolvido no âmbito desta dissertação. Por fim,

são apresentados os detalhes de implementação do módulo em questão.

A SAM é uma plataforma modular, ou seja é constituída por um conjunto de módulos

ix

todos eles com diferentes objectivos. De momento, na área de IoT, apenas existem três

módulos: um para elicitação de requisitos de segurança, um para sugestão de boas práti

cas e, ainda um outro módulo para recomendação de algoritmos criptográficos leves. Os

módulos inseridos na SAM podem ser de dois tipos: o módulo tradicional, constituído

por um conjunto de questões e respostas; e os plugins que não necessitam de nenhum

questionário para produzir as suas recomendações.

A ferramenta desenvolvida no contexto desta dissertação intitulase de Module for As

sessing Correct Integration of Security Mechanisms (ACISM). Este módulo é consider

ado um plugin, dentro dos padrões da SAM. Este apenas depende das recomendações

dadas pelo módulo de recomendação de algoritmos criptográficos leves e pelas recomen

dações de um outro módulo, desenvolvido em paralelo por outro colega de mestrado, que

apresenta as ameaças a que o sistema em questão é susceptível. Com as recomendações

destes dois módulos, é produzido um relatório com os possíveis ataques a que o sistema

IoT a ser avaliado é susceptível. Para além dos possíveis ataques, é também produzido

um conjunto de ferramentas de teste que verificam se medidas de segurança foram im

plementadas de modo a mitigar as vulnerabilidades e, consequentemente, impedir esses

ataques de acontecer. Se o utilizador necessitar de mais informação, associado a cada re

comendação, existe um ficheiro do com notaçãomarkdown com instruções de instalação

e utilização de cada ferramenta para simular o ataque em questão. Por fim, é feita a asso

ciação entre cada ficheiro de ataque, as ferramentas sugeridas e as ameaças que resultam

na possibilidade do ataque em questão.

Teste e validação do módulo

Para avaliar a utilidade e correcção do módulo desenvolvido, primeiro foi necessário alo

jar a SAM de modo a permitir, aos participantes, acesso á plataforma. A plataforma foi

hospedada num servidor dentro da Universidade da Beira Interior (UBI) utilizando ng

inx e gunicorn. Foi também criado um certificado digital de modo a disponibilizar aos

utilizadores comunicação segura através do protocolo Hyper Text Transfer Protocol Se

cure (HTTPS). A plataforma e todos os seus conteúdos encontramse disponíveis em

https://securiotesign.di.ubi.pt/. No entanto, antes de disponibilizar a ferramenta

aos utilizadores foi necessário garantir que amesma estava a funcionar correctamente e de

acordo com o esperado. Para automatizar esta parte dos testes foi utilizada a ferramenta

Selenium demodo a realizar testes que corressem as várias combinações possíveis de per

guntas e respostas. Após esta fase de testes automáticos ter sido realizado com sucesso a

plataforma e os seus módulos foram considerados aptos para testes com utilizadores.

Demodo a facilitar e de certa forma guiar a interacção dos utilizadores com a plataforma e

com omódulo desenvolvido foi elaborado um documento com vários cenários de IoT, um

para cada uma das grandes áreas de IoT, nomeadamente: Carga Perecível e Monitoriza

ção de Transporte; Optimização da Infraestrutura e Uso de Energia para Carregamento

Doméstico de Veículos Eléctricos; Lâmpada Inteligente; Pacemaker com uma Interface

Móvel; Sistema de Irrigação Inteligente; Smartwatch; Fábrica Inteligente. O objectivo

x

https://securiotesign.di.ubi.pt/

deste documento é que os sujeitos de teste escolham um cenário e que o apliquem nos

vários módulos da SAM.

O módulo foi testado com 17 participantes, todos eles com alguma experiência na área de

informática. Os resultados destes testes foram apresentados neste capítulo. De ummodo

geral, o módulo foi considerado bastante útil para auxiliar na fase de testes de segurança,

produzindo relatórios claros e com ferramentas adequadas para os testes em questão.

Conclusões e Trabalho Futuro

No sétimo capítulo estão presentes as principais conclusões retiradas após a conclusão

desta dissertação. São também apresentadas possíveis melhorias a aplicar, num futuro

próximo, ao trabalho desenvolvido.

Após a realização de testes com utilizadores, foi possível concluir que a ferramenta de

senvolvida consegue, com sucesso, aconselhar os utilizadores no processo de testes de

segurança. Para além disso, é ainda possível concluir que todos os objectivos propostos

nesta dissertação foram alcançados.

Como trabalho futuro foram apontados algumas melhorias a realizar. Nomeadamente,

converter os guias individuais demarkdown para Portable Document Format (PDF). Foi

também sugerido compilar os vários guias produzidos dentro do PDF das recomendações

principais. A última sugestão presente nesta secção é a de elaboração de uma ferramenta

que, através das recomendações dadas por este módulo e, após algumas questões ao uti

lizador sobre o sistema desenvolvido, instale as ferramentas e corra os testes sugeridos.

xi

xii

Abstract

Internet of Things (IoT) is expanding at a global level and its influence in our daily lives is

increasing. This fast expansion, with companies competing to be the first to deploy new

IoT systems, has led to the majority of the software being created and produced without

due attention being given to security considerations and without adequate security test

ing. Software quality and security testing are inextricably linked. The most successful

approach to achieve secure software is to adhere to secure development, deployment, and

maintenance principles and practices throughout the development process. Security test

ing is a procedure for ensuring that a system keeps the users data secure and performs as

expected. However, extensively testing a system can be a very daunting task, that usually

requires professionals to be well versed in the subject, so as to be performed correctly.

Moreover, not all development teams can have access to a security expert to perform se

curity testing in their IoT systems. The need to automate security testing emerged as a

potential means to solve this issue.

This dissertation describes the process undertaken to design and develop a module enti

tledAssessing Correct Integration of SecurityMechanisms (ACISM) that aims to provide

systemdeveloperswith themeans to improve system security by anticipating andprevent

ing potential attacks. Using the list of threats that the system is vulnerable as inputs, this

tool provides developers with a set of security tests and tools that will allow testing how

susceptible the system is to each of those threats. This tool outputs a set of possible attacks

derived from the threats and what tools could be used to simulate these attacks.

The tool developed in this dissertation has the purpose to function as a plugin of a frame

work called Security AdvisingModules (SAM). It has the objective of advising users in the

development of secure IoT, cloud and mobile systems during the design phases of these

systems. SAM is a modular framework composed by a set of modules that advise the user

in different stages of the security engineering process.

To validate the usefulness of the ACISM module in real life, it was tested by 17 computer

science practitioners. The feedback received from these users was very positive. The great

majority of the participants found the tool to be extremely helpful in facilitating the exe

cution of security tests in IoT.

The principal contributions achieved with this dissertation were: the creation of a tool

that outputs a set of attacks and penetration tools to execute the attacks mentioned, all

starting from the threats an IoT system is susceptible to. Each of the identified attacking

tools will be accompanied with a brief instructional guide; all summing up to an extensive

review of the state of the art in testing.

xiii

Keywords

IoT, Internet of Things, Testing, Security Testing, Test Automation.

xiv

Contents

List of Figures xvii

List of Tables xix

Listings xxi

Acronyms xxiii

1 Introduction 1

1.1 Scope and Motivation . 1

1.2 Problem Statement and Objectives . 2

1.3 Approach Taken to Achieve the Objectives 2

1.4 Main Contributions . 3

1.5 Dissertation Outline . 3

2 Background and Main Concepts 5

2.1 Introduction . 5

2.2 Internet of Things . 5

2.2.1 Vulnerabilities in IoT . 6

2.2.2 Main IoT Threats . 7

2.3 Software Testing . 10

2.3.1 Unit Testing . 10

2.3.2 Integration Testing . 11

2.3.3 System Testing . 11

2.4 Security Testing and Software Development Life Cycle 12

2.5 Conclusion . 13

3 RelatedWork and Underlying Tools 15

3.1 Introduction . 15

3.2 Related Work . 15

3.2.1 ModelBased Testing . 15

3.2.2 RequirementBased Testing . 16

3.2.3 Test Automation . 18

3.3 Testing Tools . 22

3.3.1 Password Cracking Tools . 22

3.3.2 Binary Code Analyzers . 23

3.3.3 Penetration Testing Tools . 23

3.3.4 Distributed Denial of Service Attack Tools 23

3.3.5 Network Protocol Analyzers . 24

3.3.6 Spoofing Tools . 24

3.3.7 ManInTheMiddle Attack Tools 24

xv

3.3.8 Network Traffic Replayers . 24

3.3.9 SQL Injection Tools . 24

3.3.10 Cryptographic Protocol Analyzers 25

3.4 Security Advising Modules Framework . 27

3.5 Conclusion . 27

4 System Design, Implementation and Demonstration 29

4.1 Introduction . 29

4.2 Requirements . 29

4.3 System Design . 30

4.4 Deploying Security Components using the SAM Framework 30

4.5 Plugin Implementation Details . 32

4.6 User Interaction and Flow . 35

4.7 Conclusion . 39

5 Testing and Module Validation 41

5.1 Introduction . 41

5.2 SAM Deployment . 41

5.3 Testing . 42

5.3.1 Automatic Testing . 42

5.3.2 User Testing . 42

5.4 Conclusion . 47

6 Conclusion and Future Work 49

6.1 Main Conclusions . 49

6.2 Contributions and Achievements . 50

6.2.1 Tool for Production of Test Values for Conditional Coverage Testing 50

6.3 Future Work . 50

Bibliography 53

Appendix A Document Created to Guide the Test Subjects 61

xvi

List of Figures

2.1 Diagram representing testing levels and techniques. 11

4.1 Diagram illustrating the direct and indirect dependencies of the Assessing

Correct Integration of Security Mechanisms (ACISM) module. 30

4.2 Diagram depicting the architecture of the SAM framework. 31

4.3 Diagram showing the representation of the different types of components

present in SAM. 32

4.4 Screenshot showing how a new module can be added to SAM. 33

4.5 Screenshot with an example of a report produced by the ACISMmodule. . 34

4.6 Screenshot showing a user filling in the fields necessary to signin. 36

4.7 Screenshot showing a user selecting the ACISMmodule. 36

4.8 Screenshot exemplifying how the platform requests for the user to complete

the dependencies of the ACISM module before trying to execute it. 37

5.1 Bar chart representing the test results regarding the clarity of the tool. . . 45

5.2 Bar chart representing the test results regarding the adequacy of the tools

recommended. 45

5.3 Bar chart representing the test results regarding the user awareness of the

tools recommended. 46

5.4 Bar chart representing the test results regarding the helpfulness of the in

dividual guide provided for each tool. 46

5.5 Bar chart representing the test results regarding the utility of the module. . 47

xvii

xviii

List of Tables

2.1 Threats targeted to Internet of Things (IoT) and respective countermea

sures [RRPB19, DV17, HEN+13, ROC+20, Dat18, Zho, ACSC20, NSCC20,

WZLH14, SV11, OWA, AYL+21, RKPR18]. 10

3.1 Correspondence between the studied tools and their categories. 26

4.1 Correspondence between each vulnerability and the respective tests. 39

xix

xx

Listings

4.1 Functions common to all plugins. 34

4.2 Header of the function specifically used in the ACISMmodule. 34

xxi

xxii

Acronyms

4G Fourth Generation

ACISM Assessing Correct Integration of Security Mechanisms

ACM Association for Computing Machinery

API Application Programming Interface

ARP Address Resolution Protocol

ASSERT Analysis of Semantic Specifications and Efficient generation of Requirements

based Tests

CCS Computing Classification System

CEG CauseEffectGraphs

CSRF CrossSite Request Forgery

DoS DenialofService

DDoS Distributed DenialofService

DNS Domain Name System

DNSSEC Domain Name System Security Extensions

ECU Electronic Control Unit

FTP File Transfer Protocol

GPS Global Positioning System

HTTP Hypertext Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

ICMP Internet Control Message Protocol

IoT Internet of Things

IP Internet Protocol

IPS Intrusion Prevention System

IT Information Technology

LAN Local Area Network

LWCAR Lightweight Cryptographic Algorithm Recommendation

LTL Linear Temporal Logic

MITM Maninthemiddle

MQTT Message Queuing Telemetry Transport

NIST National Institute of Standards

NVD National Vulnerability Database

ODB Onboard diagnostics

OWASP Open Web Application Security Project

PDF Portable Document Format

RC Requirements Coverage

RFID Radio Frequency Identification

RPA Robotic Process Automation

SAM Security Advising Modules

SBP Security Best Practices

SDN SoftwareDefined Networking

xxiii

SME State Machine Executor

SQL Structured Query Language

SRE Security Requirements Elicitation

TCGD Test Case Generator and Driver

TCP Transmission Control Protocol

TMS Threat Modeling Solution

UBI Universidade da Beira Interior

UDP User Datagram Protocol

UML Unified Modelling Language

URL Uniform Resource Locator

VP Virtual Prototypes

XML Extensible Markup Language

XSS Crosssite Scripting

XXE XML external entity

ZAP OWASP Zed Attack Proxy

xxiv

Chapter 1

Introduction

This chapter describes the scope of the dissertation and the underlying open issues that

need to be addressed. The hypothesis of this work is presented and the chapter ends with

the organization of the document.

1.1 Scope and Motivation

Internet of Things (IoT) is defined as a set of connected devices that communicate through

the internet [SJK17]. The architecture of this type of systems is usually divided into three

layers, each one of them with individual components. Ensuring security on all of these

components is therefore a complex task which needs to be addressed right from concep

tion to avoid the release of insecure IoT systems.

Security testing is a process where the tester tries to find all the vulnerabilities and weak

nesses of a system, which could result in a security breach, or where he or she tries to

obtain confirmation that a given security requirement is met (e.g., correct integration of

a cryptography protocol). In this specific area, there are six main test categories: vulner

ability scanning, penetration testing, risk assessment, security auditing, ethical hacking

and posture assessment. The ultimate goal of this type of testing is to ensure that a system

can not be exploited.

To correctly perform security testing in such heterogeneous environments as the ones

where IoT devices live in, it is advisable that this task is performed by experts in the sub

ject matter. However, it is not always possible to have a security expert in the develop

ment team, and with the popularity of these devices rising quickly, this has resulted in

the release of new products without proper security measures implemented [Mat20]. If

insecure devices are placed into production and released into thewild, there is a risk of ex

posing the private information of users or incur in potentially dangerous situations, given

that IoT is rapidly spreading to all sectors of modern life. To aid developers ensure that

their IoT devices are secure, it is essential to develop automated security testing tools,

which is in part, the motivation behind the work described in this dissertation.

The scope of this dissertation falls into the intersection of the areas of information secu

rity, security testing and test automation. Under the 2012 version of the Association for

Computing Machinery (ACM) Computing Classification System (CCS), this scope can be

defined by the categories named:

• Security and Privacy~Systems Security;

• Security and Privacy~Network Security;

1

• Security and Privacy~Software and application security;

1.2 Problem Statement and Objectives

IoT is growing at an accelerated pace worldwide and its impact in our everyday lives is

rapidly increasing. It is forecasted that the total of IoT connections will reach 22 billion

by 2025 [Lue18]. With such rapid growth, companies compete to be the first to release

new IoT systems and this has lead to the bulk of software being created and produced

without the due attention being given to security considerations and without adequate

security testing. It has been reported that 70% of IoT devices are vulnerable out of the

box [Mat20]. This type of practice can be damaging to the company. If a given software

is subject to attacks this could lead the customer to lose trust in this brand/company.

Security testing is directly connected to software quality. Themost effectiveway to achieve

secure software is for its development to rigorously conform to secure development, de

ployment, and sustainable principles and practices. Security testing is key to guarantee

that a systemmaintains functionality as required while protecting the data of the user. In

such a fastpaced environment, testing needs to be fast, and low on resource consump

tion. To cope with increasing demand, the ability to automate tests would be key for any

tool aimed at supporting the development of secure systems.

The main objective of this dissertation is to advance the state of the art in terms of test

automation, requirement based testing and model specification. It is intended that this

research will lead to the development of a tool that guides users in the selection of specific

test methods for the IoT system being developed, what tools can be used to run those tests

and output some tests specifications for each one of the recommended tools.

The following objectives are key to achieve the main objective of this dissertation:

• Conduct a survey regarding test automation and IoT systems. One of the objectives

of the dissertation is to contextualize security testing in the IoT environment;

• Conduct a survey regarding IoT compatible penetration testing tools. The tools in

vestigated in this step will then be used as recommended tools to present to the

users;

• Develop a tool that, according to the type of attacks the systemmay suffer, will pro

duce a report with test specifications and tools that can test the system against a

possible vulnerability.

1.3 Approach Taken to Achieve the Objectives

Before development of the proposed tool began, a study of the main related topics in this

research area was performed, to contextualize the author and assess the stateoftheart.

The research performed encompassed areas such as IoT, Software Testing and Security

2

Testing. After it became apparent that the developed tool should be inserted into pen

etration testing, the author investigated the most popular penetration tools compatible

with IoT. These penetration tools were then used as the output of the developed module.

Finally, a module titled ACISMwas created and inserted into a larger security framework.

Themodule receives a set of threats as input, processes them, and generates a set of attacks

the IoT system is vulnerable to. Each of the attacks is accompanied by a set of penetration

testing tools to perform those attacks, along with the guidelines on how to use them. After

the development of the prototype, several tests were conducted (both automatic and user

tests) to validate the correctness and usefulness of the module.

1.4 Main Contributions

The main contributions achieved from the research and development performed in the

scope of this Master’s dissertation are:

1. An extensive research on the state of the art in testing namely, in ModelBased

Testing, RequirementBased Testing and Test Automation, which is materialized

in chapters 2 and 3;

2. A tool that, by receiving a list of threats the system is vulnerable to, will produce a

report with a set of attacks derived from those threats. Each one of the suggested

attacks will be accompanied by a set of penetration tools to simulate it, followed

by an instructional guide on how to use each tool. This tool is the main subject of

chapters 4 and 5 is it is the main foreground of this work.

It should be mentioned that the development of the guides on how to use the tools has led

the author to secondary contributions that are only briefly mentioned along the disserta

tion, but need to be emphasized here. For example, in section 6.2, a tool for production of

test values for conditional coverage testing, specially crafted for Python, is presented. Ad

ditionally, initial efforts to embed artificial intelligence into the tools and modules of the

framework were done during the development of the project, in collaboration with other

researchers, leading to the paper [LCS+21], submitted and accepted for publication in a

scientific peerreviewed conference.

1.5 Dissertation Outline

This dissertation is organized into six chapters, which can be summarized as follows:

• Chapter 1 – Introduction – presents the scope and motivation, states the problems

and objectives, the proposed approach and ends up with the main contributions of

this work;

• Chapter 2 –Background andMain Concepts – covers the fundamental concepts that

contextualize and need to be understood to enable the development of the proposed

tool;

3

• Chapter 3–RelatedWork andUnderlyingTools –describes state of the art inmodel

based testing, requirement based testing and test automation. Additionally, it dis

cusses some popular security testing tools;

• Chapter 4 – System Design, Implementation and Demonstration – presents the re

quirements and flow of the proposed tool, followed by the main technical details of

the implementation of the developed tool;

• Chapter 5 – Testing and Module Validation – describes the steps taken to prepare

the developed tool for user testing and discusses the results of the tests done by

users;

• Chapter 6 – Conclusion and Future Work – captures the main conclusions and

achievements of this work, and suggests possible future improvements;

• Appendix A – includes the document elaborated for the test subjects to guide them

while interacting with the developed tool.

4

Chapter 2

Background and Main Concepts

2.1 Introduction

This chapter describes the basic concepts of IoT and automatic security testing. Firstly,

section 2.2 will introduce the topic of IoT, its operation, vulnerabilities and threats this

type of systems face. This description is followed by a fairly detailed discussion to security

testing in section 2.3.

2.2 Internet of Things

The Internet of Things, a term coined by Kevin Ashton in 1999, is defined as a collection of

many connected devices that can communicate through wireless links and share data/in

formation to achieve an objective [SJK17]. The IoT architecture is usually divided into

three layers: the perception layer, the network layer and the application layer. Although

it has been proven that this is not the most securityfriendly architecture when it comes

to design such system, it is the most popular amongst these types of devices [KSH20]. A

brief explanation of each layer is presented bellow [SJK17, CL18, KSH20]:

• The first layer of an IoT is the Perception Layer, which collects information from

the real world through Radio Frequency Identification (RFID), sensors, Global Po

sitioning System (GPS), other hardware devices and incorporates the information

into the digital world. Some of the attacks this layer is vulnerable to are Skimming,

Eavesdropping, Cloning, Buffer overflow, and others;

• This is followed by the Network Layer, which is responsible for transporting in

formation between the perception layer and the application layer. This layer uses a

variety of networks to communicate such asWiFi, Fourth Generation (4G), satellite,

etc. This layer is susceptible to Network traffic sniffers attacks, Signal replay, Signal

hijacking, and others;

• The last layer is the Application Layer, which provides the user with a variety of

services. IoT can be interacted with by users through various applications in differ

ent environments. The application layer protocols define the application interface

with the lower layers to send data over the network. Data Integrity, Data Confiden

tiality and Data Authenticity should be guaranteed by this layer. If these require

ments are not implemented in the system, this layer can suffer from buffer overflow,

Crosssite Scripting (XSS), SQL injection, social engineering attacks and password

attacks.

5

2.2.1 Vulnerabilities in IoT

A vulnerability is a weakness or a programming fault found within a system that can be

exploited by an attacker to cross privilege boundaries. Open Web Application Security

Project (OWASP) identified the top 10most common security risks in IoT. If an IoT system

possesses any one of these vulnerabilities, the security of the user is compromised. The

remaining part of this section describes these top 10 security risks.

Weak, Guessable, orHardcodedPasswords is when the system contains badly im

plemented authentication functions that allow attackers to compromise passwords, keys,

or session tokens, or to exploit other implementation flaws to assume, temporarily or per

manently, identities of other users [OWA18]. This type of vulnerability can appear in the

form of hardcoded passwords, which according to Rizvi et al. [ROC+20] is one of the

most common vulnerabilities in IoT.

Insecure Network Services is when insecure or unneeded services are running on the

device and can compromise the confidentiality, integrity/authenticity, or availability of

information and even allow unauthorized remote control [OWA18, ROC+20].

Insecure Ecosystem Interfaces is related with insecure Web, backend Application

Programming Interface (API), cloud, or mobile interfaces in the ecosystem outside of the

device that enables it or its related components to be compromised. A lack of authentica

tion/authorization, a lack of poor encryption, and a lack of input and output filtering are

all common issues [OWA18].

Lack of Secure Update Mechanism refers to the lack of mechanisms to securely up

date the system, for example lack of firmware validation on the device, lack of secure deliv

ery (unencrypted in transit), lack of antirollback mechanisms, and lack of notifications

of security changes due to updates [OWA18].

Use of Insecure or Outdated Components refers to the use of insecure or depre

cated software libraries/components that can allow for the security of the device to be

compromised [OWA18].

Insufficient Privacy Protection concerns the vulnerability that is present when there

is personal information from the user stored in the ecosystem or in the device that is used

insecurely, improperly, or without permission [OWA18].

InsecureDataTransfer andStorage is defined in [OWA18] as the “lack of encryption

or access control of sensitive data anywhere within the ecosystem, including at rest, in

transit, or during processing”.

Lack of Device Management is the lack of support, namely security support, on de

vices deployed in production including update management, asset management, systems

monitoring, secure decommissioning and response capabilities [OWA18].

Insecure Default Settings is when there are “devices or systems shipped with inse

cure default settings or lack the ability to make the system more secure by restricting

6

operators from modifying configurations.”, as per definition of OWASP [OWA18]. For

example, malware like Mirai tries to use default username and password combos to gain

access to systems and compromise them [FMCS20].

Lack of Physical Hardening or physical security weaknesses can allow an attacker

to access sensitive information that can help the attacker take control of the device in

the future [OWA18]. An example of this vulnerability is when USB ports allow access

to the device using features intended for configuration or maintenance. This can cause

unauthorized access to the device [FMCS20].

2.2.2 Main IoT Threats

In such a connected world, where everyday objects have the ability to collect and transmit

data through the Internet to make the everyday life easier, the danger of harmful or crit

ical security threats to materialize is imminent. To better contextualize this subject, the

definition of several threats, previously highlighted, and countermeasures are presented

bellow. Table 2.1, presented at the very end of this section, shows a summary of this in

formation also:

1. Brute Force (attack) is when an attacker tries to guess the user credentials by try

ing a significant number of different combinations. Some IoT devices come with

default user credentials which, if not changed, can provide an attacker with easy

access to the system. This attack can be prevented by using Intrusion Prevention

System (IPS) technology [RRPB19];

2. Buffer Overflow is when an attacker takes advantage of improperly used point

ers and memory management to gain access to information from or change the be

haviour of the system. Secure coding and pointer restriction can be used to stop

this kind of attack. Using virtualization for sandboxing is also a way to prevent this

attack [RRPB19];

3. BlueBorne attack explores a vulnerability present in devices that can communi

cate through Bluetooth and it can happen even if the device is not paired with the

attacker. Once exploited, this vulnerability allows the attacker to gain control of the

device. This attack can be countered by updating vulnerable systems [RRPB19];

4. Sybil attack is when an attacker creates malicious nodes or compromises legiti

mate ones in order to create a bottleneck or alternate pahts in the network to de

crease the performance of the overall system. The prevention of this attack can be

done through the implementation of node validation [RRPB19, DV17];

5. Injection Attack concerns the situation in which assailants use weaknesses in the

communication protocols, APIs or entry points to inject information into the net

work. A way to prevent this attack is by creating a defence mechanism as the one

described in [HEN+13, RRPB19, DV17];

6. Maninthemiddle (MITM) attack is the designation used to define attackers

7

that might manipulate or eavesdrop the traffic between devices. As an example, an

attacker might eavesdrop traffic between a smart device and the gateway by using

an Address Resolution Protocol (ARP) poisoning to redirect all traffic to his/her de

vice. This particular attack can be prevented by using a Semistate ARP cache table

[Dat18] [RRPB19] [DV17];

7. Domain Name System (DNS) poisoning is performed by poisoning the cache

ofDNS servers, which is responsible for the translation fromdomainnames to Internet

Protocol (IP) addresses and viceversa, in which case the attacker can redirect the

data from the device to a destination designed by himself (e.g., to perform eaves

dropping). The prevention of this attack is already possible via the utilization of

Domain Name System Security Extensions (DNSSEC) [RRPB19];

8. Replay attacks occur when the attacker analyses the traffic and keeps a copy of it

so that he/she can use it in a different context in order to control the device. This

attack can be prevented through encryption or message authentication [RRPB19];

9. Wormhole concerns the scenario in which two devices are placed in an IoT net

work (e.g., a network of sensors) so that network traffic is captured in one place and

sent to another, aiming to create performance issues and congestion of the network.

Bymonitoring the nodes of the system this attack can be prevented [RRPB19,DV17];

10. Structured Query Language (SQL) injection is the attack in which someone

can execute commands if the user input from the Web application is not properly

validated. This attack can lead to the gathering of all database information by a

malicious entity. To prevent this attack, input validation should be applied to the

Web application [RRPB19];

11. Command Injection, whose purpose is to execute arbitrary commands on the

host operating system via a compromised program. When an application sends

insecure usersupplied data (forms, cookies, Hypertext Transfer Protocol (HTTP)

headers, etc.) to a device shell, command injection attacks are possible [Zho]. Since

IoT devices are usually run under a Linux operating system they are susceptible to

this type of attack [ROC+20]. Such vulnerabilities could be mitigated by applying

input validation [ACSC20];

12. Code Injection occurs when an attacker physically injects malicious code into one

of the IoT nodes. With this attack, the perpetrator can gain total control of the sys

tem [DV17]. Once again, as the attacks presented above, this attack can be solved

by applying input validation into the system;

13. Log Injection Attack enables the alteration of the log files to the attacker benefit.

With log injection the attacker can cover the tracks of any cyber attack rendering the

logs useless for further investigation. It is also possible to inject malicious codes or

scripts with this type of attack [NSCC20]. The solution to this attack can be achieved

by encrypting the logs and saving them at the device level or at a trusted third party

or even by using a logs security scheme specific for IoT like the one proposed by

8

Noura et al. [NSCC20];

14. DistributedDenialofService (DDoS) attack is when an attacker depletes the

network by flooding the device with traffic. This can be achieved by compromising

a large number of computers forming a botnet and controlling them to flood the

network with requests. This attack can be prevented by the utilization of a Firewall

or through the implementation of SoftwareDefined Networking (SDN) [WZLH14,

RRPB19, DV17];

15. Weakauthentication iswhen an IoTdevice has aweak authentication systemand

the attackers can gain access to a said device by using brute force, in order to discover

the access credentials. This attack can be mitigated by using proper authentication

methods [RRPB19];

16. Malicious Applications are payloads that an attacker tries to push to devices so

that he can spread its control over to the IoTs connected to the infected system. To

prevent this type of attack the user should install an AntiVirus software [RRPB19];

17. CrossSite Request Forgery (CSRF) is an attack that takes place when an in

truder uses the Web browser of the victim to conduct an unauthorized activity on a

trustworthy website, without the knowledge or consent of the user. This attack takes

advantage of the confidence the user has on a particular website. This attack can be

mitigated through the usage of random tokens, using POST rather than GET (when

possible) and limiting the lifetime of authentication [SV11];

18. Format String Attack is when the application evaluates the submitted data of an

input string as a command. The attacker could then execute code, read the stack,

or trigger a segmentation fault in the running program, resulting in new behaviours

that could jeopardize the protection or stability of the system. The mitigation of

this attack can be done by creating the practice of writing secure code and treating

format functions vulnerable to this attack such as printf or fprintf [OWA];

19. Path/Directory Traversal is an attack thatmakes use of inadequate security vali

dation of input file names that include /. from the user. Malicious users will achieve

a directory jump in this scenario, allowing them to traverse to the parent directory

of the server. This attack will give the application access to files that the default priv

ilege does not allow [AYL+21]. This attack can be mitigated by doing validation of

the input provided by the user;

20. XSS is when the Web browser of the victim is used to execute a malicious script

by XSS. It essentially redirects the victim to another website, causing the victim to

engage in DDoS attacks or even stealing the session of the user. To mitigate this

attack it is needed to perform input validation [RKPR18].

9

Threats Countermeasures
Brute Force Intrusion Prevention System

Buffer Overflow
Secure Coding

Pointer Restrictions
Virtualization

BlueBorne Attack Updates
Sybil Attack Node Validation

Injection Attacks Defense Mechanisms [HEN+13]
ManintheMiddle Semistate Address Resolution Protocol cache table

Domain Name System poisoning Domain Name System Security Extensions
Replay Attack Encryption
Wormhole Monitoring the Nodes

Structured Query Language injection Input Validation
Command injection Input Validation

Code injection Input Validation
Log injection Encrypting Logs

Distributed DenialofService attack
Firewall

SoftwareDefined Networking
Weak Authentication Proper Authentication Methods
Malicious Applications AntiVirus

CrossSite Request Forgery
Random Tokens

Using Post
Limit lifetime of authentication

Format String Secure Coding
Directory Traversal Input Validation
Crosssite Scripting Input Validation

Table 2.1: Threats targeted to IoT and respective countermeasures [RRPB19, DV17, HEN+13, ROC+20,
Dat18, Zho, ACSC20, NSCC20, WZLH14, SV11, OWA, AYL+21, RKPR18].

2.3 Software Testing

Software Testing is the process of verification and validation that an application or pro

gram meets the business and technical requirements that guided its design and develop

ment. The process of testing ensures that the software is working as expected and it also

uncovers flaws or errors in the system [SPPS17]. Testing software is a very complex and

extensive task and it is divided into three levels of testing [JP16]: Unit Testing; Inte

gration Testing; System Testing.

Figure 2.1 contains a diagramwith all the testing levels and techniques approached in this

dissertation, which will be further discussed in the following sections.

2.3.1 Unit Testing

This type of testing is where the most basic parts of the system are tested. Inside this level

of testing, there are three main techniques [SM17]: (i) Black Box, also known as func

tional or specificationbased testing; (ii) White Box, a technique that derives test data

from the code; and (iii),GreyBox, a testing technique performedwith limited knowledge

of the code.

In the BlackBox method, the user can perform Equivalent Class Partitioning tests that

divide the input data into equal partitions so as to derive tests from each partition [Tute];

10

Figure 2.1: Diagram representing testing levels and techniques.

Boundary Testing is a technique in which boundary values are tested [Tutc] and Security

Testing, which is used to ensure that an information system protects data while maintain

ing functionality as expected [MAM09].

The White Box testing method, can utilize various types of testing such as: Statement

Coverage, in which all statements of the code are tested, Branch Coverage, which en

sures that all branches are tested at least once, Path Coverage, that consists of testing all

possible paths in the code [Tuti] and Condition Coverage, that is when all the boolean

conditions in the code are evaluated as both true and false [Tutd].

2.3.2 Integration Testing

After the completion of Unit testing, the units undergo the processes of integration that is

followed by Integration Testing, where the functioning between units is verified [Tutf].

Through this methodBig Bang Testing can be performed, a strategy where all units are

linked at once, resulting in a complete system [Tuta]; TopDown Testing can also be

performed in this method, it is used to simulate the behaviour of lowerlevel modules that

are not integrated yet, in order to test the higherlevel modules that are already imple

mented [Tuth]; finally, the BottomUp technique can also be used, in which the lower

components of the hierarchy are tested individually and the components that depend on

this lower modules are tested after [Tutb].

2.3.3 System Testing

Lastly, after the integration phase, the system is tested as a whole and the results evalu

ated in comparison to the requirements, this process is called System Testing [Tutg]. To

test all aspects of software, various types of testing were also introduced by Mustafa et.

al [MAM09]. Below, several types of testing are briefly described:

• Stress Testingwhich is used to evaluate a system when forced to go beyond limits

of the systems requirements, to determine the load under which it fails;

11

• Load Testing is conducted to evaluate the compliance of a system with the perfor

mance requirements that were specified;

• Regression Testing is performed to a system that was, previously, working cor

rectly but, after some changes, it stopped working as intended;

• FunctionalTesting this type of testing is applied to a fully complete and functional

system, so as to evaluate its conformity with the specific requirements;

• Performance Testing is the type of testing that evaluates the performance of the

system in various scenarios;

• Acceptance Testing involves running a set of tests to a complete system.

2.4 Security Testing and Software Development Life Cycle

Security Testing of a system is about trying to find all the potential system vulnerabilities

and weaknesses, that could result in a security breach. The primary goal of testing is to

keep your system free from any threats and vulnerabilities, so that the system cannot be

exploited, according to A. Kalwan [Kalb].

There are six types of Security Testing, namely:

• Vulnerability ScanningAn automated software scans the system against vulner

abilities that were identified. This scanning can be performed both Manually and

Automatically and it identifies the weaknesses in the network and system;

• Penetration Testing The kind of test that simulates an attack from a malicious

agent. The main objective of this type of testing is to check for potential vulnerabil

ities in case there is an external hacking attempt;

• Risk Assessment Analyzes the security risks observed in the organization. Risks

are categorized as Low, Medium and High;

• Security Auditing This is a kind of internal inspection of the application and op

erating system in order to check for security flaws;

• Ethical Hacking is the set of activities used to expose the flaws in the computer

systems (e.g., of an organization), in which hackers attempt to attack said systems;

• PostureAssessment combines security scanning, ethical hacking and risk assess

ments to represent the overall security of the organization.

The SoftwareDevelopment Life Cycle contains several phases in which security tests can/

should be performed. In the requirements phase, where the requirements for a specific

system are collected, it is important to do a Security analysis for requirements and check

ing for any sort of misuse cases. The design phase of software should include security

risks analysis for designing. In the coding and unit testing phase, the system should be

12

submitted to security tests by using the white box testing method. In the integration test

ing phase, security can be assured by performing black box testing. In the system testing

phase, it is important to again perform black box testing and vulnerability scanning to

guarantee security. Finally, in the deployment phase, it is important to conduct penetra

tion testing and vulnerability scanning along the time.

2.5 Conclusion

In this chapter, a small introduction to IoTwas given, followed by an explanation of the ar

chitecture used amongst this kind of devices and possible attacks they might be subjected

to. The topic of software testing, with a focus on Security Testing, was also introduced.

It can be concluded that, even though IoT systems are becoming more and more popular,

there are some risks associated with their use due to potential security flaws. To prevent

these flaws and increase system security and user confidence, it is essential that security

testing is implemented in every phase of the IoT system development life cycle.

The work presented in this chapter provides the basis for what is proposed later on in

terms of the recommendations regarding testing tools provided by the module imple

mented in Security Advising Modules (SAM).

13

14

Chapter 3

RelatedWork and Underlying Tools

3.1 Introduction

In this chapter, the state of the art regarding Software and Security testing will be pre

sented and discussed. This discussion, featured in section 3.2, is focused on three key

topics: ModelBased Testing, RequirementBased Testing and Test Automation. The re

search was conducted on these topics to guide the author in the process of developing the

proposed tool, since many different approaches could be taken at the initial phase of the

project. A review of the tools available to test IoT systems is also performed in section 3.3

including details on which system vulnerabilities each tools aims to test.

3.2 RelatedWork

This section will present the related work in three main topics: ModelBased Testing,

RequirementBased Testing and Test Automation. Each of the subsections included bel

low will contain the work of authors inserted in the respective topic along with a brief

description.

3.2.1 ModelBased Testing

In order to create a complete set of tests, a model of the environment is required. With

thismodel, it is possible to automatically generate a test suite with good coverage. Usually

the level of abstraction of these tests is intrinsically related to the level of abstraction of

the model itself.

In the work of Naveed [Nav17], the authors state the importance of validation, through

testing during the development process. The execution of tests consists on the creation of

test cases that are designed as a sequence of inputs. To generate the sequence of inputs

needed to test a system against the specifications, the authors propose a tool called TEA

GER that takes Unified Modelling Language (UML) models that are generated through

the Papyrus UML tool and, after being imported and executed, these models generate test

cases.

Two independent components are made available by the TEAGER tool: Test Case Gener

ator and Driver (TCGD) and State Machine Executor (SME). With TCGD, it is possible to

generate test cases so as to validate the specifications against the system under analysis.

With this tool, requirements, facts and assumptions are modelled, along with patterns

defined for the different state machines.

15

Matić et al. [MNA+19] focus on the topic of homeautomation. In this type of environment,

one of the greatest challenges are testing the product, since it is necessary to test the con

nection with a large number of devices of various manufacturers, due to the possibility

of interaction with multiple devices. In this paper, the authors modelled an endtoend

device and client components of an existing home automation IoT system. Their goal was

to test the cloud component of said system and verify the ensured high availability and

throughput.

The system was tested through simulations, due to the impossibility to manually set up

the realworld system. For this purpose, the authors created models of the gateway and

mobile application. The system was tested to verify if the desired number of gateways

could be connected within an acceptable period and if the system was still stable after

running for long periods.

Through this approach, theywere able to developmodelsmimicking the systembehaviour

and conduct a series of tests. By the use of these models, it was possible to verify the cor

rect implementation of some services while, also, detecting problems with other services.

Modelbased load tests enable the identification of the bottlenecks of the system ahead

of deployment to production, which represent a significant cost reduction compared to

finding and fixing issues after system release.

Mahmoodi et al. [MRV+18] proposed an approach to utilize Virtual Prototypes (VP) at

the system level to enable security evaluation during the design stage. The proposed tool

simulates both the hardware and the software of a single IoT device, allowing for the em

ulation of the attack surface, attack behaviour modelling and extensive system analysis.

The authors state that through the use of VPs, instead of physical prototypes, it is possible

to make tests in an early development phase, allowing to address the weak points during

the development phase, enabling the resolution of any weaknesses identified at this stage,

thereby supporting the Security by Design practice. The tool developed by Mahmoodi et

al. consists of a simulation framework, which is Cbased, modular, and reconfigurable.

It includes also a graphical front end to ease the usage of the system. It is also possible

to configure the VP to adjust the attack surface and protection goals. An injection mech

anism is also made available to the user.

To conclude, their work the authors state that with abstract simulation models, it is al

ready possible to detect unintended behaviour of a system in its early stages. They pro

posed a comprehensive framework that creates VPs and an injection tool that allows the

user to specify different attacks easily through Python expressions. This tool also allows

for themodification of the internal information to simulate an attack scenario without any

manual adaptation of the VP.

3.2.2 RequirementBased Testing

Requirementbased testing is a testing method in which test cases, data and conditions

are derived from requirements [EMB15]. This type of testing is very susceptible to hu

16

man error (since the requirements are produced by humans). To make this process both

easier andmore precise, a set of tools were developed to transform themanmade require

ments into more formal requirements. The devised tools are able to convert those formal

requirements into test cases, completely ready to be undertaken.

To facilitate the work of generating tests through requirements, minimizing cost while

maintaining quality, Freudenstein et al. [FJR+18] created Specmate, an opensource tool

that designs system tests from requirements, provides lightweight modelling techniques

to capture these requirements, test generation facilities to create test specifications, and

functions to derive test procedures or testscripts from specifications. Currently, Spec

mate supports two main workflows that can be applied to two different types of tests:

• The first workflow takes as input text requirements that describe a property that

the system must have and uses these requirements to create CauseEffectGraphs

(CEG). Secondly, it generates test specifications containing logical test cases derived

from the CEG and adapts the test cases to its objective. Finally, a testprocedure is

created for each logicaltestcase;

• The second workflow consists on designing endtoend tests based on business pro

cessmodels. This kind ofmodel describes an action taken to reach a goal in a system.

To design the endtoend test Specmate first uses amodelling language to collect the

business process modules and then generates test cases from the collected models.

A similar tool to the one previously discussed is presented in the work of [LMY+19], here a

toolchain called Analysis of Semantic Specifications and Efficient generation of Require

ments based Tests (ASSERT) was developed to formally capture requirements and to gen

erate a complete set of test cases that satisfy the DO187C standards.

The process of generating tests using the ASSERT tool begins with the Requirements Cap

ture Environment (RCE) that allows the users to write a set of requirements in a format

ted way. The requirements, once defined, are sent to the Requirements Analysis Engine

(RAE) to be analyzed and to eliminate conflicting aspects. Finally, using the Automated

Test Generation (ATG) tool, the set of requirements are converted to test cases. To com

ply with the DO187C standards the authors apply Satisfiability Modulo Theories (SMT)

solvers to generate an optimal set of test cases and procedures.

The authors state that with the ASSERT tool it is possible to formally capture the require

ments, that are translated to XML files, analyzed and a set of test cases is produced. Later,

these test cases are filtered, optimized and simplified to reduce the number of tests to

the minimum while still maintaining quality. This tool is already being used in several

projects and its use has resulted on a reduction of testing costs and an improved cycle

time.

Eo et al. [ECG+15] have proposed a Combinational Testing Framework (CTF) that com

bines different requirementbasedmethods in the generation of tests such as Equivalence

Class Partitioning (ECP), Boundary Value Analysis (BVA), Choice Relationship Frame

work (CRF) andPredicate Testing tominimize the number of tests and improve the overall

17

code coverage of the tests performed to a system.

The proposed framework operates through four steps: First, after an input domain of

the parameters is given the tool uses equivalence partitioning to generate subdomains.

The boundaries of each partition are identified. Then, the parameters must be prioritized

according to the requirements given by the user. Within this tool, high priority parameters

are those that interact with values from other parameters. These will be used in the choice

relation framework.

With all the equivalent classes identified, a choice relation table is constructed. In this

table, each parameter is treated as a category and each equivalent class as its choice. If any

incomplete test cases are generated unidimensional partitioning is applied to guarantee

that at least one value is coming from each partition.

After experimenting with this method in the automotive domain the authors were able

to efficiently reduce the final effective number of test cases by 42% to 88%. They were

also able to obtain improved code coverage by introducing this technique during earlier

phases of software development.

SCADE is a toolchain used by Aniculaesei et al. [AHDR18] in order to automate the

construction of test cases from requirements, formalized trough Linear Temporal Logic

(LTL), and mutant testing within this toolchain. In this work, the authors also imple

mented a language called SCADE LTL to integrate LTL in SCADE.

This systemundergoes a series of tasks before it completes the generation of requirement

based tests. Firstly, the requirements of the system under test are manually created fol

lowing the LTL. The models of the system are built using the SCADE SUITE and are

compliant with the requirements, therefore, satisfying the LTL obligations. After the con

struction of the system models, the tool uses Requirements Coverage (RC) to build the

trap proprieties of the correspondent LTL obligations in order to create traces.

A finitestate automaton is built from a given LTL obligation and the SCADE explores the

automaton to find violations of the obligations. Then, the test suite is applied to a set of

system mutants in order to execute the created test cases. After the evaluation of the test

suite generated in the scope of an Adapative Cruise Control System, the authors stated

that the generated test suite killed 80% of the system mutants.

3.2.3 Test Automation

Software testing is a very complex and extensive task, in order to achieve an efficient level

of testing it is necessary to have a good set of tests. Manual test generation requires a lot

of time and effort and it does not guarantee good coverage but this type of testing will

increase the expenses of software testing. To decrease the expenses of software testing

developing automated testing tools became of uttermost importance [VG16].

Swain et al. [SMM10] presents a comprehensive technique to generate tests from UML

models. In their approach test cases are derived from analysis artefacts such as use cases,

18

their corresponding sequence diagrams and constraints specified across all these arte

facts.

The tool proposedwas implemented in Java and it is calledComprehensiveTest (ComTest).

This tool takes UML use case and sequence diagrams converted to XML format. Then, it

parses the XML file constructing a virtual graph, finally, it generates test sequences. To

create test scripts with this tool the user needs to generate the systemmodel using a CASE

tool, likeMagicDraw, import the XMLmodel into ComTest and the generation of the tests

is executed.

This tool is divided into three modules: the XML parser which parses a file into XML

format; the handler which handles the parsed document in order to convert the extracted

UML elements into objects to be, logically, prepared into UML diagrams; the Test Case

generatorwhich transverses the graph developed by the handler and it generates test cases

as specified.

With this tool, the authors can construct Use Case Dependency Graph (UDG) from use

case diagrams and through sequence diagrams they can generate Concurrent Control Flow

Graph (CCFG) for test sequence generation. This tool can be used for integration and

system testing and the test cases generated are suitable for detecting object integration

and operation faults, synchronization and dependency of use cases.

In the work of Darmaillacq et al. [DRG08], the authors propose a formalization of the

requirements to generate abstract test generalizations from the formal rule. After the

generation of abstract tests, the tool also initializes the variables needed to run a concrete

test and executes the test and deliver a verdict.

The main functions made available by this tool are:

• Security Rule Formalization Function −→ Takes informal requirements and turns

them into a formal rule;

• Test Generation Function −→ Turns the formal rules into abstract tests;

• Variable Instantiating Function −→ Converts abstract tests into concrete tests;

• Test Execution Function −→ Using the concrete tests it delivers a verdict about the

conformance of the rule.

The authors state that it is not possible to fully automatize the process of generating and

executing requirementbased tests, specifically it is not possible to create a method to

automate tasks such as formalizing informal requirements or deriving functional infor

mation about the system under test. Due to this impossibility, the method proposed by

the authors is semiautomatic since some tasks need to be donemanually, such as security

rule formalization, tile production and system description.

After testing this tool in the domain of electronic mail, the authors state that it allowed

the uncovering of mistakes in the network setup that causes policy violations.

19

Gafurov et al. [GHM18] proposed a tool in which the test engineer implements the test

steps and these steps are automatically executed. The test steps are specified by a natural

language that is understandable by a nontechnical personwith domain knowledge so that

a test analyst, with no coding skills, can organize these automated steps combined with

test input to create an automated test case.

The architecture proposed in this article is divided into various layers:

• Test Implementation Layer −→ In this layer the Test Automation Engineer imple

ments step by step the test set. The automated test steps, alone, are not very mean

ingful so they are organized into automated test cases by the Test Automation En

gineer. There are two types of automated test cases: the template automated test

cases, created by the Test Automation Engineer, and the ordinary automated test

cases that are designed by a test analyst;

• Test Definition Layer−→ In this layer the test analyst is responsible for using the au

tomated test steps created in the previous layer to create new automated test cases;

• Test Execution Layer −→ The Test Analyst, in this layer, will arrange a set of Auto

mated Test Cases into test suites, execute them and analyze their outcome;

• Test Adaptation Layer −→ In this layer the Test Automation Engineer implements

the test interface at which the Automated Test Cases shall interact with the system

under test.

To test theirmethod, the authors used this system on a largeWeb application of electronic

health services inNorway (Helsenorge.no). They state that their solution enabledmoving

a part of the test automation tasks from a Test Automation Engineer to a Test Analyst with

domain knowledge. As of the writing of this article, Helsenorge has automated 193 test

cases and the efficiency ratio of the tool is 0.48.

In the work of Yatskiv et al. [YVY+19] a testingmethod based in Robotic Process Automa

tion (RPA) is presented. RPA is an approach to business workflow automation, in which

the program emulates user actions within the graphical user interface to achieve a result.

The authors enumerate some of the advantages of using RPA such as: not having the

necessity of changing the existing Information Technology (IT) to deploy the RPA,making

it very easy to implement this solution; the robots are available to work 24 hours a day and

make no errors while performing their tasks. RPAs are usually assigned with frequent

and repetitive tasks, tasks with extreme importance for the business, tasks that require

the processing of large quantities of data and tasks that can be turned into a set of strict

rules.

Usually, a RPA solution includes a process design environment to describe the rules and

procedures, the process execution environment, the managed environment to control all

the components, the process analysis environment and some additional components that

might be needed for a specific task.

20

Helsenorge.no

To test their method the authors compared a RPA tool named Work Fusion RPA Express

to a wellknown testing tool Selenium Web Driver. As a result, they observed that even

though the execution time between Selenium and the RPA is the same, the first tool does

not provide the possibility of data generation. One of the most important characteristics

in favour of the RPA is that the tests can be written without any code. However, it needs

more resources and might lead to bigger execution times when compared to Selenium.

Testing IoT is considered a very hard task due to their highly dynamic and heterogeneous

nature. The main difficulties in testing IoTs come from integration, fast autonomous re

sponses, triggering functionalities and operational optimization. In [VS20], it is studied

the use of commercial tools, namely Selenium, to test IoT systems and the efficiency of

said testing tools against these types of systems.

After some experimentswith an IoT systemdeveloped inNodeRed the authors concluded

that the use of commercial tools to test IoT is feasible, but some problems, such as high

data volumes and parallel transmission and processing of data, need to be addressed com

prehensively for complete integration.

In the work of Yadav et al. [YPAO20] IoTPEN, a penetration test framework for IoT is

introduced. This framework consists of a serverclient architecture and it is an endto

end, scalable, flexible and automatic penetration testing framework. The goal of this tool

is to discover all the ways an attacker can breach the system.

IoTPEN, while performing an examination takes into consideration the product version,

the product name and vendor, this information about the products and possible vulnera

bilities is stored in a National Vulnerability Database (NVD). The tool follows the simple

principle of plug and play for penetration testing, it is composed of different modules to

consider the heterogeneity of IoT systems, the user has the possibility to select themodule

that best fits the system under test and a personalized framework is created.

The tool developed in the scope of this article can be divided into independent micro

services capable of running their own:

• Pentesting setup installation−→ Since IoTPEN follows a serverclient architecture

and all the nodes and server are prepared to initiate testing to install this tool it is

only needed to apply a patch to all the nodes;

• Get current state information of each node −→ To communicate to the server IoT

PEN uses MQTT protocol. Each node uses a Extensible Markup Language (XML)

format to state its information, and said information gets collected by the server for

further automatic processing;

• Extract CPE from .xml file generated by Nmap−→ In this service the tool parses the

XML to extract all the information needed from the nodes and later generate CPE;

• PrePost condition generation for the reported vulnerabilities&Targetgraph gener

ation−→ after locating all the possible vulnerabilities in the previous step the system

finds the prerequisites and postconditions for eachreported vulnerability;

21

• Analysis of attackpaths & Recommendations−→ The tool generates recommenda

tions of all possible attack paths and optimization techniques for each target path.

In conclusion, the authors state that IoTPEN is a firstofitskind tool for automatic end

toend penetration framework for IoT. Most of its computation is done on cloud servers

and possible on the edge rather than in the IoT devices.

In this article, it is stated that one of the most challenging aspects in IoT is ensuring inter

operability between the system components. To guarantee this requirement conformance

and interoperability testing are required. Hwang et al. [HAS+20], have created a tool en

titled AUTOCONIoT that automatically executes conformance testing in a large number

of constrained IoT systems.

The tests are started by AUTOCONIoT by receiving as input control file with all the data

required to perform testing. It contains a type of the system under test, features inte

grated, information about the communication protocols to create a test connection, the

testing protocol, a list of test cases to execute, and serialization formats. If the test suite is

developed in a format not accepted by IoT the system converts the test suite into an IoT

supported format. Then, the test suite executes each case synchronously with the system.

With this tool, the authors claim to be able to assure interoperability of multiple imple

mentations, without setting up interoperability testing between each implementation in

dividually. Furthermore, byminimizing the number of errors and accelerate the IoTmar

ket by certifying IoT applications, AUTOCONIoT is expected to reduce costs and human

intercession.

3.3 Testing Tools

In this section, it will be presented the tools studied to apply to an IoT device with the

purpose to verify the correct implementation of security measures in order to avoid the

attacks mentioned in Section 2.2.2. Each tool will be inserted inside a specific category,

followed by a brief explanation of its functioning. A summarized version of these associ

ations can be observed in table 3.1, at the end of this section.

3.3.1 Password Cracking Tools

Cain & Abel is a tool that can be used to recover (or crack) a variety of passwords us

ing techniques such as network packet sniffing and password hash cracking [PJB+17].

This tool can be useful to test a system against Brute Force/ Weak Authentication, DNS

Spoofing/Poisoning and MITM attacks.

THC Hydra is a password cracking tool that can conduct very fast dictionary attacks

against over fifty protocols, includingHyperText Transfer Protocol Secure (HTTPS),HTTP

and File Transfer Protocol (FTP). It is a quick and stable network login hacking tool that

attempts different password and login combinations on a login page using a dictionary

22

or bruteforce attack [KMJ18]. It is possible to use this tool to test against Brute Force/

Weak Authentication.

John theRipper is a slow password cracker that was originally designed for Unix. How

ever, as time went by, it becamemore flexible, and it can now be used onWindows, Open

VMS, and macOS. Its main function is to identify weak Unix passwords. This tool is free

and can be used to perform both Brute Force and Dictionary attacks [KMJ18].

3.3.2 Binary Code Analyzers

OllyDbg is an x86 debugger for Windows that focus more on binary code analysis. It

traces registers, recognizes procedures, API calls, switches, tables, constants and strings,

as well as locates routines from object files and libraries [Oll]. This tool can be used to

identify Buffer Overflow attacks.

3.3.3 Penetration Testing Tools

Burp Suite is a software developed in Java by PortSwigger, to perform security tests

on Web applications. BurpSuite includes an intercepting proxy, a Web application spi

der, and a configurable Web application fuzzer among its testing tools. Participants use

the spider to map the features of the Web application, then use the intercepting proxy to

manually or programmatically observe and alterHTTP requests based on patterns applied

by a fuzzer [SWJ13]. This tool can be used to test against a set of vulnerabilities such as

Command Injection, CSRF, Path/Directory Traversal File, Reflected XSS, Stored XSS.

The OWASP Zed Attack Proxy (ZAP) is a simple integrated penetration testing tool

for detecting Web application vulnerabilities. It is designed to be used by people with a

wide range of security expertise, making it suitable for newcomers to penetration testing

such as developers and practical testers, as well as a valuable addition to the toolbox of

an experienced pentester [MK15]. CSRF, Path/Directory Traversal File, Reflected XSS,

Stored XSS are some of the vulnerabilities that can be identified by this tool.

3.3.4 Distributed Denial of Service Attack Tools

hping is a Transmission Control Protocol (TCP)/ IP packet assembler/analyzer with a

commandline interface based on the Unix command ping(8), but hping can do more

than just submit Internet ControlMessage Protocol (ICMP) echo requests. It has a tracer

oute mode, the ability to send files between covered channels, and many other features.

It supports TCP, User Datagram Protocol (UDP), ICMP and rawIP protocols [Kala]. This

tool can be used to simulate DDoS attacks.

HULK is a DDoS attack method that avoids detection by using UserAgent forging. It can

start 500 threads to sendhighvolumeHTTPGETFLOODrequests to the target [AAM20].

As stated above, this tool is useful to simulate DDoS attacks.

Goldeneye is a multithreaded attack tool that uses HTTP GET and POST requests to

23

initiate DDoS attacks. It does not have IP spoofing capabilities, but it works on all major

operating systems, including Windows, Linux, and macOS. This tool can also be used to

simulate DDoS attacks.

3.3.5 Network Protocol Analyzers

Wireshark is themost common andwidely used network protocol analyzer in the world.

It is the de facto goto tool for many commercial and nonprofit companies, government

departments, and educational institutions because it allows one to see what is happen

ing in the network in terms of traffic. The production of Wireshark thrives thanks to the

volunteer contributions of networking experts from all over the world [Wir]. This tool is

useful for testing several aspects of network communications.

3.3.6 Spoofing Tools

ARPspoof is a tool for tricking the computer of the victim into sending its traffic to the

machine of the attacker or another network gateway by sending false ARP messages to it

[O’R]. This tool can be useful to test against DNS poisoning vulnerabilities.

On the Local Area Network (LAN), DNSspoof forges responses to arbitrary DNS ad

dress/pointer queries. This can be used to get around hostnamebased access controls

and carry out several MITM attacks. This tool can be used to simulate a DNS poisoning

attack to test a system against this vulnerability.

3.3.7 ManInTheMiddle Attack Tools

Ettercap is an allinone solution for maninthemiddle attacks. It has live connection

sniffing, onthefly content filtering, and several other features related with this kind of

attacks. It can dissect many protocols both actively and passively, and it has a lot of fea

tures for network and host analysis [Ett]. DNS poisoning and MITM vulnerabilities can

be tested with this tool.

3.3.8 Network Traffic Replayers

Tcpreplay is a collection of free Open Source tools for editing and replaying network

traffic that has previously been captured and stored in a supported format. Originally

intended to replay malicious traffic patterns to Intrusion Detection/Prevention Systems,

it has undergone several changes, including the addition of the ability to replay to Web

servers [Tcp]. This tool can be used to test a system for replay vulnerabilities.

3.3.9 SQL Injection Tools

sqlmap is an opensource penetration testing tool that automates the process of detect

ing and exploiting SQL injection flaws and taking over database servers. It comes with a

powerful detection engine also. This tool is compatible with a large number of database

24

management systemsm namely: MySQL, Oracle, PostgreSQL, Microsoft SQL Server, Mi

crosoft Access, IBM DB2, SQLite, Firebird, Sybase, SAP MaxDB, Informix, MariaDB,

MemSQL, TiDB, CockroachDB, HSQLDB, H2, MonetDB, Apache Derby, Amazon Red

shift, Vertica, Mckoi, Presto, Altibase, MimerSQL, CrateDB, Greenplum, Drizzle, Apache

Ignite, Cubrid, InterSystems Cache, IRIS, eXtremeDB, FrontBase, Raima Database Man

ager, YugabyteDB and Virtuoso [GS].

The SQLi Dumper tool is a Windows tool that automates the process of detection and

exploitation of SQL Injection vulnerabilities. This tool is capable of performing from de

tection or identification of vulnerabilities to exploitation of said vulnerabilities, automat

ically.

3.3.10 Cryptographic Protocol Analyzers

A random/pseudorandom generator serving as the source for cryptographic applications

is a key aspect of secure software. If the used generator provides low entropy, the entire

cryptographic application integrity can be in danger of being compromised.

The tool developed by National Institute of Standards (NIST), entitled Statistical Test

Suite forRandomandPseudorandomNumberGenerators forCryptographic

Applications, can assess if a random/pseudorandom number generator is truly unpre

dictable by applying a total of 15 tests to prove randomness:

1. The Frequency (Monobit) Test that determines if the number of zeros in a se

quence is similar to the expected in a truly random sequence;

2. Frequency Test within a Block to verify if the frequency of ones in anMbit block

is roughlyM/2, as would be predicted under a randomness assumption;

3. The Runs Test to evaluate if the number of runs (uninterrupted sequence of iden

tical numbers) in a sequence is similar to the number of runs expected in a truly

random sequence;

4. Tests for the LongestRunofOnes in aBlock to test the longest run in a given

sequence against the longest run expected from a truly random sequence;

5. TheBinaryMatrix Rank Test to see whether the original fixed length substrings

of the sequence are linearly dependent;

6. TheDiscrete Fourier Transform(Spectral) Test to detect periodic features in

the checked series that would suggest a deviation from the principle of randomness;

7. TheNonoverlapping TemplateMatching Test to find generators that output

an excessive number of nonperiodic patterns;

8. The Overlapping Template Matching Test to test the number of occurrences

of prespecified target strings;

25

Category Tools
Password Cracking Tools Cain & Abel, THC Hydra, John the Ripper
Binary Code Analyzers OllyDbg
Penetration Testing Tools Burp Suite, OWASP ZAP
Distributed Denial of Service Attack Tools hping, HULK, Goldeneye
Network Protocol Analyzers ARPspoof, DNSspoof
ManInTheMiddle Attack Tools Ettercap
Network Traffic Replayers Tcpreplay
SQL Injection Tools sqlmap, SQLi Dumper

Cryptographic Protocol Analyzers
Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications, Proverif

Table 3.1: Correspondence between the studied tools and their categories.

9. Maurer’s “Universal Statistical” Test to verify if the given sequence can be

compressed without loss of information;

10. The Linear Complexity Test to determine if the sequence is complex enough to

be labelled as random;

11. TheSerial Test, whose objective is to see if the number of occurrences of the 2mm−
bit overlapping patterns is roughly equal to what would be expected from a random

sequence;

12. The Approximate Entropy Test to determine if the frequency of overlapping

blocks of two consecutive/adjacent lengths (m andm+1) is similar to the predicted

outcome of a random sequence;

13. The Cumulative Sums (Cusums) Test to compare the cumulative sum of the

partial sequences occurring in the tested sequence against the expected behaviour

of that cumulative sum for random sequences;

14. TheRandomExcursionsTest, whose objective is to see how the number of visits

to a specific state during a loop differs from that of a truly random sequence;

15. The RandomExcursions Variant Test aims to find out whether the number of

visits to different states in the random walk differs from what is predicted.

ProVerif is a wellknown formal verification tool that analyzes protocols written in the

applied picalculus using an extension with function symbols that can describe crypto

graphic operations. Internally, ProVerif transforms protocols into Horn clauses in clas

sical logic, which then resolves to obtain the validity of a cryptographic protocol [BAF08].

This tool can deal with a variety of cryptographic primitives, such as shared and public

key cryptography (encryption and signatures), hash functions, and DiffieHellman key

agreements, which canbedefined as rewrite rules or equations. The verifier produces false

attacks, butwhen it says that the protocol fulfils a property, the property is indeed fulfilled.

A wide range of protocols are terminated by the resolution algorithm under consideration

(the socalled “tagge” protocols). With this tool, it is possible to prove secrecy, authenti

cation, strong secrecy and equivalences between processes that differ only by terms [Bla].

26

It should be mentioned that ProVerif was studied in depth in the course of this project

and that efforts were made to provide useful examples for applying this tool along with

a recommendation to use it. This means that the tool presented later in this dissertation

provides examples when necessary.

3.4 Security Advising Modules Framework

SAM is the framework used to implement and display the module developed under the

scope of this dissertation with a service based architecture. This framework advises the

users about various aspects of security during the design phase of the systems. At the mo

ment of writing of this document, SAM includesmodules to advise users in the IoT, Cloud

andMobile environments. Most modules of SAM receive inputs in the form of answers to

questions related to system and software characteristics, though not necessarily related

with security, to then produce security related recommendations.

In simple words, the architecture of this framework can be divided into two parts: the

frontend and backend. The frontend is responsible for handling all the direct human in

teraction such as registration, login, account management, recommendations, etc., while

the backend is responsible for processing all the information collected in the frontend. It

is responsible for session management, module management, answer management, etc.

SAM was developed to be a modular framework, which means that the contributions to

this platform are classified as modules. For the IoT, environment there were three com

plete modules at the time, namely: a module for advising the user on security require

ments, one for advising best practices and one for suggesting lightweight cryptographic al

gorithms. During this project, another two modules were added to the framework, which

was also greatly improved along the time.

3.5 Conclusion

In this chapter, a review of the state of the art in Software Testing is presented, focusing in

ModelBased Testing, RequirementBased Testing and Test Automation. It was observed

that Software Testing, particularly Test Automation is a topic that has attracted the atten

tion of many researchers. The area of test automation is not yet being widely applied and

studied in the context of IoT which could be observed in the work of [VS20] by the incom

patibilities found while using popular commercial testing tools to evaluate IoT devices.

With IoT thriving and more security flaws being discovered every day, the study of test

automation is a critical research area and developments in this filed that would greatly

advance security.

It was also observed that the majority of the testing tools require the user to possess a

high level of expertise in security and testing. However, not all companies have a security

expert in their teams, which may lead to the release of systems without proper testing.

With the tool proposed in this dissertation, it will be possible for anyone to test their IoT

27

systems for security flaws, as long as they possess some level of domain knowledge. This

will result in the development of systems with far more quality and security. With this

tool, it will be possible to tackle the lack of knowledge of IoT compatible testing tools and

the need for security testing experts to develop and execute the tests.

28

Chapter 4

System Design, Implementation and
Demonstration

4.1 Introduction

In this chapter, the functional and nonfunctional requirements of the tools to be devel

oped in the scope of this dissertation are presented in section 4.2. This is followed by

an explanation of the proposed system design, in section 4.3. The tool developed in the

scope of this dissertation is presented in section 4.5. This tool was developed to be in

serted within a wider framework, SAM, which is also described in section 4.4, including

a description of the contributions of the author to the overall development of the frame

work. The chapter concludes in section 4.6, with an overview of the functionality of the

tool developed and its inclusion into the workflow of the framework.

4.2 Requirements

Themain objective of ACISM is to highlight potential attacks and suggest penetration tools

to simulate them, with the purpose of verifying if the securitymeasureswere implemented

correctly.

Regarding functional requirements, this tool uses as input the reports produced by the

Threat Modeling Solution (TMS) and Lightweight Cryptographic Algorithm Recommen

dation (LWCAR) modules. The proposed module needs to output a report, listing a set

of attacks the system is susceptible to accompanied by a set of IoT compatible tools that

can support testing system vulnerability to the suggested attacks. Each one of the recom

mended tools should, if possible, also be associated with a guide that shows how to use it

to simulate the attack with the tool in question.

Considering nonfunctional requirements, this module is to be developed in Python and

integrated within an existent framework that intendeds to aid the user into achieving a

secure design of IoT, cloud andmobile systems in various stages of the development. The

proposed module should follow a modular approach and maintain functionality even if

othermodules are added or updated. The tool produced should also be easy to understand

and apply in reallife scenarios.

29

4.3 System Design

The proposed solution will be part of a larger framework, entitled Security AdvisingMod

ules (SAM), and therefore will interact with the other included components. In this sec

tion, the relation between the proposed module and the modules available in SAM is ex

plained.

As figure 4.1 aims to demonstrate, the tool proposed is directly dependent on two other

modules: the LWCAR module, which outputs a list of lightweight cryptographic algo

rithms, taking into consideration the hardware and software specifications of the system

under development; and the TMS module, which outputs a list of threats that the system

might be vulnerable to. The latter was developed in parallel with the proposed tool. These

twomodules have somedependencieswhich should bementionedhere: the LWCARmod

ule is dependent on the Security Requirements Elicitation (SRE) module solely, while the

TMS module is dependent on both the SRE module (which outputs a list of security re

quirements) and the Security Best Practices (SBP) module(which produces a report with

good practices). These other modules were developed in the past, but also in the scope

of the S E C U R I o T E S I G N project. More information on these modules can be found in

the works of Samaila et al. [SSS+20, SLA+20].

Figure 4.1: Diagram illustrating the direct and indirect dependencies of the ACISMmodule.

4.4 Deploying Security Components using the SAMFrame

work

SAM is a framework developed using Flask and React under the S E C U R I o T E S I G N

project. It has the objective of advising users in the development of secure IoT, cloud and

mobile systems during the design phases of these systems.

SAM was developed to be servicebased. The architecture of this system, as it can be ob

served in figure 4.2, is divided into two distinct components: the frontend and the back

end. The frontend is where all the interactions with the user are captured. This compo

nent deals with registration, login, user account management, recommendation outputs,

etc. The backend is responsible for processing the information collected in the front

end. This component is where the services are located, such as the module management

30

Figure 4.2: Diagram depicting the architecture of the SAM framework.

service, the statistic management service, the question management service, etc.

SAM is amodular framework composed of a set ofmodules that advise the user in different

stages of the development of a system. At the time of writing this dissertation, and for the

IoT environment, this framework possesses: (i) a module that makes the elicitation of

security requirements; (ii) a module outputting good programming and implementation

practices; and (iii) one that recommends secure lightweight algorithms appropriate for

the type of system and hardware used.

In SAM, the modules, as we can see in figure 4.3, can be of two different types: regular

modules, which are composed of a set of questions and a set of several predefined an

swers that the user selects to obtain a specific report, while plugin modules have no direct

input from the user and instead use the answers provided by the user on other modules

(dependencies) to produce a report. Inside of what is defined as a traditional module,

there are two distinct categories: modules where each answer is associated with a specific

output, defined as static modules; and dynamic modules that are associated with a logic

file that processes the answers given by the user as a whole and produce the output.

The user needs to first have admin privileges to successfully insert a module into SAM.

After a successful login into the admin account, the user thenneeds to select the Resources
and then Modules tab. The respective interface will then be presented and, from there, the

user needs to click on the Add new module button. A popup, exactly like the one shown

in figure 4.4, will be shown to the user. To complete the insertion of the new module, the

user simply needs to fill in its name, the abbreviation of the name, the display name, and

then select what type of module it is. If themodule is a traditional module, the user needs

31

Figure 4.3: Diagram showing the representation of the different types of components present in SAM.

to click on the Add questions and answers button, and build the respective question

answer tree. On the one hand, if it is a static module, the association between each

answer and respective output must be defined by clicking on the Link recommendation
button. On the other, if the module is a plugin or a dynamic module, it is required to

associate a logic file by clicking on the Logicbutton. It is also possible to link dependencies
by clicking on the Link dependencies button and selecting them. Dependencies will be

mentioned below in this chapter.

The contributions of the author to this framework, besides the new module developed

as part of the research described in this dissertation, were the development of the SRE

module (as a project elaborated for the attainment of a bachelor’s degree in Computer

Science and Engineering), the adaptation of a module that focuses on outputting a guide

of security best practices for cloud andmobile devices towork on SAM, and the application

of several corrections and enhancements to stabilize the platform. The author was thus

one of the main developers of SAM.

4.5 Plugin Implementation Details

The tool developed during this dissertation, entitled Assessing Correct Integration of Se

curity Mechanismsmodule, is considered a plugin in the SAM framework since it has no

direct user input. To generate the output, this module uses the recommendations from

two other modules:

• ThreatModeling Solution (TMS) – the ACISMmodule was developed in paral

lel with the TMS module, developed by another Master’s student. TMS takes as de

pendencies the SRE module and the Security Best Practice Guidelines module and

it produces a set of possible vulnerabilities that the system in question can suffer

from;

• Lightweight Cryptographic Algorithm Recommendation (LWCAR) – in

this module, as previously mentioned, after the questionnaire, a set of Lightweight

32

Figure 4.4: Screenshot showing how a new module can be added to SAM.

CryptographicAlgorithms that should be applied to the systemare outputted [SSS+20],

which are also fed into ACISM.

To initiate the ACISMmodule the user simply needs to click on the button that says Let's
talk about Assessment of the Integration of Security when entering SAM. This

will trigger the Python script containing the logic of this module. With the recommen

dations from these two modules (TMS and LWCAR), ACISM can produce a report with a

list of potential attacks that the system is susceptible to, accompanied by tools that can be

used to simulate those attacks and a simple tutorial for the installation and use of each of

these simulation tools. With these tools, the tester can perform penetration tests to verify

if the system under development has correctly integrated the security mechanisms that

mitigate the vulnerabilities outputted by the TMS Module.

Each produced recommendation appears in the generated popup, specialized in present

ing the report. Each recommendation is composed by their respective name and a list of

the penetration tools suggested, as can be seen in figure 4.5. If the user wishes more in

formation about these tools and a brief tutorial for installation and usage, he/she needs to

click on the Read More button, which launches a markdown file with the referred content.

Simultaneously, the user will be prompted to download the reports produced. If the user

agrees, the main report will be converted to Portable Document Format (PDF). The re

port and all guide files will be then downloaded to the computer of the user. To make this

association, the logic will query the database that stores all the recommendations given in

one session, and collect all the names of the threats outputted after the completion of the

TMS module, so as to make a direct association between the threat name and an attack

that can be done by exploiting it. Furthermore, each attack will be associated with a set of

33

Figure 4.5: Screenshot with an example of a report produced by the ACISMmodule.

penetration tools compatible with the IoT environment.

To map the association between the answers and the provided report, it is required to im

plement a socalled logic file (implemented in python). Eventough each module is dif

ferent and tackles its own problem, there are functions common to every plugin, as shown

in listing 4.5: function get_dependency_recommendation returns a list of recommenda

tions of the last session for each one of the dependencies of the plugin in question; function

get_recommendation_id returns the database identifier associated with each given rec

ommendation; function get_recommendation_content returns, specifically, the name/

content of each recommendation.

Listing 4.1: Functions common to all plugins.

. . .

def get_dependency_recommendations (sess ion , dependency_number) :

. . .

def get_recommendation_id (recommendations , recommendation_name) :

. . .

def get_recommendation_content (recommendations) :

. . .

Regarding the code used to create the logic behind this module, listing 4.5 presents the

header (prototypes) of the function used to perform this task, along with some pseudo

code to exemplify the associations made in this logic file. As can be seen, a critical part of

this work was on researching the literature and stateoftheart and devising this map.

Listing 4.2: Header of the function specifically used in the ACISMmodule.

34

. . .

def get_recommendations (threats , c iphers) :

i f ” vu lne rab i l i t yX ” in th rea t s :

recommendations . append [” Test ing for a t tack x ”]

i f ” vu lne r ab i l i t yY ” in th rea t s :

recommendations . append [” Test ing for a t tack y ”]

. . .

This function receives as input all the information about the threats recommendedbyTMS

module to associate the vulnerability with the correct testing file and tools. It also receives

the output from the LWCAR module (ciphers) with the intention to use the lightweight

cryptographic algorithms recommended to output (if applicable) a specific ProVerif file

for each.

4.6 User Interaction and Flow

When the user successfully logs in into SAM, after filling the necessary fields with the

respective email and password (figure 4.6), they are presented with themodules available

on the platform. When choosing the ACISM module (figure 4.7) the system will verify if

the user has already completed the dependencies necessary. If the user has not answered

the LWCAR Module and the TMS Module, SAM will ask the user to first complete the

mentioned modules (figure 4.8). ACISM can only be executed once this prerequisite is

met.

The vulnerabilities inputted into this module logic were taken from Common Weakness

Enumeration and, when possible, the ACISM module will associate the vulnerabilities

with attacks and tools to simulate said attacks. The association between vulnerability and

attack was made with the use of the correspondence of said vulnerability and the attack

patterns associatedwith it in CommonAttack PatternEnumeration andClassification and

OWASP Attacks.

Correspondence between each testing file, vulnerability and recommended tools are pro

vided in table 4.1. For example, the vulnerability CWE79 – Improper Neutralization

of Input During Web Page Generation (’Crosssite Scripting’) is associated with XSS at

tacks; because of this, the tool will output two different recommendations, one for Re

flected XSS attacks and one for Stored XSS attacks. Each one of these recommendations

will describe the attack and suggest tools that aid in performing penetration tests of the at

tack. A brief and simple tutorial on how to use and install the recommended tools is also

presented. For both these attacks, the tools recommended are OWASP ZAP and Burp

Suite. On the other hand, the vulnerability CWE404 – Improper Resource Shutdown

or Release is directly associated with DenialofService (DoS)/DDoS and, in this case, the

tool will recommend the use of hping3, HULK, GoldenEye and Wireshark to be able to

35

https://cwe.mitre.org/
https://cwe.mitre.org/
https://capec.mitre.org/index.html
https://owasp.org/www-community/attacks/

Figure 4.6: Screenshot showing a user filling in the fields necessary to signin.

Figure 4.7: Screenshot showing a user selecting the ACISMmodule.

36

Figure 4.8: Screenshot exemplifying how the platform requests for the user to complete the dependencies of
the ACISMmodule before trying to execute it.

observe the traffic generated by the other tools. The vulnerability CWE269 – Improper

PrivilegeManagemen is associated with Access Control problems and it can lead to CSRF

attacks. For these reasons, the tool will recommend Testing the Access Control of the sys

temwith the OWASP ZAP scanner and test the system against CSRF attacks with OWASP

ZAP and Burp Suite. If the vulnerability CWE327 – Use of a Broken or Risky Cryp

tographic Algorithm is possible in the system under analysis, the tool will advise testing

the implementation of the cryptographic protocols. In this scenario, the module will sug

gest the use of the tool ProVerif, but since this is a formal cryptographic protocol verifier

and the user may not have the theoretical knowledge to implement correctly the proto

cols following the syntax specific to ProVerif, the ACISMmodule will check the suggested

lightweight cryptographic algorithms from the LWCAR module and it will, also, output

a ProVerif script that illustrates the type of protocols suggested such as HASH, MAC,

HMAC, etc.

Testing File CWE Identifier Recommended Tools

Testing the Access Control 269, 306, 1220, 1224,

1242, 1244, 1262, 1267,

1268, 1280, 1311, 1326

OWASP ZAP

Testing if Assumed

Immutable Data is Stored

in Writable Memory

1282 Manually

Testing Brute Force 287, 1220, 1224, 1244,

1273

Cain & Abel, THC Hydra,

John the Ripper

Testing Buffer Overflow 787, 119, 573, 170, 190 OllyDbg

Code Injection 74, 573, 416, 476, 913, 434,

469, 479, 502, 22, 94

Burp Suite

Code Signing 1326 Manually

Command Injection 74, 668, 476, 434,22, 78 Burp Suite, Manually

Assessment of Crypto

graphic Protocols

327 ProVerif

37

CSRF 668, 269, 306, 352, 732 OWASP ZAP, Burp Suite

CSV Injection 74 Manually

DDoS/DoS Attacks 668, 416, 476, 4040, 705,

913, 625, 502, 170, 252,

248, 400, 22

hping3, HULK, Golden

Eye, Wireshark

DNS Spoofing/Poisoning 441 Arpspoof & DNSspoof,

Cain & Abel, Ettercap,

Wireshark

Error Handling 544 Manually

Testing Expired Domain 287 Manually

Firewall Implementation Always Recommended Wafw00f

Firmware Cracking 1278 IoT Inspector, Binwalk,

QEMU, FIRMADYNE,

Firmware Analysis Toolkit

(FAT)

Forced Browsing 787, 732, 1242 Manually

Format String 119, 74, 668 Wfuzz, Manually

Testing for Hardware

Overheating

1338 Manually

Hardware Fault Injection 1319 Manually

Heartbleed bug 125 Openssl

Log Injection 74 Manually

Testing Man in the Middle

Attacks

287, 515, 522 Bettercap, Ettercap, Cain

& Abel

Testing Path Traversal 200, 668, 913, 434, 22 OWASP ZAP, Burp Suite

Testing Race Conditions 479, 1298 CHESS

Testing Random and

Pseudorandom Number

Generators for Crypto

graphic Applications

330 Statistical Test Suite for

Random and Pseudo

random Number Gener

ators for Cryptographic

Applications (NIST)

Testing Reflected/Stored

XSS

119, 74, 20, 125, 625, 79,

1242,

OWASP ZAP, Burp Suite

Remote File Inclusion 98 Manually

Replay Attack 330, 732 Tcpreplay, Wireshark

Avoid Incorrect Selection

of Fuse Values

1253 Manually

Shared Resource Manipu

lation

1331 OWASP ZAP

SQL Injection 119, 74, 20, 125, 611, 625,

89

sqlmap, SQLi Dumper,

Netsparker

38

Insecure Transport 200 Testssl, OWASP OSaft

Testing for Insecure Direct

Object References

862 Manually

XML external en

tity (XXE) Injection

20, 611 OWASP ZAP, Burp Suite

SEU Sensitivity 1261 Particle accelerator facil

ity, Chamber shielded for

radiation

Table 4.1: Correspondence between each vulnerability and the respective tests.

4.7 Conclusion

This chapter presented an analysis of the requirements that the module developed aims

to meet and introduced the highlevel system design. This chapter intends to provide the

user with a better understanding of the tool to be designed. The details of the implementa

tion of the ACISMmodule were presented and discussed. It contains a brief introduction

of the SAM platform (in which this module is inserted), followed by a brief explanation

of the ACISM module, its functioning and respective dependencies. Finally, an overview

of how the user interacts with the module was provided together with associations made

between each threat and respective output from the ACISMmodule.

39

40

Chapter 5

Testing and Module Validation

5.1 Introduction

In this chapter, the steps taken to test the developedmodule are described. The process of

deploying SAM in order tomake it accessible to the test subjects is described in section 5.2,

followed by the procedure used to test the platform in section 5.3, which is divided into

two phases: automatic tests on the platform (to guarantee that it is ready to be presented

to the public); and user tests. To conclude, the results of the user tests will be presented

and briefly discussed.

5.2 SAM Deployment

To facilitate the testing phase of the developed module, test subjects should have easy

access to ACISM without any kind of installation or setup needed. This is achieved by

hosting SAM in a server with a public domain.

A server was set up inside Universidade da Beira Interior (UBI). The server is running

CentOS at the time of writing of this dissertation. To deploy SAM, Nginx was required as

an HTTP server and thus the frontend was deployed on Nginx. The SAMAPI was first

deployed on gunicorn to handle the requests. To maintain the guincorn server running

in the background and automatically restarting, when needed, a custom purpose Linux

service was created. The service, described in a brief manner, defines the location of the

project and executes the command to start the server. Next, Nginx was configured to

redirect the request to the correct location. After the installation of this server, the only

steps left were configuring on which ports the server should be listening. The server was

set to always listen to port 80when receiving requests from the definedUniformResource

Locator (URL). If the server receives any request started with api/, then it should redirect
to port 81, from which the request would be further redirected to the gunicorn service.

The final step was to generate a valid X.509 certificate to provide HTTPS communication

to the users. To generate the certificate, certbot, one of the certificate generators approved

by Let’sencrypt, was used. SAM and all its functionalities can be accessed in https://
securiotesign.di.ubi.pt/.

41

https://securiotesign.di.ubi.pt/
https://securiotesign.di.ubi.pt/

5.3 Testing

This section presents the procedure taken to successfully validate the usefulness and cor

rect functioning of the SAM platform and the ACISM module. Firstly, the process of au

tomatically testing the modules of SAMwill be discussed. Afterwards, the presentation of

the opinions of the test subjects about the developed module will be included.

5.3.1 Automatic Testing

Before advancing to user testing, it was necessary to ensure that the systemhad no evident

(implementation) flaws in themodules to be tested. To guarantee the correct execution of

the implemented modules, automatic testing was performed using Selenium. The testing

was then divided amongst team members to be more efficient (the development team of

the platform had five teammembers at the time these experiments were performed), and

the modules tested by the author were the SRE and the SBP modules.

Selenium [Hug] is a portable framework that is used to achieve test automation of Web

Apps. In the context of this work, it was used to automate the testing of themodulesmade

available within SAM. To create a comprehensive set of tests, various scripts were created

to cover a wide combination of possible answers for each of the tested modules. Recall

that other modules of the security framework use a set of answers to specifically crafted

questions as inputs.

After several iterations and improvements, and once all of the executed tests were passed,

there were no errors found inside the modules and therefore the system was considered

ready for user testing.

5.3.2 User Testing

In order to guide the users through their experiencewhile testing tool, a PDF file, available

on Appendix A, with the descriptions of possible IoT scenarios was created and hosted on

the server (and provided to those users). The purpose of this file is for the user to choose

one of the available scenarios and use this scenario as guidance to follow through with the

completion of the modules. There were seven scenarios described in this document, one

for each big IoT application domain:

• Perishable Cargo and Transportation Monitoring – this example implies

that perishable goods and their transit methods are being monitored (in this spe

cific case, a truck). The system is made up of sensors that monitor the cargo in

terms of humidity, temperature and positioning, as well as an Onboard diagnos

tics (ODB) scanner that connects to the Electronic Control Unit (ECU) of the truck

and feeds data to the main sensors, as well as a variety of other sensors that monitor

most components, fluids, tire pressures, and GPS tracking. All of the truck sensors

will communicate with a hub via 4G technology, which will send all of the data to a

cloud service in realtime, where it will be analyzed and monitored by the enduser.

42

Bluetooth will be used to communicate between the sensors, ODB scanner, and hub.

The cargo sensors can immediately communicate their condition to the infrastruc

ture since each container has its own 4G connection, allowing cargo to bemonitored

at all times, even while in storage or changing modes of transportation;

• Optimization of Infrastructure and Energy Usage for Electric Vehicles

Home Charging – This scenario depicts the usage of IoT in an electric grid to en

sure that electric vehicle charging at individual houses does not put undue strain on

the power infrastructure. This will ensure that charging occurs primarily during pe

riods of low demand and, where possible, with the use of predominantly renewable

energy sources. This will result in increased efficiency, decreased total usage, and

reduce costs. Wall chargers will need to interact with the infrastructure, which will

include smart metering across the grid, from production to distribution and con

sumption, in order for this system to operate;

• Smart Lamp – These lamps need to be connected to the home wireless network,

and users can manage them by installing the software, creating an account, and

connecting their mobile phones to the same network. The router will function as

a bridge between the user and the lamp. The user issues orders to the lights via

the app, and these commands are delivered to a coordinator via wireless commu

nication. The coordinator decides which lights will be impacted by the command

and sends it to the appropriate lamps. This command is sent to the affected lights

through a microprocessor, which then performs the desired operation;

• Pacemaker withMobile Device Interface – This scenario depicts the employ

ment of a smart pacemaker in conjunction with a mobile interface that allows a user

to obtain heartrelated data. The communication will be done using an external de

vice that gathers information from the pacemaker when it is close by (near field) and

connects to a phone through Bluetooth. The user simply has to launch the app and

log in to view the information after it has been synchronized. Sensors on the pace

maker will collect data related with the health of the patient as well as the working

conditions of said device. Doctors will also be able to obtain information from the

patient through the app. Notifications may also be generated using WiFi technol

ogy to alert a local hospital if the condition of the user deteriorates;

• Smart Irrigation System – This scenario depicts a smart irrigation system that

is used in agriculture to conserve resources and increase crop quality. Sensing, pro

cessing, frontend, actuation, and persistence are the five components of this IoT

system. Several wireless nodes with soil moisture and temperature sensors make

up the sensing unit. A receiver node is serially linked to a Raspberry Pi to form the

processing unit. The Message Queuing Telemetry Transport (MQTT) communica

tion protocol is used to send data from the receiver to the gateway. To allow the user

to monitor data in realtime, a graphical Web interface and a mobile application are

created. The user is notified via a smartphone notification or through the Web in

terface when the moisture levels in the soil reach a specific threshold level. In order

43

to save water and energy, quick action may be made to regulate the engine. Finally,

the persistence unit stores data straight from the publisher and may be accessed

through the Web or a mobile app;

• Generic Smartwatch – This case portrays a smartwatch, which is one of themost

prevalent IoT devices. This gadget will connect through Bluetooth to the smart

phone of the user and will be linked with a specific app that the user will need to

download to his or her smartphone. The smartwatch will be able to receive user

relevant events, such as text messages, emails, or phone calls, after a successful

pairing. Any additional notifications may be activated to appear on the wristwatch

as well. It is also feasible for the user and the wristwatch to communicate, such as

answering calls, reading or responding to messages or emails;

• Smart Factory – This scenario depicts a smart factory that employs a variety of

technologies to cut costs, downtime, and waste. The factory floor is made up of

linked machinery and gadgets that allow data to flow between humans and ma

chines. One example is a plasticproducing machine with an integrated display that

is used to track temperature, air pressure, plastic consistency, and time spent work

ing. Even though this machine generates the data, it requires sensors to gather it.

These sensors are built into the machine itself, and their data is shown on the gad

gets. The gadgets previously mentioned are solely utilized to collect data from the

manufacturing floor. This data is transmitted to the Cloud or to owned servers,

where it is analyzed and used to offer the intelligence part of the smart factory.

It is critical to use Big Data Analytics on the server/Cloud to ensure cost savings,

downtime reduction, and waste minimization. Gates are used in the smart factory

to communicate across numerous equipment, gadgets, and sensors. It also contains

gateways that connect to the Internet and transfer data to the Cloud, when needed.

Starting from the scenarios described above, we presented SAM to 17 testers. Five of the

testers were employees of a company located in Fundão named Fruition, to whom SAM

was presented to obtain their feedback on this platform. To make the test subjects as

sessment of the tool easier to collect and analyze, a questionnaire was created in Google

Forms. This questionnaire had a total of five questions addressing the clarity of the re

ports, the adequacy of the tools, user awareness, helpfulness and the sense of utility of the

modules. None of the participants was a security specialist, and some of themwere under

graduation of masters students on computer science and engineering. Themajority of the

participants were men.

5.3.2.1 Results and Conclusions

The module ACISM was evaluated by 17 participants, all with some expertise in the field

of computer science. Each one of the participants answered to all five questions in the

form. Bellow, the results of that evaluation will be presented and discussed.

The first question addressing the ACISM module asked the user to evaluate the clarity

44

Figure 5.1: Bar chart representing the test results regarding the clarity of the tool.

Figure 5.2: Bar chart representing the test results regarding the adequacy of the tools recommended.

of the reports that it produces. The test subjects could evaluate this topic with a num

ber ranging from 1 (Extremely Unclear) to 7 (Extremely Clear). From the analysis of the

results presented in figure 5.1 it is possible to conclude that the majority of respondents

(71%) found the reports to be very clear or extremely clear, represented by 6 and 7 respec

tively. Only 6% of respondents found the reports not that clear.

The next question was focused on the adequacy of the recommended testing tools. Once

again, the users could evaluate this aspect in a scale ranging from 1 (Extremely Inade

quate) to 7 (Extremely Adequate). It can be concluded, namely by analysing figure 5.2,

that most of the test subjects (59%) found the recommendations to be adequate, repre

sented by the value 5 or very adequate, given by the value 6.

Next, the test subjects were asked about their awareness of the testing tools that were

recommended in their run of the module. In other words, they were asked if they knew

the recommended tools. The range of the evaluation was between 1 (Not Aware) and 7

(Extremely Aware). By observing the chart in figure 5.3, it can be stated that only 47% of

the test subjects knew well (defined by the value 5) or very well (value 6) those tools. This

means that almost half of the participants did not have knowledge of all the testing tools

outputted. In a reallife scenario, this means that those 47% could possibly miss some

45

threats to their systems due to incomplete security testing.

Figure 5.3: Bar chart representing the test results regarding the user awareness of the tools recommended.

The test subjects were then asked if they found the individual guides provided for each tool

to be helpful for the first interaction with the tool. The subjects were allowed to evaluate

this topic with values ranging from 1 (Not Helpful) to 7 (Extremely Helpful). Figure 5.4

summarizes the obtained results for this topics and it is possible to conclude that 71%

of the respondents found the guides to be very helpful or extremely helpful, respectively

represented by the values 6 and 7.

Figure 5.4: Bar chart representing the test results regarding the helpfulness of the individual guide provided
for each tool.

Finally, the users were asked to evaluate their perception of the utility of the module in

aiding through the testing phase of an IoT device (perception of utility of the tool). The

possible evaluations could range from 1 (Not Useful) to 7 (Extremely Useful). From the

perspective of the test subjects, and as shown in figure 5.5, it is possible to assert that 71%

of users found the module developed to be very or extremely useful to assist in the task of

security testing, represented bu the values 6 and 7 respectively.

46

Figure 5.5: Bar chart representing the test results regarding the utility of the module.

After interpreting the results of the questionnaire presented to the test subjects, it is pos

sible to conclude that the module is producing reports easy to understand, with suitable

tools. The test subjects also found that the individual guides were very useful as a first

introduction to the tools presented. Moreover, a large majority also found the module in

question to be very, represented by the value 6, or extremely useful, represented by the

value 7, in aiding the security test phase of an IoT device.

5.4 Conclusion

This chapter presents the steps taken in order to prepare SAM and the ACISM module

for user testing. Firstly, the platform was hosted in a server located inside UBI, to allow

for an easy access. Next, the various modules of the platform were automatically tested

using Selenium to be sure that the tool was behaving as expected. The platform and all the

modules worked as expected and, therefore, were considered to be ready for user testing.

Finally, the tool was tested by 17 users with computer science background. Specifically,

the users found the ACISM module capable of producing easy to understand reports, the

recommended testing tools were found to be adequate for the suggested tests, and the

individual guides provided with each recommendation were found to be very helpful. A

large majority of the test subjects has found the ACISM to be very or extremely useful for

aiding in security testing of IoT devices.

47

48

Chapter 6

Conclusion and Future Work

The final chapter of this dissertation will present the main conclusions of the work devel

oped. In section 6.2, some additional contributions made during the course of this dis

sertation will be described. Finally, section 6.3 will present the future work to be carried

out, in order to improve the tool developed in the scope of this dissertation.

6.1 Main Conclusions

The objective of the work presented in this dissertation was to research and develop a tool

that, according to the type of potential attacks that a systemmay suffer, generates a report

advising the user on which security tests are required and which tools can test the system

against a possible vulnerability. Chapter 2 provided the readers with some background

knowledge in the area of IoT, IoT vulnerabilities and testing. In chapter 3, some relevant

works in the area of testing were presented, followed by a set of tools used in security

testing. After this research, it was concluded that efforts are being made to automate the

tasks of testing but the majority of the existing tools require some level of knowledge in

testing. Since not every company has the possibility of hiring a security expert, a tool

that advised users on how to test their system for security flaws and what resources were

available to aid in that task was needed. This further motivated the development of the

ACISMmodule.

Chapter 4 presents the functional and nonfunctional requirements of the proposed tool,

followed by an overview of the system and its architecture. Next a brief explanation of

SAM, the platform in which the developed module was embedded. Within SAM, ACISM

is classified as a plugin module since it does not present the user with a questionnaire

and instead derives its inputs from answers submitted in other SAM modules. A brief

introduction to the ACISM module was provided including its dependencies: to produce

the report the ACISM module only needs to process the recommendations given by the

TMS module and the LWCAR module. The flow behind the interactions of the user with

this module and its dependencies was then presented.

Chapter 5 presents the steps taken to host SAM in a public server located in UBI. Af

terwards, the platform was tested using Selenium to verify if it was running as expected.

Since all the tests were successful, the tool and all the IoT modules it possessed were sub

jected to user testing. The tool was tested by 17 users with some experience in computer

science, and the results were very positive towards the developed module, as the majority

of the test subjects found the tool to be very or extremely useful in assisting security test

ing in the IoT domain. The remaining input collected from the test subjects was also very

49

positive and the detailed results are included in chapter 5.

In conclusion, and taking into account all that was presented above, it is possible to assert

that all the objectives proposed for this dissertation project were successfully achieved.

6.2 Contributions and Achievements

In this section, some extra contributions and achievements done in the scope of this dis

sertation are discussed.

6.2.1 Tool for Production of Test Values for Conditional Coverage Testing

Another important step in developing high quality software, besides guaranteeing secu

rity, is to assure that the system behaves as expected. If the code of the system is not

verified against the requirements proposed, errors may appear, causing the malfunction

ing of the system and displeasing its users. However, code checking is a very daunting and

timeconsuming task and, as such, the need for automation in this area is also of utmost

importance so as to produce quality software.

During this dissertation, a Python tool that analyzes the code of the user and searches

for the conditions in the code was also developed. This tool then analyzes each condition

and produces boundary values to test that condition. After the generation of test values

for each condition, the tool creates a Python file in which it will write the tests gener

ated in a syntax compatible with pytest. With this tool, the users will be able to perform

conditional coverage testing in their code and verify the compliance of the code to the

requirements established.

At the time of writting of this dissertation, this tool only has the capability of testing if
conditions and it supports generating values for int, float and strings. It also supports
the more common logical conditions such as: <, >, ==, !=, <=, >=. Specifically, for
strings it supports in, len(), .isdigit(), .isdecimal(), .isidentifier(), .is-
lower(), .isupper(), .isnumeric(), .isprintable(). After the generation of the

test files, the user can run the command pytest --verbose, pytest will automatically

test the conditionswith the values generated andwill produce a list of all the tests that have

been done with the respective results (PASSED, FAILED). Afterwards, the tester should

analyse the results produced and evaluate if the conditions are working as planned. Con

dition testing can be automated via the usage of this tool and, therefore, it saves time and

resources during the test phase of a system.

6.3 FutureWork

During the development and testing of this tool, several improvements that would make

this tool even more useful for developers were identified. For example, in response to

50

feedback from one of the test subjects (who noted that the guide files for each attack were

in PDF format instead ofmarkdown), all the guides should be converted to this format.

In the current version, the downloadable PDF report does not contain the same infor

mation included in the individual guides. These guides are also downloaded, and below

each recommendation the name of the corresponding file is presented. This means that

the user needs to manually find the file and open it to access the desired information. To

make this process a little easier, the content of each individual guide should be automati

cally inserted into the PDF file that contains the recommendations.

Finally, even though this module outputs tools for each attack the system could be sus

ceptible to, the installation and usage of the tools suggested is not automated. At the time

of writing of this document, the user needs to manually install each tool and follow the

usage guide to verify if the system under test is vulnerable to that specific threat. A signif

icant improvement to the SAMplatformwould be to develop themeans that automatically

installs and runs the exemplified tests using the suggested tools. These means would po

tentially comprise a new module that takes the output given by the ACISM module and

asks the user some extra information (e.g., about the system in which the tool is to be

installed).

51

52

Bibliography

[AAM20] E. A. Asonye, I. Anwuna, and S. M. Musa. Securing ZigBee IoT Network

Against HULK Distributed Denial of Service Attack. In 2020 IEEE 17th In

ternational Conference on Smart Communities: Improving Quality of Life

Using ICT, IoT and AI (HONET), pages 156–162, 2020. 23

[ACSC20] T. Alladi, V. Chamola, B. Sikdar, and K. R. Choo. Consumer IoT: Security Vul

nerability Case Studies and Solutions. IEEEConsumerElectronicsMagazine,

9(2):17–25, 2020. xix, 8, 10

[AHDR18] A. Aniculaesei, F. Howar, P. Denecke, and A. Rausch. Automated genera

tion of requirementsbased test cases for an adaptive cruise control system.

In 2018 IEEE Workshop on Validation, Analysis and Evolution of Software

Tests (VST), pages 11–15, 2018. ix, 18

[AYL+21] Y. An, F. R. Yu, J. Li, J. Chen, and V. C. M. Leung. Edge Intelligence (EI)

Enabled HTTP Anomaly Detection Framework for the Internet of Things

(IoT). IEEE Internet of Things Journal, 8(5):3554–3566, 2021. xix, 9, 10

[BAF08] B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected

equivalences for security protocols. The Journal of Logic and Algebraic Pro

gramming, 75(1):3–51, 2008. Algebraic Process Calculi. The First Twenty

Five Years and Beyond. III. Available from: https://www.sciencedirect.
com/science/article/pii/S1567832607000549. 26

[Bla] B. Blanchet. ProVerif: Cryptographic protocol verifier in the for

mal model. [Online] https://prosecco.gforge.inria.fr/personal/
bblanche/proverif/ [Cited 31 March 2021]. 26

[CL18] G. Chu and A. Lisitsa. Penetration Testing for Internet of Things and Its Au

tomation. In2018 IEEE20th International Conference onHighPerformance

Computing and Communications; IEEE 16th International Conference on

Smart City; IEEE 4th International Conference on Data Science and Sys

tems (HPCC/SmartCity/DSS), pages 1479–1484, 2018. 5

[Dat18] M. Data. The Defense Against ARP Spoofing Attack Using SemiStatic ARP

Cache Table. In 2018 International Conference on Sustainable Information

Engineering and Technology (SIET), pages 206–210, 2018. xix, 8, 10

[DRG08] V. Darmaillacq, J. Richier, and R. Groz. Test generation and execution for

security rules in temporal logic. In 2008 IEEE International Conference

on Software Testing Verification and ValidationWorkshop, pages 252–259,

2008. ix, 19

53

https://www.sciencedirect.com/science/article/pii/S1567832607000549
https://www.sciencedirect.com/science/article/pii/S1567832607000549
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/

[DV17] J. Deogirikar and A. Vidhate. Security attacks in IoT: A survey. In 2017 Inter

national Conference on ISMAC (IoT in Social, Mobile, Analytics and Cloud)

(ISMAC), pages 32–37, 2017. xix, 7, 8, 9, 10

[ECG+15] J. S. Eo, H. R. Choi, R. Gao, S. Lee, and W. E. Wong. Case Study of

RequirementsBased Test Case Generation on an Automotive Domain. In

2015 IEEE International Conference on Software Quality, Reliability and

Security Companion, pages 210–215, 2015. ix, 17

[EMB15] R. Elghondakly, S. Moussa, and N. Badr. Waterfall and agile requirements

based model for automated test cases generation. In 2015 IEEE Seventh In

ternational Conference on Intelligent Computing and Information Systems

(ICICIS), pages 607–612, 2015. 16

[Ett] Ettercap. Ettercap Home Page. [Online] https://www.ettercap-project.
org/index.html [Cited 10 March 2021]. 24

[FJR+18] D. Freudenstein, M. Junker, J. Radduenz, S. Eder, and B. Hauptmann. Au

tomated TestDesign from Requirements The Specmate Tool. In 2018

IEEE/ACM 5th International Workshop on Requirements Engineering and

Testing (RET), pages 5–8, 2018. ix, 17

[FMCS20] P. Ferrara, A. K. Mandal, A. Cortesi, and F. Spoto. Static analysis for dis

covering IoT vulnerabilities. In International Journal on Software Tools for

Technology Transfer, number 23, page 71–88, 2020. 7

[GHM18] D. Gafurov, A. E. Hurum, andM. Markman. Achieving Test Automation with

Testerswithout Coding Skills: An Industrial Report. In 2018 33rd IEEE/ACM

International Conference on Automated Software Engineering (ASE), pages

749–756, 2018. ix, 20

[GS] B. Damele A. G. and M. Stampar. sqlmap Automatic SQL injection and

database takeover tool. [Online] http://sqlmap.org/ [Cited 10March 2021].

25

[HAS+20] J. Hwang, A. Aziz, N. Sung, A. Ahmad, F. Le Gall, and J. Song. AUTOCON

IoT: Automated and Scalable Online Conformance Testing for IoT Applica

tions. IEEE Access, 8:43111–43121, 2020. ix, 22

[HEN+13] Y. Huang, M. Esmalifalak, H. Nguyen, R. Zheng, Z. Han, H. Li, and L. Song.

Bad data injection in smart grid: attack and defensemechanisms. IEEE Com

munications Magazine, 51(1):27–33, 2013. xix, 7, 10

[Hug] J. Huggins. Selenium. [Online] https://www.selenium.dev/ [Cited 17 July

2021]. 42

[JP16] P. M. Jacob and M. Prasanna. A Comparative analysis on Black box testing

strategies. In 2016 International Conference on Information Science (ICIS),

pages 1–6, 2016. ix, 10

54

https://www.ettercap-project.org/index.html
https://www.ettercap-project.org/index.html
http://sqlmap.org/
https://www.selenium.dev/

[Kala] KaliTools. hping3 Package Description. [Online] https://tools.kali.org/
information-gathering/hping3 [Cited 9 March 2021]. 23

[Kalb] A. Kalwan. What is Security Testing and how to perform it? [On

line] https://www.edureka.co/blog/what-is-security-testing/ [Cited

9 March 2021]. 12

[KMJ18] T. Kakarla, A. Mairaj, and A. Y. Javaid. A RealWorld Password Cracking

Demonstration Using Open Source Tools for Instructional Use. In 2018 IEEE

International Conference on Electro/Information Technology (EIT), pages

0387–0391, 2018. 23

[KSH20] N. M. Karie, N. M. Sahri, and P. HaskellDowland. IoT Threat Detection Ad

vances, Challenges and Future Directions. In 2020 Workshop on Emerging

Technologies for Security in IoT (ETSecIoT), pages 22–29, 2020. 5

[LCS+21] C. Lopes, J. C. Costa, J. B. F. Sequeiros, T. Simões, M. M. Freire, and P. R. M.

Inácio. Machine learning applied to security requirements elicitation: Learn

ing from experience. INForum, pages 0–12, 2021. 3

[LMY+19] M. Li, B. Meng, H. Yu, K. Siu, M. Durling, D. Russell, C. McMillan, M. Smith,

M. Stephens, and S. Thomson. Requirementsbased Automated Test Gener

ation for Safety Critical Software. In 2019 IEEE/AIAA 38th Digital Avionics

Systems Conference (DASC), pages 1–10, 2019. ix, 17

[Lue18] K. L. Lueth. State of the IoT 2018: Number of IoT devices now at 7B

– Market accelerating, 2018. [Online] https://iot-analytics.com/
state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b
[Cited 9 March 2021]. vii, 2

[MAM09] K.M.Mustafa, R. E. AlQutaish, andM. I.Muhairat. Classification of Software

Testing Tools Based on the Software Testing Methods. In 2009 Second In

ternational Conference on Computer and Electrical Engineering, volume 1,

pages 229–233, 2009. 11

[Mat20] K. Matthews. 4 Statistics That Reveal Major Prob

lems With IoT Security, 2020. [Online] https://
www.channels.theinnovationenterprise.com/articles/
4-statistics-that-reveal-major-problems-with-iot-security [Cited

9 March 2021]. vii, 1, 2

[MK15] Y. Makino and V. Klyuev. Evaluation of web vulnerability scanners. In 2015

IEEE 8th International Conference on Intelligent Data Acquisition and Ad

vanced Computing Systems: Technology and Applications (IDAACS), vol

ume 1, pages 399–402, 2015. 23

55

https://tools.kali.org/information-gathering/hping3
https://tools.kali.org/information-gathering/hping3
https://www.edureka.co/blog/what-is-security-testing/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b
https://www.channels.theinnovationenterprise.com/articles/4-statistics-that-reveal-major-problems-with-iot-security
https://www.channels.theinnovationenterprise.com/articles/4-statistics-that-reveal-major-problems-with-iot-security
https://www.channels.theinnovationenterprise.com/articles/4-statistics-that-reveal-major-problems-with-iot-security

[MNA+19] M. Matić, E. Nan, M. Antić, S. Ivanović, and R. Pavlović. ModelBased Load

Testing in the IoT System. In 2019 IEEE 9th International Conference on

Consumer Electronics (ICCEBerlin), pages 310–315, 2019. ix, 16

[MRV+18] Y. Mahmoodi, S. Reiter, A. Viehl, O. Bringmann, and W. Rosenstiel. Attack

Surface Modeling and Assessment for Penetration Testing of IoT System De

signs. In 2018 21st Euromicro Conference on Digital System Design (DSD),

pages 177–181, 2018. ix, 16

[Nav17] S. Naveed. Automatic validation of UML specifications based on UML envi

ronmentmodels. In 2017 4th IEEE International Conference on Engineering

Technologies and Applied Sciences (ICETAS), pages 1–6, 2017. ix, 15

[NSCC20] H. N. Noura, O. Salman, A. Chehab, and R. Couturier. DistLog: A distributed

logging scheme for IoT forensics. Ad Hoc Networks, 98:102061, 2020.

Available from: https://www.sciencedirect.com/science/article/pii/
S1570870519306997. xix, 8, 9, 10

[Oll] OllyDbg. Main Page. [Online] http://www.ollydbg.de/ [Cited 9 March

2021]. 23

[O’R] O’Reilly. ARPspoof. [Online] https://www.oreilly.
com/library/view/learn-kali-linux/9781789611809/
1bb735da-180c-4178-890f-b7026e8ea6ec.xhtml [Cited 10 March 2021].

24

[OWA] OWASP. Format string attack. [Online] https://owasp.org/
www-community/attacks/Format_string_attack [Cited 16 March 2021].

xix, 9, 10

[OWA18] OWASP. IoT Top 10, 2018. [Online] https://owasp.org/
www-project-internet-of-things/ [Cited 15 March 2021]. 6, 7

[PJB+17] S. Patil, A. Jangra, M. Bhale, A. Raina, and P. Kulkarni. Ethical hacking: The

need for cyber security. In 2017 IEEE International Conference on Power,

Control, Signals and Instrumentation Engineering (ICPCSI), pages 1602–

1606, 2017. 22

[RKPR18] S. Rizvi, A. Kurtz, J. Pfeffer, and M. Rizvi. Securing the Internet of Things

(IoT): A Security Taxonomy for IoT. In 2018 17th IEEE International Confer

ence On Trust, Security And Privacy In Computing And Communications/

12th IEEE International Conference On Big Data Science And Engineering

(TrustCom/BigDataSE), pages 163–168, 2018. xix, 9, 10

[ROC+20] S. Rizvi, RJ Orr, A. Cox, P. Ashokkumar, and M. R. Rizvi. Identifying

the attack surface for IoT network. Internet of Things, 9:100162, 2020.

Available from: https://www.sciencedirect.com/science/article/pii/
S2542660520300056. xix, 6, 8, 10

56

https://www.sciencedirect.com/science/article/pii/S1570870519306997
https://www.sciencedirect.com/science/article/pii/S1570870519306997
http://www.ollydbg.de/
https://www.oreilly.com/library/view/learn-kali-linux/9781789611809/1bb735da-180c-4178-890f-b7026e8ea6ec.xhtml
https://www.oreilly.com/library/view/learn-kali-linux/9781789611809/1bb735da-180c-4178-890f-b7026e8ea6ec.xhtml
https://www.oreilly.com/library/view/learn-kali-linux/9781789611809/1bb735da-180c-4178-890f-b7026e8ea6ec.xhtml
https://owasp.org/www-community/attacks/Format_string_attack
https://owasp.org/www-community/attacks/Format_string_attack
https://owasp.org/www-project-internet-of-things/
https://owasp.org/www-project-internet-of-things/
https://www.sciencedirect.com/science/article/pii/S2542660520300056
https://www.sciencedirect.com/science/article/pii/S2542660520300056

[RRPB19] G. Rajendran, R. S. Ragul Nivash, P. P. Parthy, and S. Balamurugan. Mod

ern security threats in the Internet of Things (IoT): Attacks and Countermea

sures. In 2019 International Carnahan Conference on Security Technology

(ICCST), pages 1–6, 2019. xix, 7, 8, 9, 10

[SJK17] S. N. Swamy, D. Jadhav, and N. Kulkarni. Security threats in the application

layer in IOT applications. In 2017 International Conference on ISMAC (IoT

in Social, Mobile, Analytics and Cloud) (ISMAC), pages 477–480, 2017. viii,

1, 5

[SLA+20] M. G. Samaila, C. Lopes, E. Aires, J. Sequeiros, T. Simões, M. Freire, and

P.R.M. Inácio. A preliminary evaluation of the sre and sbpg components of

the iotharpseca framework. In Global Internet of Things Summit, Endorsed

by IEEE Global IoT Summit GIoTS, pages –, June 2020. 30

[SM17] K. Sneha and G. M. Malle. Research on software testing techniques and soft

ware automation testing tools. In 2017 International Conference on Energy,

Communication, Data Analytics and Soft Computing (ICECDS), pages 77–

81, 2017. 10

[SMM10] Santosh Swain, Durga Mohapatra, and Rajib Mall. Test Case Generation

Based on Use case and Sequence Diagram. International Journal of Soft

ware Engineering, 3, 01 2010. ix, 18

[SPPS17] R. Silva, P. Perera, I. Perera, andK. Samarasinghe. EffectiveUse of Test Types

for Software Development. In 2017 Seventeenth International Conference on

Advances in ICT for Emerging Regions (ICTer), pages 1–6, 2017. viii, 10

[SSS+20] M. G Samaila, J. B. F. Sequeiros, T. Simões, M.M. Freire, and P. R. M. Inácio.

Iotharpseca: A framework and roadmap for secure design and development

of devices and applications in the iot space. IEEE Access, 8:16462–16494,

2020. 30, 33

[SV11] M. S. Siddiqui and D. Verma. Cross site request forgery: A common web

application weakness. In 2011 IEEE 3rd International Conference on Com

munication Software and Networks, pages 538–543, 2011. xix, 9, 10

[SWJ13] R. Scandariato, J. Walden, and W. Joosen. Static analysis versus penetration

testing: A controlled experiment. In 2013 IEEE 24th International Sympo

sium on Software Reliability Engineering (ISSRE), pages 451–460, 2013. 23

[Tcp] Tcpreplay. Tcpreplay Pcap editing and replaying utilities. [Online] https:
//tcpreplay.appneta.com/ [Cited 10 March 2021]. 24

[Tuta] TutorialsPoint. BigBang Testing. [Online] https://www.tutorialspoint.
com/software_testing_dictionary/big_bang_testing.htm [Cited 9

March 2021]. 11

57

https://tcpreplay.appneta.com/
https://tcpreplay.appneta.com/
https://www.tutorialspoint.com/software_testing_dictionary/big_bang_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/big_bang_testing.htm

[Tutb] TutorialsPoint. BottomUpTesting. [Online] https://www.tutorialspoint.
com/software_testing_dictionary/bottom_up_testing.htm [Cited 9

March 2021]. 11

[Tutc] TutorialsPoint. Boundary Testing. [Online] https://www.tutorialspoint.
com/software_testing_dictionary/boundary_testing.htm[Cited 9

March 2021]. 11

[Tutd] TutorialsPoint. Condition Coverage Testing. [Online] https:
//www.tutorialspoint.com/software_testing_dictionary/condition_
coverage_testing.htm [Cited 9 March 2021]. 11

[Tute] TutorialsPoint. Equivalence Partitioning Testing. [Online] https://
www.tutorialspoint.com/software_testing_dictionary/equivalence_
partitioning_testing.htm[Cited 9 March 2021]. 10

[Tutf] TutorialsPoint. Integration Testing. [Online] https://www.
tutorialspoint.com/software_testing_dictionary/integration_
testing.htm[Cited 9 March 2021]. 11

[Tutg] TutorialsPoint. System Testing. [Online] https://www.tutorialspoint.
com/software_testing_dictionary/system_testing.htm[Cited 9 March

2021]. 11

[Tuth] TutorialsPoint. Top Down Integration Testing. [Online] https:
//www.tutorialspoint.com/software_testing_dictionary/top_down_
integration_testing.htm [Cited 9 March 2021]. 11

[Tuti] TutorialsPoint. White box Testing. [Online] https://www.tutorialspoint.
com/software_testing_dictionary/white_box_testing.htm[Cited 9

March 2021]. 11

[VG16] Vishawjyoti and P. Gandhi. A survey on prospects of automated software test

case generation methods. In 2016 3rd International Conference on Com

puting for Sustainable Global Development (INDIACom), pages 3867–3871,

2016. 18

[VS20] N. Varghese and R. Sinha. Can Commercial Testing Automation Tools Work

for IoT? A Case Study of Selenium and NodeRed. In IECON 2020 The 46th

Annual Conference of the IEEE Industrial Electronics Society, pages 4519–

4524, 2020. ix, 21, 27

[Wir] Wireshark. AboutWireshark . [Online] https://www.wireshark.org/ [Cited
10 March 2021]. 24

[WZLH14] B.Wang, Y. Zheng, W. Lou, and Y. T. Hou. DDoS Attack Protection in the Era

of Cloud Computing and SoftwareDefined Networking. In 2014 IEEE 22nd

International Conference on Network Protocols, pages 624–629, 2014. xix,

9, 10

58

https://www.tutorialspoint.com/software_testing_dictionary/bottom_up_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/bottom_up_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/boundary_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/boundary_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/condition_coverage_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/condition_coverage_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/condition_coverage_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/equivalence_partitioning_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/equivalence_partitioning_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/equivalence_partitioning_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/integration_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/integration_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/integration_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/system_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/system_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/top_down_integration_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/top_down_integration_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/top_down_integration_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/white_box_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/white_box_testing.htm
https://www.wireshark.org/

[YPAO20] G. Yadav, K. Paul, A. Allakany, and K. Okamura. IoTPEN: A Penetration

Testing Framework for IoT. In 2020 International Conference on Informa

tion Networking (ICOIN), pages 196–201, 2020. ix, 21

[YVY+19] S. Yatskiv, I. Voytyuk, N. Yatskiv, O. Kushnir, Y. Trufanova, and V. Panasyuk.

ImprovedMethod of Software Automation Testing Based on the Robotic Pro

cess Automation Technology. In 2019 9th International Conference on Ad

vanced Computer Information Technologies (ACIT), pages 293–296, 2019.

ix, 20

[Zho] Weilin Zhong. Command Injection. [Online] https://owasp.org/
www-community/attacks/Command_Injection [Cited 16March 2021]. xix, 8,

10

59

https://owasp.org/www-community/attacks/Command_Injection
https://owasp.org/www-community/attacks/Command_Injection

60

Appendix A

Document Created to Guide the Test Subjects

This appendix contains the document presented to the test subjects in order to guide their

evaluation of SAM and the ACISMmodule. The document presents a detailed description

of each one of the scenarios proposed. All the scenarios are accompanied by a diagram to

better exemplify them. The contents of this appendix are briefly discussed in chapter 4.

61

Internet of Things Scenarios for Testing Proposes

S E C U R I o T E S I G N Team
Towards the assurance of SECURity by dESIGN of the Internet of Things

June 2021

This document aims to describe several security related scenarios to be tested
and demonstrated under the first alpha demonstration of the SAM platform. The
user is asked to choose one or more scenarios and subsequently run several of the
available SAM modules in order to achieve a desired set of security requirements,
best practices, or security related algorithms.

Scenarios List

1 Smart Transportation and Logistics 1

2 Smart Grids 3

3 Smart Environments 4

4 Healthcare 5

5 Agriculture and Environmental Monitoring 6

6 Smart Wearables 8

7 Smart Manufacturing 9

1 Smart Transportation and Logistics

Both the handling of logistics in moving cargo and monitoring of the trans-
portation means can have their efficiency improved with IoT. Either in terms of
locating either cargo or transport in real time, monitoring through IoT devices
can aid in reducing costs, increase time efficiency, prevent mechanical issues,
and predictive maintenance. The cargo itself, specially if sensitive, can also be
similarly monitored (e.g., temperature-sensible cargo, such as perishable goods).

1.1 Perishable Cargo and Transportation Monitoring

This example assumes the monitoring of perishable cargo and its transportation
means (in this specific case, a truck). The system is composed of sensors that

1

62

monitor the cargo, in terms of temperature, humidity, and positioning, while
the truck is equipped with an OBD scanner, that connects to the truck’s ECU
and feeds data on the main sensors, and an array of other sensors that moni-
tor most components, fluids, tire pressures, and also GPS tracking. All these
truck sensors will communicate with a hub that has a data connection, via 4G
technology, to report back all the data, in real time, to a cloud service, where
it will be analyzed and monitored by the end user. The connection between
the sensors, OBD scanner, and the hub will be made through Bluetooth. The
cargo sensors are able to directly report their status to the infrastructure: each
container has its own 4G connection, so that cargo can be continually monitored
even when in storage, or changing transportation means. Figure 1 schematizes
this system through components.

Some other more specific system characteristics:

• All system components should be able to detect if physical tampering is
attempted, e.g., if someone gains physical access to any of them, they
should not be able to access any information, or attack other components
from any information gained on that component;

• The system should always be available and have a nearly optimal uptime;

• Any captured transmitted data should not be possible to be re-sent;

• Unauthorized third parties should not be able to access the system nor
any of its communications and data;

• The system should automatically trigger warning if a deviation in the data
is registered (e.g., sudden tire pressure change, or temperature increase in
one of the cargo boxes).

Engine
Sensor

Data (OBD)

Tire
Sensors

4G Hub for
Truck

Sensors
Cargo with Embedded Sensors

Cloud Infrastructure
(Data Storage and Processing)

End User

4G Hub for
Cargo Sensors

Truck Statistics
(speed, mileage,

etc.)

Cargo with Embedded Sensors

Figure 1: Component Diagram of the cargo and transportation monitoring ex-
ample.

2

63

2 Smart Grids

Smart Grids pertain to the adaptation of IoT technologies to the electrical
power grid management and distribution, to make it more efficient and failure-
resistant. It can be applied in several points of the supply chain, from production
to transmission, distribution and consumption.

2.1 Optimization of Infrastructure and Energy Usage for
EV Home Charging

This scenario describes the use of IoT in an electric grid to ensure that EV
charging at individual homes is used in a way that it does not stress the power
grid to an unreasonable level. This will ensure that charging is mostly done
during the times of least consumption and, if possible, using mostly renewable
energy sources. EVs will also be used as temporary grid batteries, allowing
the system to discharge them to offset extra load on the grid. This will bring
better efficiency, lower overall consumption and reduce costs. For this system
to work, wall chargers will need to communicate with the infrastructure, which
will include smart metering in the entire grid, from production to distribution
and consumption. Aggregators will take care of metering the usage and total
available battery power, while load balancers will act as a medium between the
production and consumption elements of the grid.

Figure 2 exemplifies the architecture of the system that is comprised by
components.

Aggregator

Smart Meter Smart Meter Smart Meter

Smart Meter Smart Meter

Load Balancers

EV Charger

EV Charger

EV Charger

Figure 2: Component Diagram of the EV Home Charging Infrastructure exam-
ple.

3

64

3 Smart Environments

Home automation, or domotics, are other terms frequently used to describe the
automation and integration of IoT into common homes or offices. The premise
here is to automate most common attributes, such as lighting, climate or ap-
pliances. Some common examples that can already be found in most houses
include automated lighting control (either time sensitive, programmable, re-
motely accessible), climate control, energy spending control, air quality, smoke,
CO2 and other types of detectors and sensors, automated cleaning systems (e.g.,
vacuum robots), security and intrusion detection, automated blinders, or occu-
pancy detection (e.g., detecting if a division has occupants and automatically
turning the lights on or off). The great advantage of IoT in these scenarios is
that it gives users a fine control over their spaces, allowing for significant energy
savings, comfort in terms of remote access and task automation, and increasing
the livability and quality standards of that space.

3.1 Smart Lamp

This case is based on smart lamps that can be controlled by a smartphone
belonging to the user. These lamps will be connected to the home wireless net-
work, by downloading the app, creating an account, and connecting their mobile
phones to the same network, the users will have control over these devices. This
system its composed by the router, a coordinator, the lamps, and a smartphone.
The router will act as a mediator between the user and the lamp: the user emits
commands towards the lamps through the app, and these commands are sent
using wireless communication to a coordinator. The coordinator determines
which lamps will be affected by the command and will send the command to
the respective lamps. The impacted lamps receive this command through a mi-
croprocessor that will perform the intended action.

The following security requirements should be considered when developing
these systems:

• The users and their personal network information should be protected and
impossible to access. For example, if a perpetrator gains access to user
information, it will be able, based on the activity of the lamps (if they
are on or off), to know if the user is in his home or not. That is why this
confidentiality and privacy are a requirement in this type of systems;

• User data should not be modified by unauthorized persons. E.g., if the
users login password was changed by a unauthorized third party, the user
would lose the ability to control the smart lamp, which would invalidate
the system. By having integrity and accountability, this type of situations
could be prevented;

• Only authorized devices and users are allowed to access any information
on the network and control the lamps. Without this property, the lamps

4

65

could be controlled by anyone with good or bad intentions, and user data
could also be used in the same manner;

• The services of the smart lamps systems should be available to authorized
entities whenever needed. I.e., if a system update is required, the smart
lamp system should be always available to download and implement this
requirement. This way the user will always be able to have the best
software possible;

• Even if an attacker gains physical access into the home where the smart
lamps are installed, it should be improbable for the attacker to have access
to any meaningful data or to spread the attack to other components of
the system, and if the attacker tries to alter the system components, it
should be able to warn the user. With these requirements we assure that
even by gaining physical access to the system user privacy will always be
assured;

• The data sent to the system must always be the most recent data. In
other words, if the attacker tries to resend the same information to the
system, it should be able to detect that an old message is being sent.

Figure 3 presents the overall architecture of this system that is comprised
by components.

Figure 3: Component Diagram of a Smart Lamp.

4 Healthcare

Healthcare is an area where pervasive use of IoT systems can be of great use
to gather real-time data to aid in the decision process, or simply have medical

5

66

aiding devices that can be remotely adjusted. Here, sensors play a major role,
enabling paradigms such as telemedicine, by allowing remote monitoring of the
status of a given patient, or correct prescription compliance, besides providing
detection of events, enabling a faster response. Not only directly related to
patient health, but application of IoT in healthcare can also increase hospital
workflow and organization, reduce incidents to to wrong dosage or wrong patient
identification, and automate several care related tasks.

4.1 Pacemaker with Mobile Device Interface

This scenario describes the usage of smart pacemaker and a mobile interface
that enables a user to access heart-related data. The communication will be
accomplished through an external device that, when close to the pacemaker,
and connected to a phone via Bluetooth, collects information from it. Once the
information is synced, the user only needs to open the app and log in to access
it. The pacemaker will have sensors to collect data on the health state of the
patient, as well as its own status. The app will also enable doctors to access
information from the patient. Using Wi-Fi technology, notifications may also
be triggered to warn a nearby hospital if the state of a user reaches a critical
condition. This system is schematized in figure 4.

Figure 4: Component Diagram of a Smart Pacemaker.

5 Agriculture and Environmental Monitoring

IoT can bring several advantages when it comes to monitoring agricultural fields,
crops, forests or other agricultural related environments. Through them, and
with the aid of sensor arrays, it is possible, for agriculture, to, e.g., keep track

6

67

and monitor soil composition, humidity, temperature, or crop growth through a
video feed. Another area of agriculture where IoT can be useful is with livestock,
allowing to know the position of animals, their vitals and general health, and how
they behave over time periods. Environmental monitoring has some similarities
to agriculture, as it is done resorting to sensor arrays to monitor temperatures,
humidity, or soil changes.

5.1 Smart Irrigation System

This scenario exposes a smart irrigation system used in agriculture to save
resources and improve the quality of crops. This IoT system comprises five
units: sensing, processing, front-end, actuation, and persistence. The sensing
unit is composed of a number of wireless nodes integrating soil moisture and
temperature sensors. The processing unit consists of a receiver node serially
connected to a Raspberry Pi. Sensed data is sent from the receiver to the
gateway using the MQTT communication protocol. A graphical Web interface
and a mobile application are implemented to enable the user to monitor data in
real-time. When the moisture levels of the soil reach a certain threshold level,
the user is alerted via a mobile notification or through the Web interface. An
immediate action can be taken to control the motor in order to reduce water
and energy wastage. Finally, the persistence unit is used to store data directly
from the publisher and can also be accessed via the Web or mobile application.
This system is schematized in figure 5.

Figure 5: Component Diagram of a Smart Irrigation System.

7

68

6 Smart Wearables

Wearables are some of the most common IoT devices that users have had access
over the last years. From fitness trackers to smart watches, wearables are simple
devices that usually connect to a smartphone, and can incorporate several sen-
sors. These sensors may allow the user to measure exercise intake, health data,
and other related data. The information is later transmitted to the smartphone
and displayed to the user. Wearables are mainly powered by the Bluetooth pro-
tocol for communication, but most are also capable of operating independently,
having some processing capabilities. In some cases, these devices can also be
included in the healthcare category, as some of them gathered data from body
sensors (most commonly, heart rate).

6.1 A Generic Smartwatch

This case describes one of the most common IoT gadgets, a smartwatch. This
device will connect to the user’s phone through Bluetooth and will be paired
with a specific app that the user needs to download to his/her phone.

After a successful pairing, this device will be able to receive user-relevant
events, such as text messages, emails, or calls. Any other alerts can also be trig-
gered to be displayed on the smartwatch. An interaction between the user and
the smartwatch is also possible, for example, answer calls, reading or replying
to messages or emails. In several of these devices, Google’s assistant is included
to enrich the interaction between the user and the device through the means of
a built-in microphone and speaker. This system is schematized in figure 6.

Figure 6: Component Diagram of a Generic Smartwatch.

8

69

7 Smart Manufacturing

The Industrial Internet of Things (IIoT) refers to the use of IoT in industrial
applications, with the main purpose of increasing efficiency and reliability. It
incorporates different application areas, such as robotics, medical devices, or
production chains, and has a strong emphasis in M2M communication and big
data. It also integrates well with industrial control systems, SCADA, CPSs,
PLCSs and DCSs. It brings gains in productivity, improves maintenance costs
and scheduling, reduces downtime and overall improves the production efficiency
in industrial scenarios.

7.1 Smart Factory

This scenario describes a smart factory that uses multiple technologies to reduce
costs, down-times, and waste. The factory floor consists of multiple machines
and devices interconnected and facilitates data between people and machines.
One example is a machine with an integrated display that produces plastic,
used to monitor the temperature, air pressure, plastic consistency, and time
spent working. Although this machine provides this data, it requires sensors
to collect them. These sensors are directly embedded in the machine, and its
information is displayed on the devices.

The previously described devices are only used to acquire data from the fac-
tory floor. This information is sent to the Cloud or owned servers to be processed
and provide the intelligence associated with the smart factory. When on the
server/Cloud, it is essential to use Big Data Analytics to assure cost reduction,
downtime decrease, and waste minimization. The smart factory contains gate-
ways used to communicate between multiple machines, devices, and sensors. It
also has gateways that communicate with the Internet, that if necessary, sends
information to the Cloud. This system is schematized in figure 7.

Wifi

Wifi

Wifi

Internet
Cloud

Machine

Machine

Device

Ethernet

Ethernet

Ethernet

Smart Factory

Figure 7: Overview of Smart Factory Components.

9

70

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Scope and Motivation
	Problem Statement and Objectives
	Approach Taken to Achieve the Objectives
	Main Contributions
	Dissertation Outline

	Background and Main Concepts
	Introduction
	Internet of Things
	Vulnerabilities in IoT
	Main IoT Threats

	Software Testing
	Unit Testing
	Integration Testing
	System Testing

	Security Testing and Software Development Life Cycle
	Conclusion

	Related Work and Underlying Tools
	Introduction
	Related Work
	Model-Based Testing
	Requirement-Based Testing
	Test Automation

	Testing Tools
	Password Cracking Tools
	Binary Code Analyzers
	Penetration Testing Tools
	Distributed Denial of Service Attack Tools
	Network Protocol Analyzers
	Spoofing Tools
	Man-In-The-Middle Attack Tools
	Network Traffic Replayers
	SQL Injection Tools
	Cryptographic Protocol Analyzers

	Security Advising Modules Framework
	Conclusion

	System Design, Implementation and Demonstration
	Introduction
	Requirements
	System Design
	Deploying Security Components using the SAM Framework
	Plugin Implementation Details
	User Interaction and Flow
	Conclusion

	Testing and Module Validation
	Introduction
	SAM Deployment
	Testing
	Automatic Testing
	User Testing

	Conclusion

	Conclusion and Future Work
	Main Conclusions
	Contributions and Achievements
	Tool for Production of Test Values for Conditional Coverage Testing

	Future Work

	Bibliography
	Appendix Document Created to Guide the Test Subjects

