120 research outputs found

    Coalgebraic fixpoint logic:Expressivity and completeness results

    Get PDF
    This dissertation studies the expressivity and completeness of the coalgebraic μ-calculus. This logic is a coalgebraic generalization of the standard μ-calculus, which creates a uniform framework to study different modal fixpoint logics. Our main objective is to show that several important results, such as uniform interpolation, expressive completeness and axiomatic completeness of the standard μ-calculus can be generalized to the level of coalgebras. To achieve this goal we develop automata and game-theoretic tools to study properties of coalgebraic μ-calculus.In Chapter 3, we prove a uniform interpolation theorem for the coalgebraic μ-calculus. This theorem generalizes a result by D’Agostino and Hollenberg (2000) to a wider class of fixpoint logics including the monotone μ-calculus, which is the extension of monotone modal logic with fixpoint operators. In Chapter 4, we generalize the Janin-Walukiewicz theorem (1996), which states that the modal μ-calculus captures exactly the bisimulation invariant fragment of monadic second-order logic, to the level of coalgebras. We obtain a partly new proof of the Janin-Walukiewicz theorem, bisimulation invariance results for the bag functor (graded modal logic), and all exponential polynomial functors. We also derive a characterization theorem for the monotone modal μ-calculus, with respect to a natural monadic second-order language for monotone neighborhood models. In Chapter 5, we prove an axiomatic completeness result for the coalgebraic μ-calculus. Applying ideas from automata theory and coalgebra, we generalize Walukiewicz’ proof of completeness for the modal μ-calculus (2000) to the level of coalgebras. Our main contribution is to bring automata explicitly into the proof theory and distinguish two key aspects of the coalgebraic μ-calculus (and the standard μ-calculus): the one-step dynamic encoded in the semantics of the modal operators, and the combinatorics involved in dealing with nested fixpoints. We provide a generalization of Walukiewicz’ main technical result, which states that every formula of the modal μ-calculus provably implies the translation of a disjunctive automaton, to the level of coalgebras. From this the completeness theorem is almost immediate

    Coalgebraic fixpoint logic:Expressivity and completeness results

    Get PDF
    This dissertation studies the expressivity and completeness of the coalgebraic μ-calculus. This logic is a coalgebraic generalization of the standard μ-calculus, which creates a uniform framework to study different modal fixpoint logics. Our main objective is to show that several important results, such as uniform interpolation, expressive completeness and axiomatic completeness of the standard μ-calculus can be generalized to the level of coalgebras. To achieve this goal we develop automata and game-theoretic tools to study properties of coalgebraic μ-calculus.In Chapter 3, we prove a uniform interpolation theorem for the coalgebraic μ-calculus. This theorem generalizes a result by D’Agostino and Hollenberg (2000) to a wider class of fixpoint logics including the monotone μ-calculus, which is the extension of monotone modal logic with fixpoint operators. In Chapter 4, we generalize the Janin-Walukiewicz theorem (1996), which states that the modal μ-calculus captures exactly the bisimulation invariant fragment of monadic second-order logic, to the level of coalgebras. We obtain a partly new proof of the Janin-Walukiewicz theorem, bisimulation invariance results for the bag functor (graded modal logic), and all exponential polynomial functors. We also derive a characterization theorem for the monotone modal μ-calculus, with respect to a natural monadic second-order language for monotone neighborhood models. In Chapter 5, we prove an axiomatic completeness result for the coalgebraic μ-calculus. Applying ideas from automata theory and coalgebra, we generalize Walukiewicz’ proof of completeness for the modal μ-calculus (2000) to the level of coalgebras. Our main contribution is to bring automata explicitly into the proof theory and distinguish two key aspects of the coalgebraic μ-calculus (and the standard μ-calculus): the one-step dynamic encoded in the semantics of the modal operators, and the combinatorics involved in dealing with nested fixpoints. We provide a generalization of Walukiewicz’ main technical result, which states that every formula of the modal μ-calculus provably implies the translation of a disjunctive automaton, to the level of coalgebras. From this the completeness theorem is almost immediate

    Lyndon interpolation for modal μ-calculus

    Get PDF

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL

    Get PDF
    The uniform interpolation property in a given logic can be understood as the definability of propositional quantifiers. We mechanise the computation of these quantifiers and prove correctness in the Coq proof assistant for three modal logics, namely: (1) the modal logic K, for which a pen-and-paper proof exists; (2) Gödel-Löb logic GL, for which our formalisation clarifies an important point in an existing, but incomplete, sequent-style proof; and (3) intuitionistic strong Löb logic iSL, for which this is the first proof-theoretic construction of uniform interpolants. Our work also yields verified programs that allow one to compute the propositional quantifiers on any formula in this logic

    Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL

    Get PDF
    The uniform interpolation property in a given logic can be understood as the definability of propositional quantifiers. We mechanise the computation of these quantifiers and prove correctness in the Coq proof assistant for three modal logics, namely: (1) the modal logic K, for which a pen-and-paper proof exists; (2) Gödel-Löb logic GL, for which our formalisation clarifies an important point in an existing, but incomplete, sequent-style proof; and (3) intuitionistic strong Löb logic iSL, for which this is the first proof-theoretic construction of uniform interpolants. Our work also yields verified programs that allow one to compute the propositional quantifiers on any formula in this logic

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 24th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 28 regular papers presented in this volume were carefully reviewed and selected from 88 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems

    Model theory of monadic predicate logic with the infinity quantifier

    Get PDF
    This paper establishes model-theoretic properties of ME∞, a variation of monadic first-order logic that features the generalised quantifier ∃ ∞ (‘there are infinitely many’). We will also prove analogous versions of these results in the simpler setting of monadic first-order logic with and without equality (ME and M, respectively). For each logic L∈ { M, ME, ME∞} we will show the following. We provide syntactically defined fragments of L characterising four different semantic properties of L-sentences: (1) being monotone and (2) (Scott) continuous in a given set of monadic predicates; (3) having truth preserved under taking submodels or (4) being truth invariant under taking quotients. In each case, we produce an effectively defined map that translates an arbitrary sentence φ to a sentence φp belonging to the corresponding syntactic fragment, with the property that φ is equivalent to φp precisely when it has the associated semantic property. As a corollary of our developments, we obtain that the four semantic properties above are decidable for L-sentences
    • …
    corecore