Coalgebraic fixpoint logic:Expressivity and completeness results

Abstract

This dissertation studies the expressivity and completeness of the coalgebraic μ-calculus. This logic is a coalgebraic generalization of the standard μ-calculus, which creates a uniform framework to study different modal fixpoint logics. Our main objective is to show that several important results, such as uniform interpolation, expressive completeness and axiomatic completeness of the standard μ-calculus can be generalized to the level of coalgebras. To achieve this goal we develop automata and game-theoretic tools to study properties of coalgebraic μ-calculus.In Chapter 3, we prove a uniform interpolation theorem for the coalgebraic μ-calculus. This theorem generalizes a result by D’Agostino and Hollenberg (2000) to a wider class of fixpoint logics including the monotone μ-calculus, which is the extension of monotone modal logic with fixpoint operators. In Chapter 4, we generalize the Janin-Walukiewicz theorem (1996), which states that the modal μ-calculus captures exactly the bisimulation invariant fragment of monadic second-order logic, to the level of coalgebras. We obtain a partly new proof of the Janin-Walukiewicz theorem, bisimulation invariance results for the bag functor (graded modal logic), and all exponential polynomial functors. We also derive a characterization theorem for the monotone modal μ-calculus, with respect to a natural monadic second-order language for monotone neighborhood models. In Chapter 5, we prove an axiomatic completeness result for the coalgebraic μ-calculus. Applying ideas from automata theory and coalgebra, we generalize Walukiewicz’ proof of completeness for the modal μ-calculus (2000) to the level of coalgebras. Our main contribution is to bring automata explicitly into the proof theory and distinguish two key aspects of the coalgebraic μ-calculus (and the standard μ-calculus): the one-step dynamic encoded in the semantics of the modal operators, and the combinatorics involved in dealing with nested fixpoints. We provide a generalization of Walukiewicz’ main technical result, which states that every formula of the modal μ-calculus provably implies the translation of a disjunctive automaton, to the level of coalgebras. From this the completeness theorem is almost immediate

    Similar works