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PDL Inside the µ-calculus: A Syntactic and an
Automata-theoretic Characterization

Facundo Carreiro 1 Yde Venema 2

Institute for Logic, Language and Computation
Universiteit van Amsterdam, The Netherlands

Abstract

It is well known that Propositional Dynamic Logic (PDL) can be seen as a fragment
of the modal µ-calculus. In this paper we provide an exact syntactic characterization
of the fragments of the µ-calculus that correspond to PDL and to test-free PDL.
In addition we give automata-theoretic characterizations for PDL, with and without
tests, which shed light on the relation between these logics and the modal µ-calculus
and provide a new framework for the development of the theory of PDL.

Keywords: propositional dynamic logic, automata theory, modal µ-calculus.

1 Introduction

The language now called Propositional Dynamic Logic was first investigated by
Fisher and Ladner [3] as a logic to reason about computer program execution.
PDL extends the basic modal logic with an infinite collection of diamonds 〈π〉
where the intended intuitive interpretation of 〈π〉ϕ is that “some terminating
execution of the program π from the current state leads to a state satisfying ϕ”.

The inductive structure of programs is made explicit in PDL’s syntax, as
complex programs are built out of atomic programs using four program con-
structors. Formally, the formulas of full PDL are given by a mutual induction:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ
π ::= d | π;π | π ⊕ π | π∗ | ϕ?

where p is a proposition letter and d is an atomic action (or atomic program).
Test-free PDL is a variant of full PDL excluding use of the test operator (?).

One of the most important and characteristic features of PDL is that the
program construction π∗ (corresponding to iteration) endows PDL with second-
order capabilities while still keeping it computationally well-behaved. For an
extensive treatment of PDL we refer the reader to [7].

1 E-mail: fcarreiro@dc.uba.ar
2 E-mail: y.venema@uva.nl
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Modal µ-calculus. The modal µ-calculus (µML) was introduced in its
present form by Dexter Kozen [10]. It is highly expressive, corresponding to the
bisimulation-invariant fragment of monadic second-order logic [9]. The modal
µ-calculus is a very expressive language, subsuming a vast amount of dynamic
and temporal logics such as PDL, CTL∗ and Game Logic. Yet µML is com-
putationally well-behaved, and enjoys some excellent meta-logical properties,
such as uniform interpolation [2].

The language of the modal µ-calculus on a set of propositions P and atomic
actions D is given by the following grammar:

ϕ ::= q | ¬ϕ | ϕ ∨ ϕ | 〈d〉ϕ | µp.ϕ

where p, q ∈ P, d ∈ D and p is positive in ϕ (i.e., all occurrences of p are under
an even number of negations).

The semantics of this language is completely standard. Observe that, given
a Kripke model S and a formula ϕ with p free, the extension JϕKS of ϕ in S
depends on the set of points where p holds. This dependence can be formalized
as a map ϕS

p : ℘(S) → ℘(S). The semantics of the least fixpoint operator is

then given by interpreting Jµp.ϕKS as the least fixpoint of ϕS
p.

Relative expressive power. It is well known that PDL can be translated to
µML. However, to the best of our knowledge the exact fragment of µML that
corresponds to PDL has not been characterized. As we will see in this article,
the key notion leading to such a characterization is that of complete additivity.
A formula ϕ is said to be completely p-additive if for any family of subsets
{Pi}i ∈ I with Pi ⊆ S it satisfies

ϕS
p(
⋃
i

Pi) =
⋃
i

ϕS
p(Pi). (1)

An equivalent characterization of complete additivity is the requirement
that ϕS

p(P ) =
⋃
t∈P ϕ

S
p({t}), which implies that if ϕ is completely p-additive

and true at a point s in a Kripke model, it will remain so if we restrict the
valuation of p to a singleton. Complete additivity has been studied (under
the name ‘continuity’) by van Benthem [15], in the context of operations on
relations that are safe for (that is, preserve) bisimulations. Hollenberg [8]
linked the notion to the syntax of PDL, showing that any completely p-additive
formula in µML can be equivalently rewritten as 〈π〉p, where π belongs to the
set of so-called µ-programs, which extend PDL-programs by admitting tests of
arbitrary formulas in µML.

Fontaine and Venema [4,5] gave a different syntactic characterization of
complete additivity. One of our two main contributions builds on this work, by
showing that PDL exactly corresponds to the fragment µcaML of µML where
the fixpoint operator µx.ϕ is restricted to formulas ϕ which belong to this
syntactic fragment characterizing completely p-additivity. Similarly, test-free
PDL corresponds to a smaller fragment µrcaML of µML.
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Automata characterizations for µ-calculus and PDL. It is difficult to
overstress the importance of automata-theoretic techniques in the theory of the
µ-calculus: many of the fundamental results on µML are proved by means of
the so-called µ-automata introduced by Janin and Walukiewicz [9].

In the case of PDL, the first automata-based result was by Streett [13,14]
who translated PDL (with additional looping and converse operators) to de-
terministic two-way automata on infinite trees, and obtained decidability for
the satisfiability problem. Vardi and Wolper [17] proved that PDL can be
translated to Büchi (tree) automata, thus obtaining sharper complexity re-
sults. Muller et al. [12] showed that many dynamic and temporal logics can be
uniformly represented using so-called weak alternating automata.

While the mentioned papers use translations of PDL-formulas to some kind
of automata, none of them provides a precise automata-theoretic characteri-
zation of PDL. That is, the classes of automata under consideration contain
automata that do not correspond to an equivalent PDL formula. The second
main contribution of our article is to define two classes of alternating parity
automata which exactly correspond, respectively, to PDL and its test-free vari-
ant PDLtf . These two types of automata are easily seen to be subclasses of the
alternating automata corresponding to µML [6].

Due to space constraints, most of our proofs have been moved to the Appendix.

2 Preliminaries

We assume that the reader is familiar with the syntax and semantics of PDL
and the modal µ-calculus, and with parity games. We fix some notation and
terminology, and discuss parity automata.

2.1 Structures and Languages

Throughout the article we fix a set of proposition symbols P and a set of atomic
actions D. The structures that we are considering are multi-modal Kripke
models, i.e., tuples S = 〈S,Rd∈D, V 〉 where Rd ⊆ S × S and V : P→ ℘S.

Definition 2.1 Propositional dynamic logic (in negation normal form) is given
by mutual induction on formulas and programs:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈π〉ϕ | [π]ϕ

π ::= d | π;π | π ⊕ π | π∗ | ϕ?

where p ∈ P, d ∈ D. We denote this language by PDL(P,D) and drop P,D
when clear from context. As an abuse of notation we write π ∈ PDL(P,D)
to mean that π is a program of PDL(P,D). Test-free propositional dynamic
logic (denoted by PDLtf ) is PDL without the test operator (?). The set of
proposition letters occurring in a formula ϕ (program π) is denoted by Var(ϕ)
(respectively, Var(π)).

The accessibility relation induced by a program π in a model S is denoted
as RS

π, and the truth relation is denoted by .
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2.2 Parity Games

A parity game G consists of a partitioned board G = G∃ ] G∀, a relation
E ⊆ G × G indicating the available moves E[u] from a position u ∈ G, and a
parity map, i.e., a map Ω : G → N of finite range. A match of such a parity
game consists of the two players, ∃ and ∀, moving a token from one position
to another over the board; matches can be represented as paths through the
graph (G,E). A player who gets stuck during the match by having arrived at
a position with no admissible moves, immediately looses. If the match goes on
forever then the parity map Ω is used to call a winner. The winner is ∃ if the
maximum parity which occurs infinitely often in the match is even, otherwise ∀
wins. An initialized parity game G@u is a pair (G, u) where G is a parity game
and u ∈ G is the initial position of the game.

A strategy for player Π ∈ {∃,∀} is, intuitively, a specification of choices to
be made in the positions belonging to Π. Strategies for parity games can be
taken to be positional or memory-free and therefore can be represented as a
function σ : GΠ → G. A match is σ-guided if for each position u ∈ GΠ player
Π chooses σ(u) as the next position. We say that σ is surviving for Π if for
each σ-guided match, the moves suggested by σ are always available to Π, and
winning if in addition, Π wins each σ-guided match of the game. A winning
position is one from which Π has a winning strategy. Finally, a player Π has a
surviving strategy in an initialized game G@u taking her/leading to position p
if Π has a strategy σ such that for every σ-guided match of G@u she either
wins or gets to position p in finitely many steps.

2.3 Parity automata

Parity automata are finite devices operating on possibly infinite structures. In
our paper, the automata classify pointed Kripke structures, and the question
whether an automaton accepts or rejects such a structure is determined by a
certain parity game. This acceptance game proceeds in a (possibly infinite)
number of rounds, during each of which a certain one-step formula is the focus
of attention.

Definition 2.2 Let A be a set of names. The set ML1(A) of one-step modal
formulas is given by the following grammar.

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈d〉a | [d]a,

where p ∈ P, d ∈ D, a ∈ A.

Clearly, in order to interpret one-step formulas in Kripke models, we need,
besides the valuation, which takes care of the proposition letters in P, an
interpretation for the variables in A. It will be convenient to use mark-
ings for this purpose, that is, maps m : S → ℘A. Such a marking can
also be presented as a valuation, or as a relation Zm ⊆ A × S, defined by
Zm := {(a, s) | s ∈ S, a ∈ m(s)}. We use these perspectives interchangeably.

Definition 2.3 A (modal) parity automaton is a tuple A = 〈A,∆,Ω〉 such that
A is a finite set of states of the automaton; ∆ : A→ ML1(A) is the transition
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map; and Ω : A → N is the parity map. An initialized automaton is a pair
(A, aI) where aI ∈ A is the initial state.

The acceptance game associated with a parity automaton A and a Kripke
model S is given as follows. A match of this game consists of two players, ∃ and
∀, moving a token from one position to another. When such a match arrives at
a so-called basic position, i.e., a position of the form (a, s) ∈ A×S, the players
consider the sentence ∆(a) ∈ ML1(A). At this position ∃ has to come up with
a marking m : S → ℘A, such that the formula ∆(a) is true at S, s under m.
After that, ∀ chooses an element of Zm to continue the match.

Definition 2.4 Given a model S and an automaton A we define the acceptance
game A(A,S) as the parity game given by the following table:

Position Player Admissible moves Parity
(a, s) ∈ A× S ∃ {m : S → ℘A | S,m, s  ∆(a)} Ω(a)
m : S → ℘A ∀ {(a, s) | s ∈ S, a ∈ m(s)} 0

Positions of the form (a, s) ∈ A× S will be called basic.
If (aI , s) is a winning position for ∃ in the game A(A,S) we say that (A, aI)

accepts the pointed model (S, s), notation: S, s  (A, aI).
We say that an initialized automaton (A, aI) is equivalent to a formula ϕ

if S, s  (A, aI) ⇐⇒ S, s  ϕ, for all S, s. More generally, we use the symbol
≡ to denote equivalence between automata or formulas. The following fact lies
behind the automata-theoretic approach towards the modal µ-calculus.

Fact 2.5 ([18,6]) There are effective procedures transforming a formula of
µML into an equivalent parity automaton, and vice versa.

We now turn to the definition of weak parity automata.

Definition 2.6 Given A = 〈A,∆,Ω〉, we define the relation ; ⊆ A × A by
putting a; b if b occurs in the formula ∆(a); we let ≺ and � denote, respec-
tively, the transitive and reflexive-transitive closure of ;. A strongly connected
component or SCC of A is a subset C ⊆ A such that for every b, c ∈ C we have
b � c and c � b. An SCC is called maximal, or an MSCC, if none of its proper
supersets is an SCC.

Definition 2.7 A parity automaton A = 〈A,∆,Ω〉 is weak if Ω satisfies

(weakness) if a � a′ and a′ � a then Ω(a) = Ω(a′).

Since in this case all states of a strongly connected component C have the same
parity we may speak of the parity of C and denote it by Ω(C).

Remark 2.8 Any weak parity automaton A is equivalent to a weak parity
automaton A′ with Ω : A′ → {0, 1}. From now on we assume such a parity
map for weak parity automata.

3 Syntactic characterization of PDL and PDLtf

In this section we will provide a precise characterization of the fragments of
µML that correspond to full and test-free PDL. It will be convenient for us
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to work with a version of PDL that includes the empty program ε (or skip),
which is interpreted as the identity relation in any Kripke model. Observe that
in full PDL, the role of ε can be taken by the test program >?.

Definition 3.1 The formulas and programs of the language PDLtfε is given
by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ
π ::= d | ε | π ⊕ π′ | π;π′ | π∗

Remark 3.2 It is not difficult to show that adding the skip program does not
add expressive power to PDLtf . To see this, think of the programs of PDLtf

and PDLtfε as the sets of regular expressions over the set D that may and may
not use the empty string symbol ε, respectively. Let ≡` denote the relation
of language equivalence between regular expressions, that is, write π ≡` π′
if π and π′ denote the same regular language over D. One may show, by
induction on programs, that for any π ∈ PDLtfε either (a) π ≡` ε, or there is a
program π ∈ PDLtfε such that either (b) π ≡` π or (c) π ≡` ε ⊕ π. Based on
this observation we may inductively define a truth-preserving translation from
PDLtfε-formulas to PDLtf -formulas; the key clause of this translation uses that
〈π〉ϕ is equivalent to either (a) ϕ, (b) 〈π〉ϕ or (c) ϕ ∨ 〈π〉ϕ.

Definition 3.3 Given a set X of propositional variables, we define the com-
pletely additive fragment with respect to X, notation: CAF(X), as follows:

ϕ ::= x ∈ X | ψ | ψ ∧ ϕ | ϕ ∨ ϕ | 〈d〉ϕ | µy.ϕ′

Here we require that ψ belongs to the X-free fragment of the modal µ-calculus
(i.e., none of the variables in X occurs freely in ψ), and ϕ′ ∈ CAF(X ∪ {y}).

The restricted completely additive fragment with respect to X, notation:
RAF(X), is defined, similarly, by:

ϕ ::= x ∈ X | ψ | ϕ ∨ ϕ | 〈d〉ϕ | µy.ϕ′

We define µcaML and µrcaML to be the fragments of the modal µ-calculus
where the use of the least fixpoint operator is restricted to these fragments.

Remark 3.4 The fragment CAF(X) provides a syntactic characterization of
a (minor) variant of complete additivity, where we require (1) to hold only for
non-empty index sets I. It is proved in [5] that a formula ϕ ∈ µML satisfies
this property for each x ∈ X iff ϕ is equivalent to a formula in the CAF(X).

Definition 3.5 Formulas of the fragment µcaML (µrcaML, respectively), are
given by the following induction:

α ::= p | ¬α | α ∨ α | 〈d〉α | µx.ϕ,

where ϕ ∈ µcaML ∩ CAF(x) (ϕ ∈ µrcaML ∩ RAF(x), respectively).

Theorem 3.6 PDL and test-free PDL are effectively equivalent to the frag-
ments µcaML and µrcaML, respectively.



80 PDL Inside the µ-calculus: A Syntactic and an Automata-theoretic Characterization

Proof of Theorem 3.6. The theorem follows directly from Propositions 3.8
and 3.9 below. 2

We start with the direction from PDL and PDLtf to µcaML and µrcaML.

Definition 3.7 By a simultaneous induction on PDL-formulas and -programs,
we define, for each PDL-program π, a function fπ : µML→ µML on the set of
modal fixpoint formulas, and a map (·)t from PDL to µML:

fd(α) := 〈d〉α
fϕ?(α) := ϕ ∧ α
fπ⊕π′(α) := fπ(α) ∨ fπ′(α)
fπ;π′(α) := fπ(fπ′(α))
fπ∗(α) := µx.α ∨ fπ(x)

pt := p
(¬ϕ)t := ¬ϕt
(ϕ0 ∨ ϕ1)t := ϕt0 ∨ ϕt1
(〈π〉ϕ)t := fπ(ϕt)

where, in the clause for fπ∗ , x is some canonically chosen fresh variable.

Proposition 3.8 For any PDL-formula ϕ, ϕt belongs to the fragment µcaML,
and is equivalent to ϕ. If ϕ belongs to PDLtf , then ϕt ∈ µrcaML.

The translation in the other direction is provided by the following proposition.

Proposition 3.9

(i) There is an effective procedure rewriting any modal fixpoint formula
α ∈ µcaML into an equivalent PDL-formula αs. Moreover, if α ∈ µrcaML
then αs ∈ PDLtfε.

(ii) There is an effective procedure that, given a formula ϕ ∈ µcaML and a set
X of variables such that ϕ ∈ CAF(X), returns an X-free PDL-formula ψ,
a subset Y ⊆ X, and a collection {πx | x ∈ Y } of X-free PDL-programs,
such that

ϕ ≡ ψ ∨
∨
x∈Y
〈πx〉x. (2)

If ϕ ∈ µrcaML ∩ RAF(X), then ψ and each πx belong to PDLtfε.

4 A characterization of PDLtf by automata

In this section we give the automata-theoretic characterization of test-free PDL.
In µ-automata, ;-cycles naturally correspond to fixpoint operators being un-
folded. When considering (test-free) PDL, in the light of the previous section
it is obvious that cycles have to be restricted so that they can only occur when
induced by programs involving the iteration operator. The slogan that drives
the definition of PDL- and PDLtf -automata is that maximal strongly connected
components correspond to programs.

The automata corresponding to PDLtf will be weak parity automata where
the transition map is subject to an additional constraint for all elements be-
longing to the same SCC. We begin by defining additional one-step languages
needed for these automata. Recall that ML1(A) is the set of one-step modal
formulas in A.
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Definition 4.1 Let C,O ⊆ A be such that C ∩O = ∅. The sets ADDtf
1 (O,C)

and MULtf
1 (O,C) of one-step formulas that are test-free additive, resp. test-free

multiplicative in C, are defined, respectively, by the following grammars:

ϕ ::= ϕ ∨ ϕ | 〈d〉c | ψ and ϕ ::= ϕ ∧ ϕ | [d]c | ψ

where c ∈ C, ψ ∈ ML1(O).

Definition 4.2 A PDLtf -automaton is a weak parity automaton A satisfying,
for every strongly connected component C, the following constraint:

(tf-additivity) If Ω(C) = 1 then ∆(c) ∈ ADDtf
1 (A \ C,C) for each c ∈ C.

In case Ω(C) = 0 then ∆(c) ∈ MULtf
1 (A \ C,C) for each c ∈ C.

The main theorem of this section states that these PDLtf -automata char-
acterize PDLtf . It will be proved in the two following subsections.

Theorem 4.3

(i) For every PDLtf -formula ϕ one can compute an equivalent initialized
PDLtf -automaton (Aϕ, aϕ).

(ii) For every initialized PDLtf -automaton (A, aI) one can compute an equiv-
alent PDLtf -formula ϕA,aI .

4.1 From formulas to automata

In this subsection we will prove Theorem 4.3(i), that is, given a PDLtf -formula
ϕ we construct an equivalent PDLtf -automaton (Aϕ, aϕ). To begin, we focus
on formulas of the form ϕ = 〈π〉α and, for the moment, assume that we already
have an automaton (A, aA) ≡ α. It is of our interest to understand how the
operation 〈π〉 changes (A, aA) to get an automaton for ϕ〈π〉α. Our idea is to
represent π itself as a PDLtf -automaton, which we will then combine with A.

In this subsection we will briefly use non-deterministic finite-state automata
(NFA). Recall that an NFA is a tuple A = 〈A, δ, F, aI〉 where δ : A× D→ ℘A
is the transition map, F ⊆ A are the final states and aI ∈ A is the initial state.
Given a model S, an NFA denotes a set of paths through S. We formalize the
acceptance of a path with the following game.

Definition 4.4 Given a model S and an NFA A = 〈A, δ, F, aI〉 we define the
acceptance game A(A,S) having as basic positions pairs (a, s) ∈ A× S.

Position Pl’r Admissible moves
(a, s) ∈ (A \ F )× S ∃ {(b, t) | ∃d ∈ D. b ∈ δ(a, d) & Rd(s, t)
(f, s) ∈ F × S ∃ {end} ∪ {(b, t) | ∃d ∈ D. b ∈ δ(f, d) & Rd(f, t)}
end ∀ ∅

Finite matches are lost by the player who gets stuck, infinite matches are all
won by ∀. A path #–s in S is accepted by A iff ∃ has a winning strategy σ
for the initialized game A(A,S)@(aI , s) such that every σ-guided match visits
precisely (and in order) the states of #–s .

Using this game-theoretic approach towards NFAs we can easily prove the
following lemma.
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Lemma 4.5 For every π there exists an initialized PDLtf -automaton (Pπ, aπ)
and a set F ⊆ |Pπ| such that for all S and s, t ∈ |S| we have Rπ(s, t) iff ∃ has
a surviving strategy in A(Pπ,S)@(aπ, s) taking her to (f, t) for some f ∈ F .

The above lemma gives us an automaton (Pπ, aπ, F ) = 〈P,∆P ,ΩP , aπ, F 〉
which works as a representation of π. We now combine this automaton with the
representation of α given by (A, aA) = 〈A,∆A,ΩP , aA〉 yielding an automaton
(Aϕ, aϕ) for ϕ = 〈π〉α. Define (Aϕ, aϕ) := 〈A ] P,∆,Ω, aϕ〉 where aϕ := aπ,
Ω := ΩA ∪ ΩP , and the transition map is defined as

∆(e) :=


∆P (e) if e ∈ P \ F
∆P (e) ∨∆(aA) if e ∈ F
∆A(e) if e ∈ A.

Remark 4.6 Observe that the construction has the following properties

(i) Aϕ is a well-defined PDLtf -automaton,
(ii) You can only go from the Pπ part to the A part from a state in F ⊆ P ,
(iii) Once you leave the Pπ part you cannot come back.

Now we prove that (Aϕ, aϕ) is an automaton representation of ϕ = 〈π〉α.

Proposition 4.7 S, s  〈π〉α iff ∃ has a winning strategy in A(Aϕ,S)@(aϕ, s).

This finishes the proof of Theorem 4.3(i) for the particular case of ϕ = 〈π〉α
when we already have an automaton for α. The general case can be proved by
induction on ϕ ∈ PDLtf . The propositional and Boolean cases are easy and
Proposition 4.7 gives us the required automaton for ϕ = 〈π〉α. If ϕ = [π]α the
construction and proofs are dual to the diamond case.

4.2 From automata to formulas

In this subsection we prove Theorem 4.3(ii), that is, for every initialized PDLtf -
automaton (A, aI) we give an equivalent PDLtf -formula ϕA,aI . The key idea

underlying our construction is to turn MSCCs of A into sets of PDLtf -equations,
and use the properties of PDLtf -automata to solve these equations inside
PDLtf . In more detail, for every MSCC C and entry point b ∈ C we will
show how to get an equivalent formula ϕC,b ∈ PDLtf (P ] O,D) where the
propositional variables in O := A \ C correspond to the states outside C.

Definition 4.8 A set of B-incomplete τ -equations is a tuple E = (E, ξ, τ)
where E is a non-empty, finite set of equations specified by the map ξ : E →
PDLtf (P ]B ]E,D) and τ ∈ {µ, ν} is the type of E. We sometimes specify a
set of equations using the notation E := {e1 ≈ ψ1, . . . , en ≈ ψn}τ .

Definition 4.9 Given a model S and a set of B-incomplete τ -equations
E = (E, ξ, τ) we define the solution game S(E,S) having as basic positions
pairs (x, s) ∈ (E ∪B)× S.

Position Player Admissible moves
(e, s) ∈ E × S ∃ {m : S → ℘(E ∪B) | S,m, s  ξ(e)}
m : S → ℘(E ∪B) ∀ {(x, s) | s ∈ S, x ∈ m(s)}
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Whenever a position of the form (b, s) ∈ B×S is reached, the match is declared
a tie; finite matches not ending in a tie are lost by the player that got stuck
and infinite matches are won by ∃ if τ = ν, and by ∀ if τ = µ.

Let C be an MSCC of A. First we consider the case where the parity of
C is 1. We turn the information of C into a set of O-incomplete µ-equations
C = (C, ξ, µ) given by ξ(c) := ∆(c) for all c ∈ C. Observe that, by construction,
the set of equations satisfies

ξ(c) = α ∨
∨
u∈U
〈πu〉u for U ⊆ C and α, πu ∈ PDLtf (P ]O,D). (∗)

This set of equations is equivalent to C in the following sense:

Proposition 4.10 Let b ∈ C, o ∈ O, and s, t ∈ |S|, the following are equivalent

(i) ∃ has a surviving strategy in A(A,S)@(b, s) taking her to (o, t),
(ii) ∃ has a surviving strategy in S(C,S)@(b, s) taking her to (o, t).

Proof. Straightforward from the definition of the games. 2

For a moment, we forget about MSCCs and focus on sets of equations. We
show that if a set of equations satisfies (∗) we can solve it inside PDLtf . The
proof is basically a game-theoretic version of the one found in [16], which is also
reminiscent of the transformation of linear grammars into regular expressions.

Lemma 4.11 Let E = (E, ξ, µ) be a set of B-incomplete µ-equations satisfy-
ing (∗). For all e ∈ E there exists ϕE,e ∈ PDLtf (P ] B,D) such that for all
b ∈ B and s, t ∈ |S| the following are equivalent:

(i) ∃ has a surviving strategy in S(E,S)@(e, s) taking her to (b, t),
(ii) S,m, s  ϕE,e where m : S → ℘B is such that Zm = {(b, t)}.

It is only left to apply the above results to C to get the required formula.

Corollary 4.12 For every MSCC C and b ∈ C there is ϕC,b ∈ PDLtf (P]O,D)
such that for all o ∈ O and s, t ∈ |S| the following are equivalent:

(i) ∃ has a surviving strategy in A(A,S)@(b, s) taking her to (o, t),
(ii) S,m, s  ϕC,b where m : S → ℘O is such that Zm = {(o, t)}.

Proof. Combination of Proposition 4.10 and Lemma 4.11 applied to C. 2

The above corollary provides a formula ϕC,b when the parity of the con-
nected component C is 1. The case where the parity of C is 0 is solved in a
dual but completely similar way.

Now that we can get a formula for every point of an MSCC we turn to the
general case. In order to create a formula from an initialized automaton we
introduce the following concept.

Definition 4.13 Given a PDLtf -automaton A, the DAG of connected compo-
nents of A is the pair DCC(A) = (G,E) where G is the set of �-MSCCs of A
and (C1, C2) ∈ E if C1 6= C2 and a; b for some a ∈ C1 and b ∈ C2.
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Remark 4.14 Observe that a node of DCC(A) is either a ≺-connected compo-
nent or a single element a ∈ A which does not belong to any ≺-cycle. Another
observation is that, even though DCC(A) may not be a tree, it certainly con-
tains no cycles. Therefore E is well-founded and, given C ∈ G, we can associate
a notion of height to the subgraph generated by C.

We are now ready to prove the main theorem of this section.

Proof of Theorem 4.3(ii). For every initialized PDLtf -automaton (A, aI)
we give an equivalent PDLtf -formula ϕA,aI . The proof will be done by induction
on the height of the subgraph of DCC(A) generated by aI .

If the height of the subgraph is 1, then it is composed of a single MSCC C
and aI ∈ C. By Corollary 4.12, we get a formula ϕC,aI ∈ PDLtf (P ] O,D).
We only have to observe that, because C is not connected to any other MSCC
then O = ∅. Therefore ϕC,aI ∈ PDLtf (P,D) and is equivalent to (A, aI).

Suppose the height of the subgraph is n and aI ∈ C for some MSCC C.
Again by Corollary 4.12 we get a formula ϕC,aI ∈ PDLtf (P ] O,D) where
O = {o1, . . . , ok} and oi ∈ Ci for some MSCCs Ci. By inductive hypothesis,
we get a formula ϕA,oi ∈ PDLtf (P,D) for each oi. It is straightforward to check
that ϕA,aI := ϕC,aI [oi 7→ ϕA,oi | i ≤ k] is equivalent to (A, aI). 2

5 A characterization of PDL by automata

This section concerns the automata-theoretic characterization of full PDL.
Since our approach here is an adaptation of the one taken in the previous
section we will be a bit more sketchy.

Definition 5.1 Let C,O ⊆ A be such that C ∩O = ∅. The sets ADD1(O,C)
and MUL1(O,C) of one-step formulas that are additive, resp. multiplicative in
C, are defined, respectively, by the grammars

ϕ ::= ϕ ∨ ϕ | 〈d〉c | ψ | ϕ ∧ ψ and ϕ ::= ϕ ∧ ϕ | [d]c | ψ | ϕ ∨ ψ

where c ∈ C, ψ ∈ ML1(O).

Note that the difference with the sets one-step formulas for PDLtf -automata
given in Definition 4.1 lies in the fact that here, in order to take care of tests,
we allow conjunctions with C-free formulas.

Definition 5.2 A PDL-automaton is a weak parity automaton A satisfying,
for every strongly connected component C, the following constraint:

(additivity) If Ω(C) = 1 then ∆(c) ∈ ADD1(A\C,C) for each c ∈ C. In case
Ω(C) = 0 then ∆(c) ∈ MUL1(A \ C,C) for each c ∈ C.

The main theorem of this section states that PDL-automata characterize PDL.

Theorem 5.3

(i) For every PDL-formula ϕ one can compute an equivalent initialized au-
tomaton (Aϕ, aϕ).

(ii) For every initialized automaton (A, aI) one can compute an equivalent
PDL-formula ϕA,aI .
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5.1 From formulas to automata

In this section we will prove Theorem 5.3(i), that is, given a PDL-formula
ϕ we create an equivalent PDL-automaton (Aϕ, aϕ). We give a proof by in-

duction on ϕ. If ϕ is a test-free formula (that is, ϕ ∈ PDLtf ) we can get
the corresponding PDL-automaton from Theorem 4.3 by observing that every
PDLtf -automaton is also a PDL-automaton. It is also easy to check that the
class of PDL-automata is closed under the Boolean operators.

The interesting case, therefore, is where ϕ = 〈π〉α, with α ≡ (Aα, aα) and
π involving tests. To treat this case we use the following strategy: first we
will consider tests as additional atomic actions and get an NFA for π, similar
to what we did in Section 4; after that we show how to convert this NFA to
a PDL-automaton and merge it with the automata for the tested formulas to
get a PDL-automaton Pπ for π. To finish, we combine Pπ and Aα to get an
automaton for ϕ.

In the process of creating a PDL-automaton for π we encounter new com-
plexities because of the presence of tests. To be able to properly define a
merging operation we need to introduce the following concepts.

Definition 5.4 Let B be a set of names such that A∩B = ∅ and P∩B = ∅.
A B-incomplete PDL-automaton A is a PDL-automaton based on the set of
propositions P ∪ B such that the elements of B occur only positively in the
transition map of A. The acceptance games of Definition 2.4 are extended
to B-incomplete automata with the intention to interpret the elements of B
as names (as opposed to propositions). Basic positions are then taken from
(A ∪ B) × S and markings are of the type m : S → ℘(A ∪ B). Whenever a
position from B × S is reached, the match is declared a tie.

Definition 5.5 The completion of a B-incomplete automaton A with a PDL-
automaton A′ = 〈A′,∆′,Ω′〉 is defined as (A o A′) = 〈C,∆C ,ΩC〉 where
C := A ]A′, ΩC := Ω ∪ Ω′ and the transition map is given by

∆C(c) :=

{
∆′(c) if c ∈ A′,
∆(c)[b 7→ ∆′(b) | b ∈ B ∩A′] if c ∈ A.

Note that the completion can be partial if B 6⊆ A′, in this case the outcome
will be (B \ A′)-incomplete. If B ⊆ A′, the outcome will be a (complete)
PDL-automaton. Also observe that a completion cannot generate new cycles.

Definition 5.6 Given π ∈ PDL(P,D) we use π[ ∈ PDLtf (P,D ∪ T) to denote
the version of π where its top-level tests T are considered as atomic actions. The
T-extension of a model S = 〈S,Rd∈D, V 〉 is defined as ST = 〈S,Rd∈D, Rχ∈T, V 〉
where Rχ := {(s, s) ∈ S × S | S, s  χ}.
Lemma 5.7 For every π ∈ PDL there exists an x-incomplete initialized PDL-
automaton (Pπ, aπ) such that for all models S and s, t ∈ |S| we have that RS

π(s, t)
iff ∃ has a surviving strategy in A(Pπ,S)@(aπ, s) taking her to (x, t).

Proof. Let T be the top-level tests appearing in π. We claim the following:
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Claim 1 For every model S and s, t ∈ |S| we have that RS
π(s, t) iff RST

π[(s, t).

As in Section 4, we can construct an NFA Aπ = 〈A, δ, F, aI〉 which recog-
nizes π[. By definition of Aπ recognizing π[, we have the following claim.

Claim 2 For every model S, Aπ accepts the path s, . . . , t in ST iff RST
π[(s, t).

Claim 3 Without loss of generality we can assume these properties on Aπ:

(i) Each state has either exiting action transitions or test transitions (but not
both), and will accordingly be called action state or test state.

(ii) Every cycle contains at least one action state.

(iii) The initial state has no incoming transitions.

(iv) Test transitions always arrive into an action state.

These properties are reminiscent of the work by Kozen [11]. For reasons of
space limitations we have to omit the proofs.

Let T = {aχ | χ ∈ T} ∪ {x} be a set of names. From Aπ we define a T -
incomplete initialized PDL-automaton Aπ := 〈Aπ,∆π, aπ〉 by setting Aπ := A,
Ω(a) := 1 for all a ∈ A,

∆π(a) :=


∨
{〈d〉b | d ∈ D, b ∈ δ(a, d)} if a 6∈ F is an action state,

x ∨
∨
{〈d〉b | d ∈ D, b ∈ δ(a, d)} if a ∈ F is an action state,∨

{aχ ∧ ∆π(b) | χ ∈ T, b ∈ δ(a, χ)} if a 6∈ F is a test state,

x ∨
∨
{aχ ∧ ∆π(b) | χ ∈ T, b ∈ δ(a, χ)} if a ∈ F is a test state.

Note that this is well defined since we first define ∆π(a) for action states and
then for test states.

Claim 4 Aπ is a well-defined T -incomplete PDL-automaton.

Let (Aχ, aχ)χ∈T be the family of PDL-automata for T = {χ1, . . . , χk},
provided by the inductive hypothesis. To finish the construction define
(Pπ, aπ) := (Aπ oAχ1

o · · ·oAχk
, aπ).

Claim 5 For every model S and s, t ∈ |S|, the following are equivalent.

(i) ∃ has a surviving strategy in A(Aπ,ST)@(aπ, s) leading to (f ∈ F, t).
(ii) ∃ has a surviving strategy in A(Pπ,S)@(aπ, s) taking her to (x, t).

Due to lack of space we have to omit the proof of this claim.

Finally, combining the above claims we find the following equivalences:

RS
π(s, t) ⇐⇒ RST

π[(s, t) (Claim 1)

⇐⇒ Aπ accepts the path s, . . . , t in ST (Claim 2)

⇐⇒ ∃ has a surviving strategy in

A(Pπ,S)@(aπ, s) leading to (x, t) (Claim 5)

This finishes the proof of the lemma. 2

To conclude we have to give an automaton for ϕ = 〈π〉α. Let (Aα, x) be
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the automaton for α, given by the inductive hypothesis. Define (Aϕ, aϕ) :=
(Pπ oAα, aπ). We prove that (Aϕ, aϕ) is an automaton representation of ϕ.

Proposition 5.8 S, s  〈π〉α iff ∃ has a winning strategy in A(Aϕ,S)@(aϕ, s).

Proof. The proof is similar to Proposition 4.7 but using Lemma 5.7. 2

5.2 From automata to formulas

The proof is basically the same as for PDLtf . The new challenge lies in showing
that when solving the system of equations (i.e., an analogue of Lemma 4.11)
we can provide a normal form which functions as (∗). The key observation is
that one-step formulas in ADD1(O,C) can be assumed to be in the form

α ∨
∨
u∈U
〈πu〉u with U ⊆ C; α, πu ∈ PDL(P ∪O,D)

This can be proved by a straightforward induction on the complexity of
ADD1(O,C)-formulas, where in the inductive step we use that ψ ∧ ϕ is equiv-
alent to 〈ψ?〉ϕ. Further details are left to the reader.

6 Conclusions

In this paper we have clarified the relation between PDL and the modal
µ-calculus, by (1) providing explicit syntactic translations between PDL and
the fragment of µML to which it corresponds, and (2) giving an automata-
theoretic characterization of PDL. Both results were obtained in versions for
full and for test-free PDL, respectively.

Although we have treated the syntactic and the automata-theoretic char-
acterizations separately, the two results are in fact closely related. This is
witnessed, in the case of full PDL 3 , by the close syntactic similarities between
the completely additive fragment of µML (Definition 3.3) and the additive one-
step formulas (Definition 5.1), in that both use the same set of operators. Using
these similarities it would not be very hard to also give direct transformations
between formulas in the fragment µcaML and PDL-automata. Another simi-
larity between the two characterizations surfaces in the proof: in both cases,
the heart of the argument showing one direction of the equivalence lies in the
fact that certain sets of fixpoint equations can be solved inside PDL. In fact, we
could have proved our results for PDL in the form ‘PDL-formulas −→ PDL-
automata −→ µcaML-formulas’. We chose to discuss the syntactic and the
automata-theoretic result separately because we believe that the two proofs
have some merits in their own right: the syntactic transformations are simple
and straightforward, and the automata-theoretic proof sheds some light on the
automata-theoretic nature of PDL-programs.

We hope that our characterizations of PDL provide new tools for proving
results on PDL. In particular, it is an interesting question to find a natural
logic of which PDL is the bisimulation-invariant fragment. In this light, note

3 The case of PDLtf is analogous.
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that in a related paper [1] with Facchini and Zanasi we used similar automata
to the ones in this paper to prove that a variant of µrcaML corresponds to the
bisimulation-invariant fragment of weak monadic second-order logic. Other
interesting questions would be to find semantic properties that set PDL apart
as a fragment of µML, to prove the (un-)decidability of the question whether a
given µ-calculus formula has an equivalent in PDL, to give a characterization
of PDL-programs (cf. [8, p. 91]), and to give a constructive proof of the Craig
interpolation property for PDL.
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Appendix: Proofs

Proof of Proposition 3.8. By a simultaneous induction on formulas and
programs, we prove that
(1) for any PDL-program π, and any formula α ∈ µML:

(1a) fπ(α) belongs to µcaML if α ∈ µcaML;
(1b) fπ(α) ∈ CAF(X) if α ∈ CAF(X) and Var(π) ∩X = ∅;
(1c) 〈π〉α ≡ fπ(α).

(2) for any PDL-formula α:
(2a) αt ∈ µcaML;
(2b) α ≡ αt.

Analogous statements can be proved for PDLtfε, RAF(X) and µrcaML.

For the proof of (1), we confine our attention to the case where π = ρ∗. Take
an arbitrary formula α ∈ µML. Recall that fπ(α) is of the form µx.α ∨ fρ(x),
where x does not occur in either α or ρ. For (1a), suppose that α ∈ µcaML. By
the inductive hypothesis (1b), applied to ρ and the formula x ∈ CAF(x), we
have that fρ(x) ∈ CAF(x). Thus we see that α ∨ fρ(x) ∈ CAF(x) as well, and
so µx.α ∨ fρ(x) belongs to the set µcaML indeed. For (1b), let X be a set of
variables that do not occur in ρ, and are such that α ∈ CAF(X). Since x does
not occur in α this means that α ∈ CAF(X ∪ {x}). Since x, as a formula, also
belongs to the set CAF(X ∪ {x}), and Var(π)∩ (X ∪ {x}) = ∅, an application
of the inductive hypothesis shows that fρ(x) ∈ CAF(X ∪ {x}) as well. Hence
the disjunction α ∨ fρ(x) ∈ CAF(X ∪ {x}), and from this we may conclude
that, indeed, fπ(α) belongs to the set CAF(X). For (1c), it is obvious that
〈ρ∗〉α ≡ µx.α ∨ 〈ρ〉x ≡ µx.α ∨ fρ(x) ≡ fπ(α).

For the proof of (2), we only consider the inductive case where α is of the
form 〈π〉β. Inductively, we may assume that βt ∈ µcaML, and that β ≡ βt. But
then it follows from the inductive hypothesis, applied to the program π, that
αt = fπ(βt) belongs to µcaML as well (1a), and that αt = fπ(βt) is equivalent
to the formula α = 〈π〉β. This suffices to prove the proposition. 2

Proof of Proposition 3.9. We prove the proposition via a mutual induc-
tion on the fragments µcaML and CAF. The stronger statements concerning
formulas in the restricted fragments follow from an easy inspection.

We first consider item (i). Leaving the other cases as exercises for the
reader, we focus on the interesting case of the inductive step, where we are
dealing with a formula µx.ϕ, with ϕ ∈ µcaML ∩ CAF(x). In order to find the
right translation for this formula, we use the induction hypothesis of item (ii).
That is, we assume that ϕ has been rewritten as an equivalent disjunction
ψ ∨ 〈πx〉x, where x does not occur in either ψ or πx. Hence, if we put

(µx.ϕ)s := 〈π∗x〉ψ,

it is easy to verify that this definition satisfies the required properties.

This leaves the proof of item (ii). In case ϕ = x, simply take ψ := ⊥,
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Y := {x}, and πx := >?. (In the case ϕ ∈ µrcaML ∩ RAF(X) and we need to
land in test-free PDL, we put πx := ε. This is the reason for adding the skip
program ε to PDLtf .) Clearly ϕ ≡ ⊥∨〈d〉x. In case ϕ is X-free, inductively we
may assume that we have applied item 1 to ϕ, obtaining the equivalent PDL-
formula ϕs. Take ψ := ϕs, and put Y := ∅. Clearly then

∨
x∈Y 〈πx〉x ≡ ⊥, so

that indeed we find ϕ ≡ ϕs ∨
∨
x∈Y 〈πx〉x.

We leave the inductive cases where ϕ = ψ∧ϕ′, ϕ = ϕ′∨ϕ′′ and ϕ = 〈d〉ϕ′ as
exercises, and turn to the case where ϕ = µz.ϕ′. We may apply the inductive
hypothesis with respect to ϕ′ and X ∪ {z}, which gives an X ∪ {z}-free (and
hence, X-free) formula ψ′, a subset Y ⊆ X ∪ {z}, and a program π′y for each
y ∈ Y , such that

ϕ′ ≡ ψ′ ∨
∨
y∈Y
〈π′y〉y.

Now distinguish cases. If z 6∈ Y then Y ⊆ X and the formula ψ′∨
∨
y∈Y 〈π′y〉y

is z-free, so that ϕ = µz.ϕ′ ≡ ψ′∨
∨
y∈Y 〈π′y〉y and we are done. If, on the other

hand, z ∈ Y , then define Y ′ := Y \ {z}, so that we have Y ′ ⊆ X and

ϕ′ ≡ ψ′ ∨
∨
y∈Y ′
〈π′y〉y ∨ 〈π′z〉z.

From this it is immediate that

µz.ϕ′ ≡ 〈(π′z)∗〉(ψ′ ∨
∨
y∈Y ′
〈π′y〉y),

and so we find that

µz.ϕ′ ≡ 〈(π′z)∗〉ψ′ ∨
∨
y∈Y ′
〈(π′z)∗;π′y〉y,

from which we can read off the formula ψ := 〈(π′z)∗〉ψ′ and the programs
πy := (π′z)

∗;π′y, for each y ∈ Y ′. 2

Proof of Lemma 4.5. A PDLtf -program π is nothing but a regular expres-
sion over D. Regular expressions over D can be given semantics over Kripke
models such that they denote a set of paths. Using this approach, we know that
there is a non-deterministic finite-state automaton (NFA) which recognizes the
same language as π. Let Aπ = 〈A, δ, F, aI〉 be such an automaton. Since Aπ

accepts the language denoted by the regular expression π, it is straightforward
to verify that Aπ accepts the path s, . . . , t iff Rπ(s, t).

Next we define Pπ = 〈A,∆,Ω〉 where for all a ∈ A the transition map is

∆(a) :=
∨

d∈D,b∈δ(a,d)

〈d〉b ,

and the parity map is Ω(a) := 1 for every element. It is not difficult to see
that Pπ is a well-defined PDLtf -automaton: it satisfies the PDLtf restrictions
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for cycles because every state appears under a diamond and there are only
disjunctions in the transition map, and the other conditions (e.g., weakness)
are trivially satisfied.

Furthermore, it is clear from the definition of Pπ that the following are
equivalent, for any (a, s) ∈ A× S:

(i) (b, t) is an admissible move for ∃ in A(Aπ,S)@(a, s),
(ii) {(b, t)} is an admissible move for ∃ in A(Pπ,S)@(a, s).

Now consider the triple (Pπ, aπ, F ) consisting of the initialized automaton
(Pπ, aπ) where aπ := aI and F is the set of final states. Combining the above
claims we get that Rπ(s, t) iff ∃ has a surviving strategy in A(Pπ,S)@(aπ, s)
taking her to (f, t) for some f ∈ F . This finishes the proof of the lemma. 2

Proof of Proposition 4.7. (⇒) Suppose S, s  〈π〉α. By definition there
is t ∈ S such that Rπ(s, t) and S, t  α. Using Lemma 4.5 we know that
therefore ∃ has a surviving strategy in A(Pπ,S)@(aπ, s) taking her to (f, t) for
some f ∈ F . Now ∃ can use that strategy to play a match in A(Aϕ,S)@(aϕ, s)
and get to the same position (f, t). By inductive hypothesis (as S, t  α)
we know that ∃ has a winning strategy in A(A,S)@(aA, t). Because of the
way the transition map ∆ is defined, she can use that same strategy to win
A(Aϕ,S)@(f, t).

(⇐) Suppose that ∃ has a winning strategy in A(Aϕ,S)@(aϕ, s). As the parity
of Pπ is 1 for every element this means that ∃ plays finitely many moves in
Pπ which get her to some position (f, t) and then makes a move which takes
her to the A part of the automaton. Observe that this can only happen if
f ∈ F . Using Lemma 4.5 we get that Rπ(s, t). As ∃ has a winning strategy
in A(Aϕ,S)@(f, t) and because of how ∆ is defined, she can use that same
strategy to win the game A(A,S)@(f, t) and thus by inductive hypothesis we
get that S, t  α. By definition, this means that S, s  〈π〉α. 2

Proof of Lemma 4.11. By induction on |E|, we solve this set of equations
while preserving (∗) and finally get a formula in PDLtf (P ]B,D).

For the base case let E = {e}, we have to consider two cases: if e /∈ ξ(e)
then ξ(e) = α with α ∈ PDLtf (P ] B,D) and we are done. Otherwise, the
equation should be of the form ξ(e) = α∨〈π〉e. Let ϕE,e := 〈π∗〉α, it is easy to
see that the formula belongs to the right fragment. The following claim states
that ϕE,e is equivalent to E.

Claim 1 The following are equivalent:

• ∃ has a surviving strategy in S({e ≈ α∨〈π〉e}µ,S)@(e, s) taking her to (b, t).
• S,m, s  〈π∗〉α where m : S → ℘B is such that Zm = {(b, t)}.
Proof of Claim. (⇒) As the set of equations is of type µ this means that ∃
plays only a finite number of moves, otherwise she would lose. Because of the
shape of the set of equations she has to play markings m1, . . . ,mk such that
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e ∈ mi(si) for some si and in each turn ∀ chooses (e, si). After that ∃ plays a
marking m such that e ∈ m(t) and ∀ must choose (b, t). It is clear to observe
that the first k rounds induce a π∗-path s, s1, . . . , sk and the last round implies
that S,m, sk  α. It is only left to observe that as ∃ can force ∀ to choose (b, t)
then it must be the case that Zm = {(b, t)}.

(⇐) Assume S,m, s  〈π∗〉α, then by definition there is an sk such that
R∗π(s, sk) and S,m, sk  α. Moreover this means that there are s1, . . . , sk
such that Rπ(si, si+1). We can give a surviving strategy for ∃ as follows: first
she plays, in order, markings m1, . . . ,mk such that Zmi

= {(e, si)}. These
markings constitute legitimate moves for ∃ and constrain ∀ to follow the path
s, s1, . . . , sk. Finally, she plays the marking m which by hypothesis makes α
true at sk and leaves ∀ only one choice, namely (b, t). J

For the inductive case let E = {e, e1, . . . , en} with n > 0. If e /∈ ξ(e)
we skip to the next step, otherwise we need to treat this equation first. Let
ξ(e) = α ∨ 〈π〉e ∨

∨
u∈U 〈πu〉u be such that e /∈ U . In order to eliminate e from

ξ(e) we create a slightly modified version of E.

Claim 2 Let E′ := (E, ξ′, µ) with ξ′(e) := 〈π∗〉α ∨
∨
u∈U 〈π∗;πu〉u and let

ξ′(ei) := ξ(ei) for all i. For all s, t ∈ |S| and b ∈ B, the following are equivalent,

(i) ∃ has a surviving strategy in S(E,S)@(e, s) taking her to (b, t),
(ii) ∃ has a surviving strategy in S(E′,S)@(e, s) taking her to (b, t).

Proof of Claim. As the two sets only differ on e, it will be enough to
show that, given a strategy for ∃, we can simulate the moves made by ∃ (when
standing at e) in one set of equations using the other set of equations.

(⇒) The type of E is µ, therefore ∃ will only play a finite amount of moves.
Assume ∃ plays, in order, markings m1, . . . ,mk such that ∀ chooses (e, si) on
each round and finally plays a marking m such that ∀ chooses (x, s′) with x 6= e.
It is easy to check that in E′ she can play m and will also get to (x, s′).

(⇐) Suppose ∃ plays a marking m such that it actually makes 〈π∗〉α true
(the case for 〈π∗;πu〉u is analogous) and ∀ chooses (x, s′). This means that
there is an Rπ∗ path s, s1, . . . , sk and a marking mα with S,mα, sk  α. She
can simulate this play in E by playing as follows: first she plays, in order,
markings mi such that Zmi = {(e, si)}; after that she plays mα. J

Having removed e from ξ(e), we still have a formula where other elements
of E may occur. We first substitute ξ′(e) into the other equations, setting
ξ′(ei) := ξ(ei)[e 7→ ξ′(e)] for all i. It is easy to see that this substitution
preserves the behaviour of E′.

Using the distribution laws of the diamond and PDLtf identities the new
formulas can be taken to the normal form in (∗). To illustrate the process
suppose ξ(ei) = α∨〈πe〉e∨

∨
u∈U 〈πu〉u with e /∈ U and ξ′(e) = α′∨

∨
u∈U 〈π′u〉u. 4

4 To simplify the presentation we assume that U is the same in ξ(ei) and ξ(e). This need
not be this way but the process can be easily adjusted to work for the general case.
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The formula ξ′(ei) is then obtained as follows:

α ∨ 〈πe〉e ∨
∨
u∈U
〈πu〉u (before replacement)

α ∨ 〈πe〉
(
α′ ∨

∨
u∈U
〈π′u〉u

)
∨
∨
u∈U
〈πu〉u (after replacement)

(
α ∨ 〈πe〉α′

)
∨
∨
u∈U
〈πe〉〈π′u〉u ∨ 〈πu〉u (distribution of diamonds, regrouping)

(
α ∨ 〈πe〉α′

)
∨
∨
u∈U
〈πe;π′u ⊕ πu〉u (program identities)

We inductively solve the smaller set of equations E′′ := (E \ {e}, ξ′, µ) and get
formulas ψu for every u ∈ E \ {e}. Finally we give a solution for e setting
ϕE,e := ξ′(e)[u 7→ ψu | u ∈ E \ {e}]. Observe that ϕE,e ∈ PDLtf (P ] B,D)
because it is of the form α∨

∨
u∈U 〈πu〉ψu where (by induction and hypothesis)

we have α,ψu ∈ PDLtf (P ]B,D). 2
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