131 research outputs found

    Collisionless Pattern Discovery in Robot Swarms Using Deep Reinforcement Learning

    Full text link
    We present a deep reinforcement learning-based framework for automatically discovering patterns available in any given initial configuration of fat robot swarms. In particular, we model the problem of collision-less gathering and mutual visibility in fat robot swarms and discover patterns for solving them using our framework. We show that by shaping reward signals based on certain constraints like mutual visibility and safe proximity, the robots can discover collision-less trajectories leading to well-formed gathering and visibility patterns

    Circle formation by asynchronous opaque robots on infinite grid

    Get PDF
    This paper presents a distributed algorithm for circle formation problem under the infinite grid environment by asynchronous mobile opaque robots. Initially all the robots are acquiring distinct positions and they have to form a circle over the grid. Movements of the robots are restricted only along the grid lines. They do not share any global co-ordinate system. Robots are controlled by an asynchronous adversarial scheduler that operates in Look-Compute-Move cycles. The robots are indistinguishable by their nature, do not have any memory of their past configurations and previous actions. We consider the problem under luminous model, where robots communicate via lights, other than that they do not have any external communication system. Our protocol solves the  circle formation problem using seven colors. A subroutine of our algorithm also solves the line formation problem using three colors

    Practical Considerations and Applications for Autonomous Robot Swarms

    Get PDF
    In recent years, the study of autonomous entities such as unmanned vehicles has begun to revolutionize both military and civilian devices. One important research focus of autonomous entities has been coordination problems for autonomous robot swarms. Traditionally, robot models are used for algorithms that account for the minimum specifications needed to operate the swarm. However, these theoretical models also gloss over important practical details. Some of these details, such as time, have been considered before (as epochs of execution). In this dissertation, we examine these details in the context of several problems and introduce new performance measures to capture practical details. Specifically, we introduce three new metrics: (1) the distance complexity (reflecting power usage and wear-and-tear of robots), (2) the spatial complexity (reflecting the space needed for the algorithm to work), and (3) local computational complexity (reflecting the computational requirements for each robot in the swarm). We apply these metrics in the study of some well-known and important problems, such as Complete Visibility and Arbitrary Pattern Formation. We also introduce and study a new problem, Doorway Egress, that captures the essence of a swarm’s navigation through restricted spaces. First, we examine the distance and spatial complexity used across a class of Complete Visibility algorithms. Second, we provide algorithms for Complete Visibility on an integer plane, including some that are asymptotically optimal in terms of time, distance complexity, and spatial complexity. Third, we introduce the problem of Doorway Egress and provide algorithms for a variety of robot swarm models with various optimalities. Finally, we provide an optimal algorithm for Arbitrary Pattern Formation on the grid

    Circle Formation by Asynchronous Opaque Fat Robots on an Infinite Grid

    Full text link
    This study addresses the problem of "Circle Formation on an Infinite Grid by Fat Robots" (CF_FAT_GRIDCF\_FAT\_GRID). Unlike prior work focused solely on point robots in discrete domain, it introduces fat robots to circle formation on an infinite grid, aligning with practicality as even small robots inherently possess dimensions. The algorithm, named CIRCLE_FGCIRCLE\_FG, resolves the CF_FAT_GRIDCF\_FAT\_GRID problem using a swarm of fat luminous robots. Operating under an asynchronous scheduler, it achieves this with five distinct colors and by leveraging one-axis agreement among the robots

    Pattern Formation by Robots with Inaccurate Movements

    Get PDF
    Arbitrary Pattern Formation is a fundamental problem in autonomous mobile robot systems. The problem asks to design a distributed algorithm that moves a team of autonomous, anonymous and identical mobile robots to form any arbitrary pattern F given as input. In this paper, we study the problem for robots whose movements can be inaccurate. Our movement model assumes errors in both direction and extent of the intended movement. Forming the given pattern exactly is not possible in this setting. So we require that the robots must form a configuration which is close to the given pattern F. We call this the Approximate Arbitrary Pattern Formation problem. With no agreement in coordinate system, the problem is unsolvable, even by fully synchronous robots, if the initial configuration 1) has rotational symmetry and there is no robot at the center of rotation or 2) has reflectional symmetry and there is no robot on the reflection axis. From all other initial configurations, we solve the problem by 1) oblivious, silent and semi-synchronous robots and 2) oblivious, asynchronous robots that can communicate using externally visible lights

    Space and move-optimal Arbitrary Pattern Formation on infinite rectangular grid by Oblivious Robot Swarm

    Full text link
    Arbitrary Pattern Formation (APF) is a fundamental coordination problem in swarm robotics. It requires a set of autonomous robots (mobile computing units) to form any arbitrary pattern (given as input) starting from any initial pattern. The APF problem is well-studied in both continuous and discrete settings. This work concerns the discrete version of the problem. A set of robots is placed on the nodes of an infinite rectangular grid graph embedded in a euclidean plane. The movements of the robots are restricted to one of the four neighboring grid nodes from its current position. The robots are autonomous, anonymous, identical, and homogeneous, and operate Look-Compute-Move cycles. Here we have considered the classical OBLOT\mathcal{OBLOT} robot model, i.e., the robots have no persistent memory and no explicit means of communication. The robots have full unobstructed visibility. This work proposes an algorithm that solves the APF problem in a fully asynchronous scheduler under this setting assuming the initial configuration is asymmetric. The considered performance measures of the algorithm are space and number of moves required for the robots. The algorithm is asymptotically move-optimal. A definition of the space-complexity is presented here. We observe an obvious lower bound D\mathcal{D} of the space complexity and show that the proposed algorithm has the space complexity D+4\mathcal{D}+4. On comparing with previous related works, we show that this is the first proposed algorithm considering OBLOT\mathcal{OBLOT} robot model that is asymptotically move-optimal and has the least space complexity which is almost optimal

    Fire ant self-assemblages

    Get PDF
    Fire ants link their legs and jaws together to form functional structures called self- assemblages. Examples include floating rafts, towers, bridges, and bivouacs. We investigate these self-assemblages of fire ants. Our studies are motivated in part by the vision of providing guidance for programmable robot swarms. The goal for such systems is to develop a simple programmable element from which complex patterns or behaviors emerge on the collective level. Intelligence is decentralized, as is the case with social insects such as fire ants. In this combined experimental and theoretical study, we investigate the construction of two fire ant self-assemblages that are critical to the colony’s survival: the raft and the tower. Using time-lapse photography, we record the construction processes of rafts and towers in the laboratory. We identify and characterize individual ant behaviors that we consistently observe during assembly, and incorporate these behaviors into mathematical models of the assembly process. Our models accurately predict both the assemblages’ shapes and growth patterns, thus providing evidence that we have identified and analyzed the key mechanisms for these fire ant self-assemblages. We also develop novel techniques using scanning electron microscopy and micro-computed tomography scans to visualize and quantify the internal structure and packing properties of live linked fire ants. We compare our findings to packings of dead ants and similarly shaped granular material packings to understand how active arranging affects ant spacing and orientation. We find that ants use their legs to increase neighbor spacing and hence reduce their packing density by one-third compared to packings of dead ants. Also, we find that live ants do not align themselves in parallel with nearest neighbors as much as dead ants passively do. Our main contribution is the development of parsimonious mathematical models of how the behaviors of individuals result in the collective construction of fire ant assemblages. The models posit only simple observed behaviors based on local information, yet their mathe- matical analysis yields accurate predictions of assemblage shapes and construction rates for a wide range of ant colony sizes.Ph.D

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp
    • …
    corecore