18,036 research outputs found

    Instruction-Level Abstraction (ILA): A Uniform Specification for System-on-Chip (SoC) Verification

    Full text link
    Modern Systems-on-Chip (SoC) designs are increasingly heterogeneous and contain specialized semi-programmable accelerators in addition to programmable processors. In contrast to the pre-accelerator era, when the ISA played an important role in verification by enabling a clean separation of concerns between software and hardware, verification of these "accelerator-rich" SoCs presents new challenges. From the perspective of hardware designers, there is a lack of a common framework for the formal functional specification of accelerator behavior. From the perspective of software developers, there exists no unified framework for reasoning about software/hardware interactions of programs that interact with accelerators. This paper addresses these challenges by providing a formal specification and high-level abstraction for accelerator functional behavior. It formalizes the concept of an Instruction Level Abstraction (ILA), developed informally in our previous work, and shows its application in modeling and verification of accelerators. This formal ILA extends the familiar notion of instructions to accelerators and provides a uniform, modular, and hierarchical abstraction for modeling software-visible behavior of both accelerators and programmable processors. We demonstrate the applicability of the ILA through several case studies of accelerators (for image processing, machine learning, and cryptography), and a general-purpose processor (RISC-V). We show how the ILA model facilitates equivalence checking between two ILAs, and between an ILA and its hardware finite-state machine (FSM) implementation. Further, this equivalence checking supports accelerator upgrades using the notion of ILA compatibility, similar to processor upgrades using ISA compatibility.Comment: 24 pages, 3 figures, 3 table

    Trojans in Early Design Steps—An Emerging Threat

    Get PDF
    Hardware Trojans inserted by malicious foundries during integrated circuit manufacturing have received substantial attention in recent years. In this paper, we focus on a different type of hardware Trojan threats: attacks in the early steps of design process. We show that third-party intellectual property cores and CAD tools constitute realistic attack surfaces and that even system specification can be targeted by adversaries. We discuss the devastating damage potential of such attacks, the applicable countermeasures against them and their deficiencies

    Towards composition of verified hardware devices

    Get PDF
    Computers are being used where no affordable level of testing is adequate. Safety and life critical systems must find a replacement for exhaustive testing to guarantee their correctness. Through a mathematical proof, hardware verification research has focused on device verification and has largely ignored system composition verification. To address these deficiencies, we examine how the current hardware verification methodology can be extended to verify complete systems

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

    Full text link
    We introduce SysML-Sec, a SysML-based Model-Driven Engineering environment aimed at fostering the collaboration between system designers and security experts at all methodological stages of the development of an embedded system. A central issue in the design of an embedded system is the definition of the hardware/software partitioning of the architecture of the system, which should take place as early as possible. SysML-Sec aims to extend the relevance of this analysis through the integration of security requirements and threats. In particular, we propose an agile methodology whose aim is to assess early on the impact of the security requirements and of the security mechanisms designed to satisfy them over the safety of the system. Security concerns are captured in a component-centric manner through existing SysML diagrams with only minimal extensions. After the requirements captured are derived into security and cryptographic mechanisms, security properties can be formally verified over this design. To perform the latter, model transformation techniques are implemented in the SysML-Sec toolchain in order to derive a ProVerif specification from the SysML models. An automotive firmware flashing procedure serves as a guiding example throughout our presentation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163
    • …
    corecore