1,209 research outputs found

    Mixed-integer-linear-programming-based energy management system for hybrid PV-wind-battery microgrids: Modeling, design, and experimental verification

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksMicrogrids are energy systems that aggregate distributed energy resources, loads, and power electronics devices in a stable and balanced way. They rely on energy management systems to schedule optimally the distributed energy resources. Conventionally, many scheduling problems have been solved by using complex algorithms that, even so, do not consider the operation of the distributed energy resources. This paper presents the modeling and design of a modular energy management system and its integration to a grid-connected battery-based microgrid. The scheduling model is a power generation-side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data. The operation of the microgrid is complemented with a supervisory control stage that compensates any mismatch between the offline scheduling process and the real time microgrid operation. The proposal has been tested experimentally in a hybrid microgrid at the Microgrid Research Laboratory, Aalborg University.Peer ReviewedPostprint (author's final draft

    Distributed energy resources in grid interactive AC microgrids

    Get PDF

    Power Management of A Microgrid with A Distributed Energy Storage in Grid Connected and Islanded Modes

    Get PDF
    Control and operation of a microgrid can be operated at grid connected or islanded modes. In this paper, the microgrid consists of a Diesel, PV modules with a distributed energy storage system, loads, and inverter. The purpose of power management is to control the stability of the system to cope with changes in load and interconnection with other networks. The stability of the microgrid is also obtained by setting the load connected to the system. Power management is also controls the operation of each plant based on the condition of the energy sources used as a source of generation. In islanded mode, the main goal of power management is to stabilize the system, in terms of frequency and voltage. In grid connected mode, typical objectives are to minimize the price of energy import at the point of common coupling (PCC)

    Microgrid, Its Control and Stability: The State of The Art

    Get PDF
    Some of the challenges facing the power industries globally include power quality and stability, diminishing fossil fuel, climate change amongst others. The use of distributed generators however is growing at a steady pace to address these challenges. When interconnected and integrated with storage devices and controllable load, these generators operate together in a grid, which has incidental stability and control issues. The focus of this paper, therefore, is on the review and discussion of the different control approaches and the hierarchical control on a microgrid, the current practice in the literature concerning stability and the control techniques deployed for microgrid control; the weakness and strength of the different control strategies were discussed in this work and some of the areas that require further research are highlighted

    Challenges for the Goal of 100% Renewable Energy Sources to Fit the Green Transition

    Get PDF
    The increasing penetration of Renewable Energy (RE) into the electrical market is desirable in terms of sustainability. Nevertheless, it is a challenge that all the interested actors shall address from both the technical and economical points of view. This paper provides an overview of the main challenges and solutions towards the technological transition to an electrical system with 100% renewable energy sources in terms of innovations and operative limits of the traditional systems. These innovative paradigms will also address the social impact and government policies
    • …
    corecore