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Abstract: Microgrids create conditions for efficient use of integrated energy systems containing
renewable energy sources. One of the major challenges in the control and operation of microgrids
is managing the fluctuating renewable energy generation, as well as sudden load changes that can
affect system frequency and voltage stability. To solve the above problems, hierarchical control
techniques have received wide attention. At present, although some progress has been made in
hierarchical control systems using classical control, machine learning-based approaches have shown
promising features and performance in the control and operation management of microgrids. This
paper reviews not only the application of classical control in hierarchical control systems in the last
five years of references, but also the application of machine learning techniques. The survey also
provides a comprehensive description of the use of different machine learning algorithms at different
control levels, with a comparative analysis for their control methods, advantages and disadvantages,
and implementation methods from multiple perspectives. The paper also presents the structure of
primary and secondary control applications utilizing machine learning technology. In conclusion, it
is highlighted that machine learning in microgrid hierarchical control can enhance control accuracy
and address system optimization concerns. However, challenges, such as computational intensity,
the need for stability analysis, and experimental validation, remain to be addressed.

Keywords: microgrids; hierarchical control; machine learning; reinforcement learning; communication
links

1. Introduction

Distributed generators (DG) can effectively improve the utilization efficiency of clean
energy, accelerate the energy transformation to be more sustainable, and reduce generation
costs. Strategically placing distributed generators (DGs) within the power systems can
yield several benefits, such as reducing peak operating costs and power losses, improving
voltage distribution, meeting load requirements, and enhancing overall system reliability
and integrity [1,2]. However, the deployment of DGs also faces challenges. DGs may bring
adverse effects such as inrush current, voltage deviation, and voltage fluctuation in the
distribution networks. For example, wind and solar energy are inherently random and
intermittent, making it difficult to provide sustained and stable power. The instability of
energy output may weaken the role of DGs [3,4]. Therefore, once these distributed systems
are not effectively controlled, the stability of the system can be significantly affected [5].

To address such challenges, scholars put forward the concept of a microgrid [6]. A
microgrid is a small power generation system composed of distributed power sources,
energy storage devices capable of bidirectional transmission, efficient energy conversion
equipment, associated loads, and monitoring and protection equipment for the opera-
tion [7]. Microgrids can successfully solve problems caused by multiple DG units, making
the large-scale application of DG systems possible [8]. A microgrid system can be oper-
ated in islanded mode or grid-connected mode. In the islanded mode, all reactive and
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active power required for loads connected to the microgrid are supplied by the DGs [9],
and proper distribution of power needs to be in accordance with the capacity of DGs. In
grid-connected mode, the microgrid gets the system frequency and follows connection
requirements as specified in the grid codes [10]. For islanded microgrids, it is very critical to
maintain the stability of the system and realize load power sharing among multiple parallel
DG units [11]. Generally, more control is required than in grid-connected microgrids. If the
power cannot be accurately shared or voltage deviation exists, system stability and power
quality will deteriorate. In addition, the voltage and frequency of the islanded microgrid
are no longer controlled by the main grid [12]. The power output fluctuations of intermit-
tent DGs can lead to severe deviations in frequency and voltage without proper control
strategies. In addition, economy, power quality, and power flow need to be considered.
Therefore, several hierarchical control strategies have been proposed for different operating
conditions, which mainly include primary, secondary, and tertiary control [13].

Artificial intelligence (AI) and big data applications have been widely used in recent
years to improve traditional control systems. AI uses machine learning (ML) to process
large amounts of data input, becoming one of the most popular solutions [14,15]. ML
technology makes decisions based on measured data and can achieve more efficient and
safe control under complex conditions [16,17]. Therefore, ML technology with powerful
data processing and computing power have the potential to realize the full utilization of
multiple DG systems [18]. For the hierarchical control system of a microgrid, ML technology
has broad application prospects [19]. For example, in the primary and secondary levels
of control, ML algorithms can be used to improve the accuracy of control parameters in
control loops to achieve optimal control. In the tertiary control, a ML algorithm can be
used to generate an optimal reference point for achieving improved operation in terms of
economy, efficiency, and reliability among many others.

This paper aims to provide a comprehensive analysis of recent research on microgrid
hierarchical control, specifically focusing on the control schemes and the application of
machine learning (ML) techniques. Existing literature includes some works summarizing
the application of AI techniques in microgrids. For instance, ref. [7] focused more on
artificial neural networks (ANN) in microgrid ML techniques, while [16] reviewed ML
application for network attack protection only. Additionally, ref. [20] discussed the usage
of AI techniques in microgrids, with a particular emphasis on energy management and
load forecasting. However, there is currently no literature that thoroughly summarizes and
compares the various aspects of ML techniques in microgrid hierarchical control. Therefore,
this paper tries to establish a generic structure based on ML techniques for researchers in
primary and secondary control sections to make it easier for researchers to understand the
control logic of ML techniques in hierarchical control. Another purpose of this article is to
compare and analyze the advantages and disadvantages, control structure, and validation
environment of ML technology applied at each level of hierarchical control, to make it
easier for readers to clearly comprehend, and to analyze the future technology trends. The
focus of this paper is to review the application of ML and other control methods in different
control levels of microgrids over the past years. The main contributions are as follows.

1. Summarizing the main control modes in the hierarchical control of microgrids through
a literature survey over the past five years;

2. Analyzing the application status of ML technology in each level of control and review-
ing the application of different ML technologies;

3. Reviewing, analyzing, and discussing the communication problems of the hierarchical
control system.



Sustainability 2023, 15, 8952 3 of 22

2. Overview of Microgrid Control
Hierarchical Microgrid Structure

Figure 1 shows the principle of microgrid hierarchical control, which can operate
islanded as well as grid-connected, and combined heat power (CHP), photovoltaic system
(PV), wind power system, and energy storage system (ESS), etc., and can be used as the
basic unit of a microgrid power generation system. IEEE 1547 [21] provides a reference
standard for building microgrids and interconnecting them to the grid. G99 [22] is the UK
standard for grid integration of DG. IEEE 2030.7 [23] provides operational test verification
of DG control systems. IEC 61850 [24] provides a reference standard for communication
requirements with data models [25]. IEC 62351 [26] develops security protocols for micro-
grid communication systems. The hierarchical control in the Figure 1 consists of primary,
secondary, and tertiary control. Primary control maintains a stable voltage/frequency and
does not require a communication link because it operates in a local control structure of a
DG, also known as local control (LC) [27]. Droop control is widely used in local control. As
for conventional droop control, due to the influence of DG feeder line impedance mismatch,
the problem of active and reactive power sharing is unavoidable. Voltage frequency devia-
tions generated by primary control are compensated by secondary control [28]. Centralized
control and distributed control are two types of secondary control. The central controller is
a clear sign of centralized control, which can be used to make optimal control decisions
for the operation of the microgrid [9]. In distributed secondary control, all DGs use local
information from adjacent DGs to keep the voltage/frequency at rated values. The tertiary
control operates at the highest level in the control hierarchy aiming to improve, for example,
the power quality by monitoring the energy exchange between microgrid and the main
grid, ensuring safe use and economic benefits of the users [14]. No matter which scheme
the microgrid operates in, analyzing the above problems is indispensable. Therefore, it is
essential to improve the control of the microgrid.

Sustainability 2023, 15, x FOR PEER REVIEW 3 of 23 
 

2. Overview of Microgrid Control 
Hierarchical Microgrid Structure 

Figure 1 shows the principle of microgrid hierarchical control, which can operate is-
landed as well as grid-connected, and combined heat power (CHP), photovoltaic system 
(PV), wind power system, and energy storage system (ESS), etc., and can be used as the 
basic unit of a microgrid power generation system. IEEE 1547 [21] provides a reference 
standard for building microgrids and interconnecting them to the grid. G99 [22] is the UK 
standard for grid integration of DG. IEEE 2030.7 [23] provides operational test verification 
of DG control systems. IEC 61850 [24] provides a reference standard for communication 
requirements with data models [25]. IEC 62351 [26] develops security protocols for mi-
crogrid communication systems. The hierarchical control in the Figure 1 consists of pri-
mary, secondary, and tertiary control. Primary control maintains a stable voltage/fre-
quency and does not require a communication link because it operates in a local control 
structure of a DG, also known as local control (LC) [27]. Droop control is widely used in 
local control. As for conventional droop control, due to the influence of DG feeder line 
impedance mismatch, the problem of active and reactive power sharing is unavoidable. 
Voltage frequency deviations generated by primary control are compensated by second-
ary control [28]. Centralized control and distributed control are two types of secondary 
control. The central controller is a clear sign of centralized control, which can be used to 
make optimal control decisions for the operation of the microgrid [9]. In distributed sec-
ondary control, all DGs use local information from adjacent DGs to keep the voltage/fre-
quency at rated values. The tertiary control operates at the highest level in the control 
hierarchy aiming to improve, for example, the power quality by monitoring the energy 
exchange between microgrid and the main grid, ensuring safe use and economic benefits 
of the users [14]. No matter which scheme the microgrid operates in, analyzing the above 
problems is indispensable. Therefore, it is essential to improve the control of the mi-
crogrid. 

Tertiary 
control

Secondary 
control

Primary 
control

DG: Wind

Function

Loads

re
sp

on
se

 ti
m

e

Maintain the  voltage, 
frequency ；

Power sharing

System detection, 
protection;  

Compensate voltage, 
frequency  

Energy management; 
 optimal power flow; 
economic dispatch

Level AC bus

DC bus

DG: PV DG: ESS CHP

PCC

Loads

 
Figure 1. Principle of microgrid hierarchical control. 

In Figure 2, the different control modes applied to each control layer are summarized. 
The control mode based on ML technology has become a leading research direction of 
scholars in past years, especially at the secondary and tertiary control level. 

Figure 1. Principle of microgrid hierarchical control.

In Figure 2, the different control modes applied to each control layer are summarized.
The control mode based on ML technology has become a leading research direction of
scholars in past years, especially at the secondary and tertiary control level.
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3. Review of Hierarchical Control Methods
3.1. Primary Control

Primary control is the lowest control level of hierarchical control that achieves stable
microgrid operation by maintaining the power sharing of DGs. Droop control is widely
used in primary control, but its accuracy and dynamic performance have to be improved.
In the field of power systems, the ML algorithm has been mainly applied in the areas of
load/power prediction [29,30], grid fault detection, and diagnosis, while its role in fields
such as operation control remains still to be explored. The application of ML algorithms is
discussed extensively in the following sections.

3.1.1. Traditional Primary Control

Due to the influence of power lines impedance mismatch, the problem of active and
reactive power sharing is unavoidable using conventional droop control [31]. In [32], the
authors used the measured current instead of active power and reactive power in droop
control in order to distribute the reactive power. However, the frequency deviation is not
considered. A VI (voltage current)-based droop control based on global positioning system
(GPS) timing has been proposed in [33], where the voltage and current measurements are
used instead of active and reactive power used in traditional droop control. Although a
precise distribution of reactive power can be achieved, this method ignores the impact of
unbalanced loads on the system and is not suitable for complex microgrid systems. In [34],
the authors proposed a dispatchable droop control method, which can realize automatic
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power regulation in a short time on DG so that the system can intervene the control on a
large time scale. In [35], it was proposed that the virtual multi-slack (VMS) droop control,
which used one physical slack generator directly to control the magnitude and phase
angle of its bus voltage, can significantly improve voltage and frequency stability and
achieve accurate distribution of the reactive power. However, this method is susceptible
to interference from external factors, such as virtual slack matrix. In [36], droop control
based on f-P/Q was used to extend the scope of application under resistive–inductive
and resistive–capacitive coupling in the microgrid. In [37], a distributed mixed voltage
angle and frequency droop control was proposed to achieve an accurate reactive power
distribution. However, the system is prone to measurement losses. In [38], an adaptive
droop control was proposed, which sets the current and voltage controller in traditional
droop control to achieve an accurate power distribution. However, this undoubtedly
increases the cost of the control process. In [39], a model predictive control was used to
obtain droop control gain. The droop control gain is no longer a constant value, but it
is dynamic, and a more accurate reactive power distribution can be achieved. However,
this method requires setting of an additional control center, which increases the control
costs. In [40], a band-pass filter-based droop control was proposed where the method
can enhance voltage and frequency regulation by reducing response time, overshoot, and
steady-state error. A multivariable-droop control was proposed in [41], which can achieve
low steady-state error and a fast response by decoupling of d- and q-axis currents.

In [42], the concept of an adaptive virtual impedance was proposed; adding virtual
impedance to droop control is one of the common improvements. The virtual impedance
scheme is achieved by adding a feedback control structure to the inverter control, which
is equivalent to a series of analogy resistors or reactance in the line, but the actual line
parameters remain unchanged. Hence, the utilization of virtual impedance is a preferable
alternative to incorporating transformers or large inductors as it eliminates the introduction
of additional power losses. However, since the line parameters are unknown, the virtual
impedance values are difficult to determine and in practice are usually chosen to be much
larger than the line parameters, which increases the equivalent output impedance of the
inverter, resulting in a significant drop in system voltage, having a negative impact on
the stable operation of the microgrid. How to select the virtual impedance accurately
has become one of the hot topics in research. In [43], they used an adaptive virtual
impedance based on a consensus algorithm, which can achieve reactive power distribution
without measuring the line impedance information at any time. A two-level adaptive
virtual impedance on a GPS synchronization-based controller was used in [44], where the
system has a better stability, but it has large communication burden. The adaptive virtual
impedance method can improve the reactive power allocation problem and improve the
stability of the system, but an accurate adaptive coefficient should be obtained.

3.1.2. Application of ML in Primary Control

As a further improvement of the distributed control, AI-based ML schemes use reward
feedback to assess the quality of solutions [45]. AI offers plenty of opportunities to enhance
the hierarchical control in islanded microgrids. In [46], the authors proposed a data-
driven primary control-based scheme that transforms the control process into a convex
optimization problem. This scheme can improve transient performance, while providing
power sharing and voltage and frequency restoration where the parameters of the feeder
line are not required. The authors in [47,48] proposed an ANN-based droop control
for optimal droop gain and improved the distribution accuracy, whereas [47] used a
feedforward neural network (FFN) under AC microgrid and [48] used an ANN under DC
microgrid conditions. In [49], the authors added an ANN-based controller in the current
loop, which can realize better DC bus voltage regulation. In [50], the authors proposed a
discrete time distributed neural network (NN); based on a data-driven application in the
primary control, a new control structure is adopted, which uses neural network to learn
the control method rather than just using traditional static droop control. Authors in [51]
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proposed an adaptive compensation control strategy based on the adaptive neuro-fuzzy
inference system (ANFIS), to get better fuzzy rules, which is demonstrated to improve
the system stability. In [52], a novel distributed reinforcement learning (DRL) strategy
was proposed to coordinate the current sharing and voltage restoration. In [53], the
authors proposed an intelligent weighted power dispatching control method assisted by
ML to control the active power dispatch of a diesel generator, battery storage system,
and largescale photovoltaic system, which ensures the power balance of the system. A
dynamic droop control strategy based on distributed data-driven Q-learning technology
was proposed in [54], which can realize an independent compensation of voltage frequency.
A summary of ML-based techniques for primary control in MGs is given in Table 1. Figure 3
also illustrates the primary control of a microgrid based on ML, where the primary control
agent sends voltage and frequency signals to the voltage and current control circuit. The
system will operate according to the signals above by outputting active and reactive power
values. At this point, the agent will use the P and Q values collected by the system as
state values to determine whether they meet the control requirements, and if they do not
meet the requirements, the output u, f will be adjusted, i.e., the agent will update the
output voltage and frequency based on the parameters received until the best strategy is
obtained. In Figure 3, the main ML algorithms used can be classified as neural networks,
reinforcement learning, supervised learning, unsupervised learning, and semi-supervised
learning. Previous studies [17,19,20,55] have provided insights into the methods of ML
and the underlying principles of different algorithms. The agent can be based on droop
control outputs such as [47,48,51,53,54]. The data-driven based control schemes are also a
promising alternative to the traditional droop control strategies such as [46,50].
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3.2. Secondary Control

The secondary control has the role of detecting, protecting, and effectively restoring
the operating system in order to achieve a stable operation with a main function of voltage
and frequency compensation for the primary control [4,5]. Studies on traditional controllers,
such as proportional integral controller (PI), model predictive control (MPC), and consensus,
have rarely stopped proposing improvements, and at the same time, ML-based secondary
control has been proposed and emerged.
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Table 1. Summary of ML-based techniques for primary control.

Ref. Method Structure Advantages Disadvantages Demonstration

[46]
Convex optimization

method based on
data-driven control

Distributed
Improve transient

performance, without
physical parameters of grid

No plug-and-play, poor
scalability

Real-time
experiment

[47]
Droop control based

on feed forward
neural network

Centralized Improve the accuracy of
power-sharing No stability analysis Simulation

[48]
Droop control based
on artificial neural

network
Centralized

Voltage stability can be
maintained independently

while power sharing is
achieved

No stability analysis,
ignore communication

delay
Simulation

[49] ANN-based controller
in current loop Distributed

Improve power-sharing
between battery and

supercapacitor, maintain
state-of-charge within

boundaries

No stability analysis Real-time
experiment

[50]
Discrete-time

distributed NN based
data-driven control

Distributed

Achieves an optimal
trade-off between voltage

regulation and reactive
power sharing

The existence and
convergence analysis of
integrated optimization
and dynamic consensus

parts are neglected

Simulation

[51]

An adaptive
compensation control

strategy based on
ANFIS

Distributed Improve the system stability
and robustness

Ignore communication
delay

Real-time
experiment

[52]

A DRL-based control
on current sharing and

effective voltage
restoration

Distributed

High computational
efficiency and robustness,
the best solution can be

found

The effect of line
impedance is ignored Simulation

[53]
Intelligent weighted
power scheduling

control aided by ML
Distributed

A new control structure
with smaller active power

deviation

Large amount of
calculation Simulation

[54] Data-driven
Q-Learning Distributed

Achieve autonomous
frequency synchronization

and voltage restoration

Ignore communication
delay Simulation

3.2.1. Traditional Secondary Control

In [56], the authors used a proportional integral controller (PID) to compensate for
the voltage and frequency and the authors in [57] proposed to use a frequency compen-
sation method based on PI-particle swarm optimization (PSO) control, which collected
the frequency deviation and sent it to the PI-PSO controller afterwards in order to get the
compensation value. The PSO algorithm also realized the optimal values of PID control
parameters, which reduced the settling time, overshoot, and oscillations. In [58], the paper
proposed a PI-consensus controller to minimize the error of the voltage and reactive power.
In [59], the authors proposed a cooperation control based on a PI controller to restore the
voltage and frequency to the rated value without any primary-level droop control. In
order to improve the traditional PID-based control scheme, since it requires manually recti-
fied parameters, ref. [60] proposed the application of fractional-order integral proportional
derivative with filter (IPDF) based on the imperialistic competitive algorithm (ICA); ref. [61]
proposed a two-stage fractional-order PID controller based on imperialistic competitive
algorithm; ref. [62] proposed a control strategy using fuzzy tilted integral derivative (FTID)
and filter plus double integral (FTIDF-II); and ref. [63] proposed a control scheme based on
tilted differential filter–tilted integral differential filter (TDF–TIDF) controller.
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In [64], the authors used an MPC on primary and secondary control, which reduced the
time delay in the system. In [65], a secondary frequency control based on MPC for realizing
aggregation and disaggregation multiple DGs was proposed, which improved the system
robustness and adaptiveness. In [66], a unified model predictive voltage and current control
strategy was proposed for islanded and grid-connected mode transformation, and the
proposed method offered a more robust anti-harmonic capability than conventional methods.
In [67], the authors proposed a decentralized model predictive control (DMPC) method for
unbalanced microgrids, which has the ability to control various microgrid parameters in a
predefined frequency band. Authors in [68] proposed a DMPC control method to maintain
a supply/demand balance within each MG to stabilize the frequency and simultaneously
achieve power exchange at the lowest cost. In [69], the authors achieved u/f compensation
based on MPC in the inner level of the primary control of microgrids. Through utilizing
only local variables to realize the u/f compensation with very high bandwidth, the system
has a faster compensation speed than traditional MPC control methods.

A promising solution to get such features and improved performance of hierarchical
coordinated control in microgrids is to combine agent-based control schemes with graph
theory and dynamic consensus control. In [70], a multi-agent system (MAS) based on a
finite-time global information sharing protocol including primary and secondary control
was proposed to address the voltage restoration and reactive power sharing problem. This
method not only achieved voltage recovery, but also ensured accurate reactive power
sharing for each local DG using plug-and-play characteristics. A distributed consensus
algorithm was proposed in [71] to accurately realize current and reactive power sharing
among DGs in AC and DC microgrids. In [72], a finite-time consensus secondary control
was proposed where the convergence time required for the proposed control strategy
was not affected by the operating state of the islanded microgrid. Authors in [73] used a
consensus algorithm combined with master slave control as a control strategy, significantly
reducing computational complexity. Authors in [74] proposed a new consensus algorithm
with better dynamic performance, which realized system regulation without the need of
current information and reduced the communication and measurement dependency. A
discrete consensus algorithm voltage restoration in secondary control was proposed to
reduce the impact of communication noise on the consensus convergence [75]. In [20], a
consensus-based distributed fixed-time secondary control was proposed, which improved
the convergence speed of the current and voltage for DC microgrids. However, it is
not suitable for fast changing load conditions. In [76], a small AC signal injection-based
secondary frequency control was proposed to eliminate the frequency deviation by injecting
an AC signal into the droop control output.

3.2.2. Application of ML on Secondary Control

Intelligence, strong scalability, and dynamic performance in the regulation of voltage
and frequency in microgrids is not achieved by classical secondary control strategies [77].
Authors in [78] combined the theory of DRL and quantum ML to adaptively obtain an
optimal cooperative control strategy and modify the training performance. The new control
strategy achieved an effective frequency regulation, and also reduced the time delay. A
secondary control based on brain emotion learning method was proposed in [79], and
the algorithm was built on RL to achieve accurate compensation of the droop control.
The computational effort is significantly reduced compared to conventional RL. A deep
deterministic policy gradient method was proposed in [80] to improve the stability of
compensation of voltage and frequency. In [81], the adaptive neuro-fuzzy inference system
(ANFIS) was employed to compensate frequency and improve the speed of frequency
recovery while achieving a proper power distribution. In [82], a new model-based RL
algorithm based on proximal policy is proposed. Under the fast-changing system dynamics,
the proposed method demonstrated superior transition capability and robustness. A neural
inverse optimal distributed cooperative primary and secondary control was introduced
in [83] to achieve seamless switching between islanded and grid-connected operation
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modes. In [84], the authors proposed an innovative online-trained ANN-based control
method to realize reactive power sharing and exchange in a grid with photovoltaic and
wind turbine generators, solid oxide fuel cells, and battery energy storage systems. In [85],
a secondary compensating control for deep learning-based aggregation of thermostatic
control loads (TCLs) is proposed to mitigate voltage imbalance. In [86], the authors pro-
posed a new distributed secondary control scheme based on the combination of Q-learning
and pining control, and built a compensation function through a greedy strategy to realize
frequency and voltage compensation. It has better compensation accuracy and also allows
for plug-and-play operation. In [87], the authors established several neural networks to dis-
tribute the secondary compensation based on an unsupervised ML algorithm and according
to different load conditions. In [88], a platform based on Redis NoSQL (non-structured
query language) database was proposed to implement a DRL-based microgrid MAS sys-
tem, which provided a new idea for the implementation of ML-based microgrid control.
In [89], the authors proposed secondary control of the DL algorithm based on DDPG for
an islanded DC microgrid to solve the problems of voltage deviation and current sharing.
In [90], a RL-based scheme was proposed for secondary frequency control. This method
effectively handled general cases of resistive and inductive lines and load impedances,
parameter uncertainties, time varying loads, and disturbances. No prior knowledge about
the system dynamics was required once using this adaptive control approach, but how
to compensate for the voltage remained in question. The proposed scheme in [91] could
adjust for the control parameters adaptively, make frequency deviations to converge to a
minimum through an actor-critic algorithm, and prove the convergence of the algorithm.
A summary of ML-based techniques for secondary control in MGs is given in Table 2. In
recent years, RL algorithms have also been popular for secondary control applications,
such as in [77,79,80,82,86,89,90].

Figure 4 shows a typical implementation of secondary control of microgrid based
on ML techniques. As it can be seen, the agent in the secondary generates the voltage
compensation value and frequency compensation value, ∆ f , in terms of primary control
based on droop control. st and rt are state variables and reward functions for this moment,
and st+1 and rt+1 are the next moment. The agent takes the underlying control loop
containing the primary control as the control environment and collects the output control
state parameters, such as active power, frequency, reactive power, and voltage, from this
control environment. Then, through ML algorithms, it obtains the voltage and frequency
compensation for the primary control and adjusts the needed compensation through the
reward function until an optimal value is obtained [76].
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Table 2. Summary of ML-based techniques for secondary control.

Ref. Method Structure Advantages Disadvantages Demonstration

[78]
Multi-agent quantum
deep reinforcement

learning
Distributed

Achieved effective frequency
regulation and reduced time

delay
No stability analysis Simulation

[79] Brain emotional learning Distributed

Ensures low steady-state
variations with higher
bandwidth and reduce

calculation

The simulation only
considers two DGs

without considering
complex scenarios

Real-time
experiment

[80]
Deep deterministic policy

gradient based on
Q-learning

Centralized Improve the output voltage
and frequency stability

Higher requirements for
communication links Simulation

[81] Adaptive neuro-fuzzy
inference system Distributed

Improve the speed of
frequency recovery while

achieving power distribution

Large amount of
calculations Simulation

[82]

A model-based
reinforcement learning

algorithm based on
proximal policy

Distributed Better transfer capabilities
and robustness

Low computational
efficiency Simulation

[83] Neural inverse optimal
distributed cooperative Distributed

Achieve seamless switching
between islanded and
grid-connected model

The effect of inconsistent
line impedance is ignored Simulation

[84] Adaptive neural
networks Centralized High robustness and the

self-adaptation ability
Ignore communication

delay Simulation

[85] Deep learning based
artificial neural network Distributed Maintain system stability,

hance power quality No stability analysis Simulation

[86] Q-learning and pining
control Distributed

The compensation accuracy is
higher and only needs

compensation for pinned
node nodes and
plug-and-play

Over reliance on
communication systems,
ignore communication

delay

Simulation

[87] Unsupervised machine
learning Distributed Improvement of accuracy of

neural network model Insufficient data samples Simulation

[89] DRL based DDPG Distributed
Achieve voltage restoration

and current sharing and
plug-and-play

No stability analysis Simulation

[90] Actor-critic-based
reinforcement learning Distributed

Without a priori known
dynamics of the system and

compensate for the uncertain
dynamics of DG

Ignore reactive power
sharing problem Simulation

3.3. Tertiary Control

Although the generation scale of microgrids is smaller than that of the main grids,
power flow control and economic control are also indispensable [9]. Therefore, the hierarchi-
cal control strategy uses tertiary control to ensure that DGs are dispatched optimally under
different operating conditions. The application objectives of tertiary control are mainly
scheduling and economic related issues, such as energy management, improvement of
power quality, optimal power flow, operation scheduling, and economic dispatched [4]. The
optimal power exchange between the microgrid and the main grid can also be achieved in
grid-connected mode. In recent years, the research in application of machine learning-based
control algorithms for tertiary control has been effectively promoted and many effective
control schemes have been put forward.

3.3.1. Traditional Tertiary Control

In [92], to reduce the generation cost of the hierarchical control system, authors
proposed tertiary control based on an improved grey wolf algorithm to regulate active
and reactive power of DG output. In [93], the authors proposed adaptive distributed
averaging integral control to achieve economic optimization in tertiary control, which
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provides better flexibility for changing the DG output. In [94], the authors put forward
a distributed-consensus-based control scheme, which combined secondary control with
tertiary control. This scheme can realize economic output power of DG and voltage
regulation as well. In [95], the authors used a notch filter to suppress harmonic current
and achieve power reference tracking in tertiary control. In [96], the authors proposed an
MPC-based aggregation scheme of energy storage systems to achieve energy management,
which reduced the unnecessary calculations. In [97], in order to improve the stability
of output power, a strategy of fuzzy optimized distributed cooperative control was put
forward to make the system run smoothly, but the influence of transmission line impedance
on the system was not considered at all. In [98], two-level layers control based on consensus
algorithm was proposed to solve the optimal power flow problem and improve the overall
system stability.

3.3.2. Application of ML in Tertiary Control

Data-driven methods emphasizing ML techniques to solve optimal power flow
(OPF) have been presented in [99,100] and have proven to be efficient enough to address
the technical challenges associated with DG uncertainties and voltage regulation. A
data driven-based OPF solution for multiple DGs was presented in [99] that learns the
control policies associated with each DG to substitute the solution to a centralized OPF
from exclusively local information. This approach requires no manual controller tuning
and little or no real-time communication. In [100], based on ML, a decentralized DG
optimal dispatching method with positive dynamic characteristics has been proposed,
which avoids excessive communication structures and can manage the power output
better than existing control schemes. Likewise, [101] proposed an ML-based optimal
control scheme considering various DGs, which includes active, reactive, and load control.
In [102], the authors realized the smooth charging and discharging of energy storage
unit control by NN and online RL; the new control system has high controllability and
reduces disturbance. In [103], an ANN control algorithm based on autoregressive moving
average has been proposed to realize power optimization regulation, which improves the
stability of the system and takes into account the harmonic effect. In [104], the authors
proposed a cloud-based ANN algorithm in tertiary control to reduce the operating costs.
In [105], it was proposed to use a ML algorithm based on modified whale optimization for
tertiary control, which enables the system to operate economically under grid-connected
or islanded modes. In [106], a dynamic distributed multi-microgrid and Monte Carlo tree
search-based RL was proposed for a DC microgrid to perform optimal power control. In
order to realize an energy management system for cost-effective operation, a QL algo-
rithm based on mixed integer non-linear programming was proposed in [107]. In [108],
a reactive power optimization scheme based on Q-learning technology of graph convo-
lution network was proposed, where the parameters of each agent are used to achieve
more accurate operating points. In [109], the authors proposed a new RL technology,
which the RL will learn from good samples rather than from a wide state space of data.
Based on simulation learning, an online scheduling optimization method was proposed,
which reduces the amount of calculation and complexity, improves the practicability, and
reduces the operating cost of the system [110]. However, the effect of system interference
is not considered. For the tertiary control of a DC microgrid, a consistency control system
based on long-term and short-term deep learning was proposed in [111]. Tertiary control
based on distributed RL was put forward in [112], where a learning model of the depth
determination gradient algorithm was established for each DG to achieve the optimal
solution of energy management. A new optimal power allocation solution was proposed
in [113], which is based on a consensus algorithm and a distributed depth neural net-
work to obtain approximate values and effectively reduce the computational burden. A
summary of ML-based techniques for tertiary control in MGs is given in Table 3.
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Table 3. Summary of ML-based techniques for tertiary control.

Ref. Method Objective Structure Advantage Disadvantage Demonstration

[99] Regression ML Optimal power
flow Distributed Without communication

link
Disturbance is not

considered Simulation

[100]
Supervised ML
support vector

regression

Optimal power
flow Distributed

Avoids excessive
communication

structures
No stability analysis Simulation

[101] Supervised ML Optimal power
flow Decentralized

Respect constraints on
voltage, equipment
specifications, and

power capacity

Large amount of
calculation Simulation

[102] RL based online
optimal control

Optimal power
flow Distributed

Reduce the disturbances
caused by C and D of

various energy storage
devices

Ignore
communication delay

Real-time
experiment

[103]

Autoregressive
moving average and

artificial neural
networks

Optimal power
flow Distributed Improve stability,

harmonic is considered
Ignore

communication delay Simulation

[104]
A cloud-based ML
using an artificial
neural network

Islanded
detection Centralized Less data traffic,

decrease the cost

The operation results
under complex

conditions are not
considered

Real-time
experiment

[105]
ML based on

modified whale
optimization

Optimal power
flow Centralized More economic Disturbance is not

considered Simulation

[106]

Monte Carlo tree
search-based
reinforcement

learning

Optimal power
flow Centralized

Maintaining system
security constraints

while solving economic
problems

Disturbance is not
considered Simulation

[107] MINLP-QL Energy
management Centralized Reduce costs and

calculations
Large amount of

calculation Simulation

[108] Based on GCN and
deep Q-learning

Optimal power
flow Centralized

Achieves more accurate
reactive power

compensation and
better voltage stability

Ignore
communication delay Simulation

[109]

A novel RL technique
based on classical
recurrent neural

networks

Energy
management Centralized

Fast learning systems
with a small number of

training samples

Uncertainty and
interference are not

considered
Simulation

[110]
A novel imitation

learning based online
scheduling

Optimal power
flow Centralized

Reduced complexity
and computational

effort, increased
efficiency

Uncertainty and
interference are not

considered
Simulation

[111]
Long short-term

memory deep
learning models

Energy
management Distributed

Stabilize the bus
voltages and achieve
higher endurability

Large amount of
calculation

Real-time
experiment

[112] Deep reinforcement
learning

Energy
management Distributed

Reduce the
computational

complexity, avoids the
leakage of private keys

Ignore
communication delay Simulation

[113] Deep neural network Optimal power
flow Distributed

Take less computational
time and achieve

real-time optimization

Ignore energy storage
system Simulation

3.4. Communication Network

In the above control methods, both centralized control (as shown in Figure 5) and
distributed control (as shown in Figure 6) schemes require information exchange [5,114].
Such information exchange is scheduled according to the specified communication cycles.
For distributed control, each agent needs to update its status information to its neighboring
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nodes at each iteration. This also makes the use of communication networks more conserva-
tive [9]. When the control messages are passed between DGs, delays inevitably occur, both
in high and low bandwidth communication networks [12,114]. In addition, interference and
data packet loss during communication are also influential factors that must be considered.
Especially when multi-objective control is implemented, the communication network is
prone to delay, packet loss, and other phenomena, which lead to system stability weakening
or even failure in some consensus.

In order to reduce the communication burden, a distributed frequency and voltage
secondary control based on the finite time event-triggered consensus (FETC) scheme was
proposed in [115]. This scheme combined the characteristics of event triggering and limited
time response and was verified by experiments. In [116], the authors proposed a secondary
control based on an event trigger device, which takes into account frequency recovery and
economic dispatching, and sets the combination of the two to be executed at an hourly
scale, thus reducing communication times and costs. In [117], the authors proposed a
simplified distributed event-triggered secondary control without extra state estimators,
which simplifies the design parameters and avoids periodic communication. In [118], a
delay compensated control based on the Artstein model is proposed, which mitigates the
communication delay but ignores the voltage deviation generated by the system. In [55],
the authors proposed a delay minimization scheme based on Q-learning, which minimizes
the delay while allocating resources and does not require much experience. This scheme
has less latency and high fairness. In [119], the authors proposed a control scheme of
multi-agent Bayesian DRL to realize communication among agents. In order to reduce
the impact of communication failure, the authors also proposed a new Bayesian update
method based on which other agent behaviors can be estimated in the event of a failure.
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3.5. Analysis and Technical Summary

The analysis presented above demonstrates the significant achievements of ML tech-
niques in microgrid hierarchical control. ML-based control schemes exhibit superior dy-
namic characteristics compared to traditional approaches, enabling accurate compensation
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and faster response times during load fluctuations. As shown in [80], the control parame-
ters were self-adjusting. The need for a priori data is eliminated in many systems [90]. The
predictive capability of ML techniques greatly enhances control performance. Moreover,
ML techniques can enhance system robustness and stability, as evidenced in [48,85,103].
However, there are several technical challenges associated with ML techniques. These
include the computational complexity and data processing requirements, as well as the es-
tablishment of appropriate reward functions. Furthermore, there is limited research on the
stability analysis of hierarchical control using ML technology, and validation experiments
with physical support are scarce. Additional investigations are necessary to validate the
reliability and effectiveness of ML technology in microgrid control and operation.

The distribution of ML algorithms utilized in microgrid hierarchical control is illustrated
in Figure 7. It is observed that supervised learning and RL are the two primary approaches.
Among the literature employing supervised learning, 61% utilizes neural network-based
control, indicating that neural networks are currently a prominent research area. Regarding
RL, 35% of studies are based on Q-learning, while 56% focus on DRL, both of which are
considered mainstream research directions. Notably, recent research has shown increased
attention towards combining Q-learning with DDPG or MINLP, as well as the application of
DRL with DDPG. However, it is important to address the challenges related to computational
requirements and communication issues associated with these approaches.
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Furthermore, since the existence of renewable energy sources such as solar and wind
energy is influenced by the environment, ML techniques are widely used to predict their
generation capacity and can also be used to predict the consumption of some unstable
users to optimize their energy consumption. Based on ML, [120] proposed solar-based
power generation prediction for complex scenarios and [121] proposed wind-based power
generation prediction. ML can be used to optimize the use of ESS in microgrids to ensure
that energy is stored and used efficiently. In addition, ML can be used to optimize the use
of ESS in microgrids to ensure that energy is stored and used efficiently. The optimal use of
energy storage modules based on ML was given in [30]. By analyzing the ESS operation
data, ML can help the user to set the optimal schedule for charging and discharging the
ESS while considering the energy price and the health of the energy storage unit. ML
techniques are also used to build models to analyze system output parameters and data
obtained by sensors in the environment to detect potential faults and anomalies in the
system and avoid safety problems in the system [104]. In addition, ML techniques can
also be used for energy trading between microgrid participants by analyzing historical
trading data and price markets to enable self-help trading between multiple users and
reduce operating costs. In [122], the authors proposed an RL-based scheme to optimize
trading decisions. In terms of communication network security, protection mechanisms
can also be established using ML techniques to achieve identification of abnormal network
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states and active system protection. In conclusion, ML technology has good prospects for
application in energy and load forecasting, energy storage optimization, fault detection,
energy trading, and communication security.

4. Discussion and Future Scopes

Droop-based primary control using PI controllers has been widely used in islanded/grid-
connected microgrids, but the control parameters may not be precise enough to assure
optimality of the operation in different working conditions. Based on this outcome, ML
control methods based on neural networks and RL have achieved good control results in
parameter selection, but there are still research gaps. There are limited quality datasets
available for selection and the data reliability needs to be improved, so it is difficult to
maintain the high accuracy of the training and validation process. Simultaneously, there is no
standard set of criteria for the selection of machine learning algorithms for different control
requirements. Furthermore, the interpretability of its control process and the accountability of
various control levels are not defined. It is also a major difficulty to establish a mathematical
model for each level of control of the hierarchical control to simulate the behavior of the
microgrid under different operating conditions. The results of the literature review show
that stability analysis of the ML algorithms to ensure a stable operation of the system when
it is disturbed still needs to be analyzed and studied [10]. In addition, under the complex
operating conditions with multiple DGs, issues related to data explosion and complex
calculations, and in real-time microgrid control, it is important to balance model accuracy
and computational performance.

For the secondary control system, compensation methods using consensus algorithm
and PI controllers have been widely studied by scholars; however, the traditional control
methods are difficult to effectively control the complex microgrid configurations, especially
when the system size gets larger with many control parameters [123]. ML-based techniques
can be a good choice to address the secondary compensation issues. Based on the literature
review, some papers give only active frequency control or reactive voltage control based on
ML. However, how to implement both kinds of control based on the proposed algorithm and
establish a complete microgrid hierarchical control system based on ML algorithm needs
to be studied. In addition, the communication link is also a research topic that cannot be
ignored. For microgrid hierarchical control systems, the standardization of communication
protocols and communication structures needs to be enhanced, and how to select message
intervals and communication frame sizes need to be standardized. Consequently, it is
difficult to achieve optimality in terms of communication resource scheduling allocation for
different control functions such as monitoring or protection. Moreover, the optimization
problem in achieving the balance between communication requirements and energy con-
sumption is not sufficiently studied. Preventing communication attacks, protecting private
security, obtaining communication redundancy, solving communication packet loss, and
improving the robustness of communication systems are also research hotspots. The control
scheme based on RL can effectively simplify the communication system, but its stability still
needs to be analyzed. This is because there is always the risk that the RL algorithm does
not ensure accurate prediction of the system behavior under any conditions. Furthermore,
the complexity of the operating system can be influenced by the environment and is full
of uncertainty, for example, wind- and solar-based power generation systems can change
dynamically with the weather [25]. Furthermore, control systems are at risk of cyber-attacks,
which also causes uncertainty in the control system [16]. In a multi-microgrid system, in
parallel to renewable energy variability, there are also load demand instabilities, as well
as equipment failure issues and communication and control uncertainties to consider. The
traditional control methods used for optimizing power flow and economic dispatch in
tertiary control systems have shortcomings such as low computational efficiency and poor
convergence speed. While ML-based control methods give better solutions. In [112,113],
it was evident that distributed control methods for DNN-based ML give better solutions,
which are more economical in terms of results, and simplify the complexity of the algorithm
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and reduce the training time compared to the traditional control scheme. RL and DNN
provide a new concept in solving the inertia control problem of microgrids [124,125]. The
use of algorithms based on a combination of ANN and DRL is an emerging trend in research.
How to accurately plan generation and analyze the impact of load changes on tertiary
control is also an important scope for future research [126].

How to establish an effective control model at each control level of hierarchical control
is a further challenge. In hybrid AC–DC microgrid systems, the lack of effective control
strategies, especially in multi-energy system conditions including fuel cells, will make
the control environment more sophisticated and new control strategies need to be pro-
posed. Additionally, combining ML techniques with other artificial intelligence strategies is
needed to improve control efficiency, especially in online decision making. The internet of
things (IoT) technology and distributed ledger can be adopted to promote the information
exchange capability and security control of microgrid systems, based on which new com-
munication protocols can be explored and new communication standards can be proposed.
Additionally, the economic performance of microgrids can be improved by making them
participate in the autonomous market and allowing them to support each other with other
microgrids. A large amount of valid data is required for training ML models [127], and how
to validate the original data is also an important area to be studied. In addition, from the
literature review, it can be seen that most scholars only validate the results at the simulation
level (Tables 1–3), and how to implement a hardware platform to realize the effectiveness
of the proposed control strategy is also one of the problems to be solved.

5. Conclusions

This paper has reviewed the microgrid hierarchical control literature that has been
published in the past five years, mainly by analyzing the application of ML in each level
of microgrid hierarchical control systems and outlining the shortcomings of traditional
control methods. A specific comparative analysis of ML applications for each control layer
was given, and ML-based primary and secondary control schematics were summarized
based on previous studies. The literature review showed that ML empowers microgrids
with predictive insights and intelligent control and optimization. It can be used in a wide
range of applications from forecasting renewable energy, managing energy storage options,
enhancing the grid stability, enabling demand response, detecting faults, to optimizing
the operations, fortifying cybersecurity, and more. With data-driven precision, microgrids
become resilient, efficient, and sustainable, revolutionizing the way we manage and har-
ness energy. It was also observed that ML-based control methods have become one of the
main research directions in microgrid hierarchical control systems, and the proportion of
research applying ML to hierarchical control is increasing, especially in the field of ANN
and improved algorithms based on DRL, QL, etc. One advantage of RL is its ability to
reduce reliance on priori data. However, attention should also be directed towards acquir-
ing accurate and valid data to support the application of supervised and unsupervised
techniques, as high-quality data plays a crucial role in improving predictions. Additionally,
exploring semi-supervised learning techniques in microgrid hierarchical control remains
limited, and further investigations in this area could provide valuable insights. Stability
analysis is another critical concern associated with using ML technology in microgrid
control, particularly with the increasing number of DG and ESS installations. Extensive
research is necessary to address stability issues effectively. In terms of microgrid communi-
cation, although some progress has been made, existing schemes still face challenges in
achieving smooth control, and there is a lack of communication standards for ML tech-
nology applications. It is important to address these issues to ensure reliable and efficient
communication within microgrids.

Furthermore, there is a need for further exploration of computational efficiency, ex-
perimental validation, and verification of ML techniques in microgrid control. These areas
require dedicated research efforts to overcome the associated difficulties.
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Abbreviations

LC Local control
DG Distributed generator
MAS Multi-agent system
PID Proportional integral controller
MPC Model predictive control
DMPC Decentralized model predictive control
AI Artificial intelligence
ML Machine learning
RL Reinforcement learning
DRL Deep reinforcement learning
NN Neural network
ANN Artificial neural network
DNN Deep neural network
DQN Deep Q-network
SVR Support vector regression
RL-OPT Reinforcement learning based online optimal
ANFIS Adaptive-network-based fuzzy inference system
FFNN Feed-forward neural network
DDPG Deep deterministic policy gradient
MINLP Mixed integer non-linear programming problem
ARMA Autoregressive moving average
FETC Time event-triggered consensus
PSO Particle swarm optimization
VMS Virtual multi-slack
OPA Optimal power allocation
f Frequency
u Voltage
i Current
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