2,351 research outputs found

    History-Preserving Bisimilarity for Higher-Dimensional Automata via Open Maps

    Get PDF
    We show that history-preserving bisimilarity for higher-dimensional automata has a simple characterization directly in terms of higher-dimensional transitions. This implies that it is decidable for finite higher-dimensional automata. To arrive at our characterization, we apply the open-maps framework of Joyal, Nielsen and Winskel in the category of unfoldings of precubical sets.Comment: Minor updates in accordance with reviewer comments. Submitted to MFPS 201

    Petri Games: Synthesis of Distributed Systems with Causal Memory

    Full text link
    We present a new multiplayer game model for the interaction and the flow of information in a distributed system. The players are tokens on a Petri net. As long as the players move in independent parts of the net, they do not know of each other; when they synchronize at a joint transition, each player gets informed of the causal history of the other player. We show that for Petri games with a single environment player and an arbitrary bounded number of system players, deciding the existence of a safety strategy for the system players is EXPTIME-complete.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Homotopy Bisimilarity for Higher-Dimensional Automata

    Get PDF
    We introduce a new category of higher-dimensional automata in which the morphisms are functional homotopy simulations, i.e. functional simulations up to concurrency of independent events. For this, we use unfoldings of higher-dimensional automata into higher-dimensional trees. Using a notion of open maps in this category, we define homotopy bisimilarity. We show that homotopy bisimilarity is equivalent to a straight-forward generalization of standard bisimilarity to higher dimensions, and that it is finer than split bisimilarity and incomparable with history-preserving bisimilarity.Comment: Heavily revised version of arXiv:1209.492

    Polynomial Synthesis of Asynchronous Automata

    Full text link
    Zielonka's theorem shows that each regular set of Mazurkiewicz traces can be implemented as a system of synchronized processes with a distributed control structure called asynchronous automaton. This paper gives a polynomial algorithm for the synthesis of a non-deterministic asynchronous automaton from a regular Mazurkiewicz trace language. This new construction is based on an unfolding approach that improves the complexity of Zielonka's and Pighizzini's techniques in terms of the number of states.Comment: The MOdelling and VErification (MOVE) tea

    Higher Dimensional Transition Systems

    No full text
    We introduce the notion of higher dimensional transition systems as a model of concurrency providing an elementary, set-theoretic formalisation of the idea of higher dimensional transition. We show an embedding of the category of higher dimensional transition systems into that of higher dimensional automata which cuts down to an equivalence when we restrict to non-degenerate automata. Moreover, we prove that the natural notion of bisimulation for such structures is a generalisation of the strong history preserving bisimulation, and provide an abstract categorical account of it via open maps. Finally, we define a notion of unfolding for higher dimensional transition systems and characterise the structures so obtained as a generalisation of event structures

    Tree games with regular objectives

    Full text link
    We study tree games developed recently by Matteo Mio as a game interpretation of the probabilistic Ό\mu-calculus. With expressive power comes complexity. Mio showed that tree games are able to encode Blackwell games and, consequently, are not determined under deterministic strategies. We show that non-stochastic tree games with objectives recognisable by so-called game automata are determined under deterministic, finite memory strategies. Moreover, we give an elementary algorithmic procedure which, for an arbitrary regular language L and a finite non-stochastic tree game with a winning objective L decides if the game is determined under deterministic strategies.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Connectors meet Choreographies

    Get PDF
    We present Cho-Reo-graphies (CR), a new language model that unites two powerful programming paradigms for concurrent software based on communicating processes: Choreographic Programming and Exogenous Coordination. In CR, programmers specify the desired communications among processes using a choreography, and define how communications should be concretely animated by connectors given as constraint automata (e.g., synchronous barriers and asynchronous multi-casts). CR is the first choreography calculus where different communication semantics (determined by connectors) can be freely mixed; since connectors are user-defined, CR also supports many communication semantics that were previously unavailable for choreographies. We develop a static analysis that guarantees that a choreography in CR and its user-defined connectors are compatible, define a compiler from choreographies to a process calculus based on connectors, and prove that compatibility guarantees deadlock-freedom of the compiled process implementations

    Strategy Logic with Imperfect Information

    Full text link
    We introduce an extension of Strategy Logic for the imperfect-information setting, called SLii, and study its model-checking problem. As this logic naturally captures multi-player games with imperfect information, the problem turns out to be undecidable. We introduce a syntactical class of "hierarchical instances" for which, intuitively, as one goes down the syntactic tree of the formula, strategy quantifications are concerned with finer observations of the model. We prove that model-checking SLii restricted to hierarchical instances is decidable. This result, because it allows for complex patterns of existential and universal quantification on strategies, greatly generalises previous ones, such as decidability of multi-player games with imperfect information and hierarchical observations, and decidability of distributed synthesis for hierarchical systems. To establish the decidability result, we introduce and study QCTL*ii, an extension of QCTL* (itself an extension of CTL* with second-order quantification over atomic propositions) by parameterising its quantifiers with observations. The simple syntax of QCTL* ii allows us to provide a conceptually neat reduction of SLii to QCTL*ii that separates concerns, allowing one to forget about strategies and players and focus solely on second-order quantification. While the model-checking problem of QCTL*ii is, in general, undecidable, we identify a syntactic fragment of hierarchical formulas and prove, using an automata-theoretic approach, that it is decidable. The decidability result for SLii follows since the reduction maps hierarchical instances of SLii to hierarchical formulas of QCTL*ii
    • 

    corecore