26 research outputs found

    QUALITY-DRIVEN CROSS LAYER DESIGN FOR MULTIMEDIA SECURITY OVER RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS

    Get PDF
    The strong need for security guarantee, e.g., integrity and authenticity, as well as privacy and confidentiality in wireless multimedia services has driven the development of an emerging research area in low cost Wireless Multimedia Sensor Networks (WMSNs). Unfortunately, those conventional encryption and authentication techniques cannot be applied directly to WMSNs due to inborn challenges such as extremely limited energy, computing and bandwidth resources. This dissertation provides a quality-driven security design and resource allocation framework for WMSNs. The contribution of this dissertation bridges the inter-disciplinary research gap between high layer multimedia signal processing and low layer computer networking. It formulates the generic problem of quality-driven multimedia resource allocation in WMSNs and proposes a cross layer solution. The fundamental methodologies of multimedia selective encryption and stream authentication, and their application to digital image or video compression standards are presented. New multimedia selective encryption and stream authentication schemes are proposed at application layer, which significantly reduces encryption/authentication complexity. In addition, network resource allocation methodologies at low layers are extensively studied. An unequal error protection-based network resource allocation scheme is proposed to achieve the best effort media quality with integrity and energy efficiency guarantee. Performance evaluation results show that this cross layer framework achieves considerable energy-quality-security gain by jointly designing multimedia selective encryption/multimedia stream authentication and communication resource allocation

    Enhancement of Adaptive Forward Error Correction Mechanism for Video Transmission Over Wireless Local Area Network

    Get PDF
    Video transmission over the wireless network faces many challenges. The most critical challenge is related to packet loss. To overcome the problem of packet loss, Forward Error Correction is used by adding extra packets known as redundant packet or parity packet. Currently, FEC mechanisms have been adopted together with Automatic Repeat reQuest (ARQ) mechanism to overcome packet losses and avoid network congestion in various wireless network conditions. The number of FEC packets need to be generated effectively because wireless network usually has varying network conditions. In the current Adaptive FEC mechanism, the FEC packets are decided by the average queue length and average packet retransmission times. The Adaptive FEC mechanisms have been proposed to suit the network condition by generating FEC packets adaptively in the wireless network. However, the current Adaptive FEC mechanism has some major drawbacks such as the reduction of recovery performance which injects too many excessive FEC packets into the network. This is not flexible enough to adapt with varying wireless network condition. Therefore, the enhancement of Adaptive FEC mechanism (AFEC) known as Enhanced Adaptive FEC (EnAFEC) has been proposed. The aim is to improve recovery performance on the current Adaptive FEC mechanism by injecting FEC packets dynamically based on varying wireless network conditions. The EnAFEC mechanism is implemented in the simulation environment using Network Simulator 2 (NS-2). Performance evaluations are also carried out. The EnAFEC was tested with the random uniform error model. The results from experiments and performance analyses showed that EnAFEC mechanism outperformed the other Adaptive FEC mechanism in terms of recovery efficiency. Based on the findings, the optimal amount of FEC generated by EnAFEC mechanism can recover high packet loss and produce good video quality

    Network-aware Adaptation with Real-Time Channel Statistics for Wireless LAN Multimedia Transmissions in the Digital Home

    Full text link
    This paper suggests the use of intelligent network-aware processing agents in wireless local area network drivers to generate metrics for bandwidth estimation based on real-time channel statistics to enable wireless multimedia application adaptation. Various configurations in the wireless digital home are studied and the experimental results with performance variations are presented.Comment: 6 pages, 12 figure

    Audio/Video Transmission over IEEE 802.11e Networks: Retry Limit Adaptation and Distortion Estimation

    Get PDF
    The objective of this thesis focuses on the audio and video transmission over wireless networks adopting the family of the IEEE 802.11x standards. In particular, this thesis discusses about the resolution of four issues: the adaptive retransmission, the comparison of video quality indexes for retry limit adaptation purposes, the estimation of the distortion and the joint adaptation of the maximum number of retransmissions of voice and video flows

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Error and Congestion Resilient Video Streaming over Broadband Wireless

    Get PDF
    In this paper, error resilience is achieved by adaptive, application-layer rateless channel coding, which is used to protect H.264/Advanced Video Coding (AVC) codec data-partitioned videos. A packetization strategy is an effective tool to control error rates and, in the paper, source-coded data partitioning serves to allocate smaller packets to more important compressed video data. The scheme for doing this is applied to real-time streaming across a broadband wireless link. The advantages of rateless code rate adaptivity are then demonstrated in the paper. Because the data partitions of a video slice are each assigned to different network packets, in congestion-prone wireless networks the increased number of packets per slice and their size disparity may increase the packet loss rate from buffer overflows. As a form of congestion resilience, this paper recommends packet-size dependent scheduling as a relatively simple way of alleviating the buffer-overflow problem arising from data-partitioned packets. The paper also contributes an analysis of data partitioning and packet sizes as a prelude to considering scheduling regimes. The combination of adaptive channel coding and prioritized packetization for error resilience with packet-size dependent packet scheduling results in a robust streaming scheme specialized for broadband wireless and real-time streaming applications such as video conferencing, video telephony, and telemedicine

    Quality of service based distributed control of wireless networks

    Get PDF

    Fast retry limit adaptation for video distortion/delay control in IEEE 802.11e distributed networks

    Get PDF
    This paper presents a fast retry limit adaptation method for video streaming applications over IEEE 802.11e distributed networks. The method enables each source to adapt the number of retransmissions associated to each video packet by relating the perceived distortion to the drop probability and the acceptable delay to the expiration time, without asking the destination for feedback distortion/delay information. The resulting framework, which is based on a simplified but accurate evaluation of the network statistics and of the distortion introduced by the loss of a specific packet, provides a closed-form, and hence computationally cheap, estimation of the retry limit. Furthermore, with respect to most of the existing solutions, the proposed strategy accounts for the impact of the higher priority voice access category (AC), in order to improve the reliability of the retry limit adaptation in the presence of contending ACs. The method is validated by a simulation platform including the physical communication chain and the 802.11e medium access control layer, and its performance is compared to that obtained from an existing solution and from the optimum theoretical settings
    corecore