2,384 research outputs found

    Optical identification of sea-mines - Gated viewing three-dimensional laser radar

    Get PDF

    Underwater Image Processing: State of the Art of Restoration and Image Enhancement Methods

    Get PDF
    The underwater image processing area has received considerable attention within the last decades, showing important achievements. In this paper we review some of the most recent methods that have been specifically developed for the underwater environment. These techniques are capable of extending the range of underwater imaging, improving image contrast and resolution. After considering the basic physics of the light propagation in the water medium, we focus on the different algorithms available in the literature. The conditions for which each of them have been originally developed are highlighted as well as the quality assessment methods used to evaluate their performance

    Field deployable dynamic lighting system for turbid water imaging

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2011The ocean depths provide an ever changing and complex imaging environment. As scientists and researches strive to document and study more remote and optically challenging areas, specifically scatter-limited environments. There is a requirement for new illumination systems that improve both image quality and increase imaging distance. One of the most constraining optical properties to underwater image quality are scattering caused by ocean chemistry and entrained organic material. By reducing the size of the scatter interaction volume, one can immediately improve both the focus (forward scatter limited) and contrast (backscatter limited) of underwater images. This thesis describes a relatively simple, cost-effective and field-deployable low-power dynamic lighting system that minimizes the scatter interaction volume with both subjective and quantifiable improvements in imaging performance

    Underwater image restoration: super-resolution and deblurring via sparse representation and denoising by means of marine snow removal

    Get PDF
    Underwater imaging has been widely used as a tool in many fields, however, a major issue is the quality of the resulting images/videos. Due to the light's interaction with water and its constituents, the acquired underwater images/videos often suffer from a significant amount of scatter (blur, haze) and noise. In the light of these issues, this thesis considers problems of low-resolution, blurred and noisy underwater images and proposes several approaches to improve the quality of such images/video frames. Quantitative and qualitative experiments validate the success of proposed algorithms

    Single-photon detection techniques for underwater imaging

    Get PDF
    This Thesis investigates the potential of a single-photon depth profiling system for imaging in highly scattering underwater environments. This scanning system measured depth using the time-of-flight and the time-correlated single-photon counting (TCSPC) technique. The system comprised a pulsed laser source, a monostatic scanning transceiver, with a silicon single-photon avalanche diode (SPAD) used for detection of the returned optical signal. Spectral transmittance measurements were performed on a number of different water samples in order to characterize the water types used in the experiments. This identified an optimum operational wavelength for each environment selected, which was in the wavelength region of 525 - 690 nm. Then, depth profiles measurements were performed in different scattering conditions, demonstrating high-resolution image re-construction for targets placed at stand-off distances up to nine attenuation lengths, using average optical power in the sub-milliwatt range. Depth and spatial resolution were investigated in several environments, demonstrating a depth resolution in the range of 500 μm to a few millimetres depending on the attenuation level of the medium. The angular resolution of the system was approximately 60 μrad in water with different levels of attenuation, illustrating that the narrow field of view helped preserve spatial resolution in the presence of high levels of forward scattering. Bespoke algorithms were developed for image reconstruction in order to recover depth, intensity and reflectivity information, and to investigate shorter acquisition times, illustrating the practicality of the approach for rapid frame rates. In addition, advanced signal processing approaches were used to investigate the potential of multispectral single-photon depth imaging in target discrimination and recognition, in free-space and underwater environments. Finally, a LiDAR model was developed and validated using experimental data. The model was used to estimate the performance of the system under a variety of scattering conditions and system parameters

    水中イメージングシステムのための画質改善に関する研究

    Get PDF
    Underwater survey systems have numerous scientific or industrial applications in the fields of geology, biology, mining, and archeology. These application fields involve various tasks such as ecological studies, environmental damage assessment, and ancient prospection. During two decades, underwater imaging systems are mainly equipped by Underwater Vehicles (UV) for surveying in water or ocean. Challenges associated with obtaining visibility of objects have been difficult to overcome due to the physical properties of the medium. In the last two decades, sonar is usually used for the detection and recognition of targets in the ocean or underwater environment. However, because of the low quality of images by sonar imaging, optical vision sensors are then used instead of it for short range identification. Optical imaging provides short-range, high-resolution visual information of the ocean floor. However, due to the light transmission’s physical properties in the water medium, the optical imaged underwater images are usually performance as poor visibility. Light is highly attenuated when it travels in the ocean. Consequence, the imaged scenes result as poorly contrasted and hazy-like obstructions. The underwater imaging processing techniques are important to improve the quality of underwater images. As mentioned before, underwater images have poor visibility because of the medium scattering and light distortion. In contrast to common photographs, underwater optical images suffer from poor visibility owing to the medium, which causes scattering, color distortion, and absorption. Large suspended particles cause scattering similar to the scattering of light in fog or turbid water that contain many suspended particles. Color distortion occurs because different wavelengths are attenuated to different degrees in water; consequently, images of ambient in the underwater environments are dominated by a bluish tone, because higher wavelengths are attenuated more quickly. Absorption of light in water substantially reduces its intensity. The random attenuation of light causes a hazy appearance as the light backscattered by water along the line of sight considerably degrades image contrast. Especially, objects at a distance of more than 10 meters from the observation point are almost unreadable because colors are faded as characteristic wavelengths, which are filtered according to the distance traveled by light in water. So, traditional image processing methods are not suitable for processing them well. This thesis proposes strategies and solutions to tackle the above mentioned problems of underwater survey systems. In this thesis, we contribute image pre-processing, denoising, dehazing, inhomogeneities correction, color correction and fusion technologies for underwater image quality improvement. The main content of this thesis is as follows. First, comprehensive reviews of the current and most prominent underwater imaging systems are provided in Chapter 1. A main features and performance based classification criterion for the existing systems is presented. After that, by analyzing the challenges of the underwater imaging systems, a hardware based approach and non-hardware based approach is introduced. In this thesis, we are concerned about the image processing based technologies, which are one of the non-hardware approaches, and take most recent methods to process the low quality underwater images. As the different sonar imaging systems applied in much equipment, such as side-scan sonar, multi-beam sonar. The different sonar acquires different images with different characteristics. Side-scan sonar acquires high quality imagery of the seafloor with very high spatial resolution but poor locational accuracy. On the contrast, multi-beam sonar obtains high precision position and underwater depth in seafloor points. In order to fully utilize all information of these two types of sonars, it is necessary to fuse the two kinds of sonar data in Chapter 2. Considering the sonar image forming principle, for the low frequency curvelet coefficients, we use the maximum local energy method to calculate the energy of two sonar images. For the high frequency curvelet coefficients, we take absolute maximum method as a measurement. The main attributes are: firstly, the multi-resolution analysis method is well adapted the cured-singularities and point-singularities. It is useful for sonar intensity image enhancement. Secondly, maximum local energy is well performing the intensity sonar images, which can achieve perfect fusion result [42]. In Chapter 3, as analyzed the underwater laser imaging system, a Bayesian Contourlet Estimator of Bessel K Form (BCE-BKF) based denoising algorithm is proposed. We take the BCE-BKF probability density function (PDF) to model neighborhood of contourlet coefficients. After that, according to the proposed PDF model, we design a maximum a posteriori (MAP) estimator, which relies on a Bayesian statistics representation of the contourlet coefficients of noisy images. The denoised laser images have better contrast than the others. There are three obvious virtues of the proposed method. Firstly, contourlet transform decomposition prior to curvelet transform and wavelet transform by using ellipse sampling grid. Secondly, BCE-BKF model is more effective in presentation of the noisy image contourlet coefficients. Thirdly, the BCE-BKF model takes full account of the correlation between coefficients [107]. In Chapter 4, we describe a novel method to enhance underwater images by dehazing. In underwater optical imaging, absorption, scattering, and color distortion are three major issues in underwater optical imaging. Light rays traveling through water are scattered and absorbed according to their wavelength. Scattering is caused by large suspended particles that degrade optical images captured underwater. Color distortion occurs because different wavelengths are attenuated to different degrees in water; consequently, images of ambient underwater environments are dominated by a bluish tone. Our key contribution is to propose a fast image and video dehazing algorithm, to compensate the attenuation discrepancy along the propagation path, and to take the influence of the possible presence of an artificial lighting source into consideration [108]. In Chapter 5, we describe a novel method of enhancing underwater optical images or videos using guided multilayer filter and wavelength compensation. In certain circumstances, we need to immediately monitor the underwater environment by disaster recovery support robots or other underwater survey systems. However, due to the inherent optical properties and underwater complex environment, the captured images or videos are distorted seriously. Our key contributions proposed include a novel depth and wavelength based underwater imaging model to compensate for the attenuation discrepancy along the propagation path and a fast guided multilayer filtering enhancing algorithm. The enhanced images are characterized by a reduced noised level, better exposure of the dark regions, and improved global contrast where the finest details and edges are enhanced significantly [109]. The performance of the proposed approaches and the benefits are concluded in Chapter 6. Comprehensive experiments and extensive comparison with the existing related techniques demonstrate the accuracy and effect of our proposed methods.九州工業大学博士学位論文 学位記番号:工博甲第367号 学位授与年月日:平成26年3月25日CHAPTER 1 INTRODUCTION|CHAPTER 2 MULTI-SOURCE IMAGES FUSION|CHAPTER 3 LASER IMAGES DENOISING|CHAPTER 4 OPTICAL IMAGE DEHAZING|CHAPTER 5 SHALLOW WATER DE-SCATTERING|CHAPTER 6 CONCLUSIONS九州工業大学平成25年

    An Experimental-Based Review of Image Enhancement and Image Restoration Methods for Underwater Imaging

    Get PDF
    Underwater images play a key role in ocean exploration, but often suffer from severe quality degradation due to light absorption and scattering in water medium. Although major breakthroughs have been made recently in the general area of image enhancement and restoration, the applicability of new methods for improving the quality of underwater images has not specifically been captured. In this paper, we review the image enhancement and restoration methods that tackle typical underwater image impairments, including some extreme degradations and distortions. Firstly, we introduce the key causes of quality reduction in underwater images, in terms of the underwater image formation model (IFM). Then, we review underwater restoration methods, considering both the IFM-free and the IFM-based approaches. Next, we present an experimental-based comparative evaluation of state-of-the-art IFM-free and IFM-based methods, considering also the prior-based parameter estimation algorithms of the IFM-based methods, using both subjective and objective analysis (the used code is freely available at https://github.com/wangyanckxx/Single-Underwater-Image-Enhancement-and-Color-Restoration). Starting from this study, we pinpoint the key shortcomings of existing methods, drawing recommendations for future research in this area. Our review of underwater image enhancement and restoration provides researchers with the necessary background to appreciate challenges and opportunities in this important field
    corecore