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ABSTRACT 

 
This Thesis investigates the potential of a single-photon depth profiling system for 

imaging in highly scattering underwater environments. This scanning system measured 

depth using the time-of-flight and the time-correlated single-photon counting (TCSPC) 

technique. The system comprised a pulsed laser source, a monostatic scanning 

transceiver, with a silicon single-photon avalanche diode (SPAD) used for detection of 

the returned optical signal.  

Spectral transmittance measurements were performed on a number of different water 

samples in order to characterize the water types used in the experiments. This identified 

an optimum operational wavelength for each environment selected, which was in the 

wavelength region of 525 - 690 nm. Then, depth profiles measurements were performed 

in different scattering conditions, demonstrating high-resolution image re-construction 

for targets placed at stand-off distances up to nine attenuation lengths, using average 

optical power in the sub-milliwatt range. Depth and spatial resolution were investigated 

in several environments, demonstrating a depth resolution in the range of 500 μm to a 

few millimetres depending on the attenuation level of the medium. The angular 

resolution of the system was approximately 60 µrad in water with different levels of 

attenuation, illustrating that the narrow field of view helped preserve spatial resolution 

in the presence of high levels of forward scattering.  

Bespoke algorithms were developed for image reconstruction in order to recover depth, 

intensity and reflectivity information, and to investigate shorter acquisition times, 

illustrating the practicality of the approach for rapid frame rates. In addition, advanced 

signal processing approaches were used to investigate the potential of multispectral 

single-photon depth imaging in target discrimination and recognition, in free-space and 

underwater environments. Finally, a LiDAR model was developed and validated using 

experimental data. The model was used to estimate the performance of the system under 

a variety of scattering conditions and system parameters. 
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Chapter 1 

Introduction 
 

 

The use of optical systems in exploring the underwater world has a long history which 

stretches back to ancient Greek and Roman times.  According to a legend, Alexander The 

Great was fascinated by the underwater world, and it is thought that he actually had been 

underwater using a diving bell [1].  A tempera painting from the Bellifortis, a manuscript 

by the German military engineer Konrad Keyser of approximately 1405, reproduces 

Alexander The Great in a glass diving bell underwater (Figure 1.1a).  In the same 

manuscript Konrad Keyser shows the first design of a diving suite (Figure 1.1b) [2].  Since 

then, underwater exploration techniques developed slowly over the centuries until the 

introduction of compressed air in 1825, which signed the beginning of advanced 

underwater exploration. 

 

Figure 1.1. Tempera paintings from the Bellifortis (Konrad Keyser, 1405). 

a) Alexander The Great in a glass diving bell underwater. From [1]. b) 

First known design of a diving suite. From [3]. 

Development in diving techniques allowed for the establishment of underwater optical 

imaging as a useful tool in oceanography, marine zoology and exploration.  Since the first 

underwater photography in the 1890s, underwater imaging has seen several landmarks.  



2 

 

One of the greatest advances was achieved with the invention of laser, which helped assist 

efforts in active imaging.  However, due to the strong attenuation of light in water, 

obtaining high resolution images of targets placed at long stand-off distances was still a 

challenge.  In particular, the main limitation is due to light forward and backscattered 

from underwater particles.  Forward scattering is due to small angle scattering events that 

slightly deviate the light while travelling from the source to the target and on the way 

back to the receiver, causing the image to be blurred, hence reducing the spatial resolution 

of the image.  Backscattering is due to light that has not interacted with the target, and it 

is scattered back to the receiver because of the turbidity of the medium, drastically 

reducing the contrast of the image.  Several techniques were developed to limit the 

deleterious effect of scattering, and typically high resolution images can be obtained at 

short stand-off distances.  If the application requires a longer range, resolution and 

contrast are strongly affected by scattering, eventually degrading the image to such an 

extent that it cannot perform target recognition. 

The work performed during this PhD project aimed to characterise a depth imaging 

system based on single-photon detection techniques, in order to overcome some of 

limitations typically found in underwater active imaging.  The depth imaging system 

discussed in this Thesis is based on the time-of-flight approach using the time-correlated 

single-photon counting (TCSPC) technique.  In this work, the high sensitivity and 

picosecond resolution of the TCSPC technique were exploited to their full extent to obtain 

depth profiles of objects underwater at stand-off distances up to 9 attenuation lengths 

from the scanning unit.  To the best of author’s knowledge, this represents the first 

application of the TCSPC technique to underwater depth imaging, allowing the longest 

stand-off distance underwater observed using a monostatic optical system.  

In addition, a number of algorithms based on spatial correlation between neighbouring 

pixels were developed in order to allow for the reconstruction of images in highly 

scattering environments, and the investigation of shorter acquisition times more 

compatible with the end applications.  The potential of the system was also investigated 

for multispectral depth imaging, for the validation of bespoke advance signal processing. 

The system used to obtain the results in this Thesis was originally designed and 

constructed by the Single-Photon Group at Heriot-Watt University for single-photon 
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depth imaging over long distances in free-space, typically with near-infrared wavelengths 

[4].  This system has been successfully used in free-space to demonstrate centimetre 

resolution at kilometre ranges using eye-safe levels of laser power, whilst operating under 

a variety of daylight and weather conditions [5].  

1.1. Thesis structure 

Chapter 2 gives a brief overview on the main optical system developed to image 

man-made objects underwater.  Although few examples of early imagers are presented, 

particular attention is given to laser-based imaging systems.  A discussion on the main 

limitations of underwater optical systems is performed in order to explain the most 

important techniques developed over the years. 

Chapter 3 explains the time-correlated single-photon counting technique, highlighting 

why this technique is suitable for applications in photon-starved environments, for 

example imaging in highly attenuating environments.  In addition, the principles of 

operation of single-photon detectors is outlined, as well with the key performance 

characteristics of the single-photon detectors.  Specific attention is given to silicon single-

photon detectors, which are the detectors used in the experiments reported in this Thesis.  

However, single photon detectors for the infrared wavelength range will be introduced 

for comparison and completeness. 

Chapter 4 discusses propagation of light in water, relating absorption and scattering to the 

total attenuation coefficient of the propagation medium.  On the basis of the Lambert-Beer 

law, the chapter describes also the experiments performed to obtain transmittance and 

attenuation spectra of the water samples subsequently used for the depth profiles 

measurements.  These measurements permitted the selection of an appropriate operational 

wavelength for each of the different scattering levels of the environments considered in 

this Thesis.  

Chapter 5 provides a full description of the system used to obtain the results reported in 

this Thesis, as well with the alignment procedure followed before each experiment.  Then, 

the potential of the system is investigated for different optical configurations of the 

scanning unit.  Firstly, preliminary measurements were performed to study the major 

issues with the system, and identify suitable solutions to improve the system for 
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underwater imaging.  Secondly, several modifications were made to the system on the 

basis of the preliminary measurements.  The improved system was characterised in 

several underwater environments, demonstrating depth imaging performed at target 

distances of up to 6 attenuation lengths using average optical power in the sub-milliwatt 

range [6, 7].  Thirdly, further improvements were performed in order to allow for imaging 

in highly scattering environments, demonstrating depth imaging performed over distances 

of up to 9 attenuation lengths [8].  Additionally, the chapter reports a study on the spatial 

and depth resolution in several underwater conditions. 

Chapter 6 show three different methods which allow for the reconstruction of depth and 

intensity images by means of exploiting spatial correlations between neighbouring pixels.  

The first algorithm is based on the sparseness of the Discrete Cosine Transformation 

(DCT) coefficients.  This model allowed for depth and intensity images reconstruction 

when short acquisition times per pixel are considered [8].  Two other analysis techniques 

based on Markov Chain Monte Carlo (MCMC) and Coordinate Descent Algorithm 

(CDA) are proposed, allowing for joint depth and reflectivity restoration in different 

scattering conditions [9]. 

Chapter 7 proposes a model based on a photon-counting version of the LiDAR range 

equation.  The model aims to evaluate the system’s time-of-flight ranging performance in 

water, on the basis of several parameters, including average optical power, attenuation of 

optical components, and attenuation of the environment.  The chapter shows also the 

results of several simulations, which were carried out in order to evaluate the maximum 

achievable distance for different environments. 

Chapter 8 investigates the potential of the system for multispectral depth imaging.  The 

chapter describes several experiments performed to validate bespoke algorithms based on 

MCMC approach using spatial correlations.  The models allow for spectral classification 

of different targets, and for quantification of known materials in the targets in free-space 

[10-13] and in unfiltered tap water [14]. 

Chapter 9 summarises the experimental results obtained and the conclusions for each 

chapter, as well with a discussion about future work. 
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Chapter 2 

Underwater optical imaging systems 
 

2.1. Introduction 

Imaging in an underwater environment with an optical system presents several challenges 

for optics, robotics, and signal processing communities.  This chapter aims to give a brief 

overview on the main optical system developed to image man-made objects underwater.  

The systems will be classified depending on the technology, light source, and technique 

used to obtain the image.  A wide classification will be given in section 2.2, as well with 

a few examples of early imagers.  Then, particular attention will be given to laser-based 

systems, and section 2.3 will highlight the main limitation of these systems.  

Sections 2.4 - 2.8 will describe the main techniques developed to overcome these 

limitations.  

2.2. Underwater imaging system classification 

Underwater optical imaging is a field of increasing interest in a range of applications, 

including defence [1], marine science [2], and civil engineering [3].  Obtaining two- and 

three-dimensional images of underwater terrains has long been the domain of sonar-based 

systems.  The main advantage of sonar is that a long range can be achieved, as sound 

propagates for long distances underwater and it is less affected by scattering from 

particles in the water.  However, acoustic underwater systems are not able to achieve a 

high spatial resolution, limiting the quality of the image.  On the contrary, optical systems 

allow for high resolution images, but this comes at the cost of a much shorter achievable 

range due to the high optical attenuation levels in water.  Hence, acoustic and optical 

approaches are complementary, offering very different performance.  In this chapter, 

specific attention will be given to optical systems in order to provide a review of the main 

techniques used and existing optical systems for underwater imaging. 

The performance of underwater optical systems is strongly limited by the attenuation of 

light in water.  This results in photons being absorbed or scattered on the way from the 

system to the target and on the way back to the system.  These two effects can be described 

through the absorption coefficient a and the scattering coefficient b, respectively, which 

both contribute to the total attenuation coefficient α = a + b.  Therefore, the optical power 
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which propagates a distance x, decays exponentially as a function of the attenuation 

coefficient [4]: 

  Equation 2.1 

The product αx in the exponent defines the number of attenuation lengths, meaning that 

one attenuation length is the distance after which the light power is reduced to 1/e of its 

initial value.  This parameter allows for the comparison of underwater optical imaging 

systems based on different technologies. 

Several optical imaging systems are available and they can be divided in two main classes, 

passive and active systems.  Passive systems use natural light for illumination, while 

active systems employ an artificial light source.  In the latter case, the source and the 

receiver can be arranged in three different architectures: monostatic, pseudo-monostatic, 

and bi-static.  In a monostatic configuration, the source and the receiver are in the same 

system platform and share one or more optical elements.  While in a pseudo-monostatic 

configuration, source and receiver are on the same system platform but have dedicated 

optical setups.  A bi-static configuration uses two separated platforms for the source and 

receiver [5]. 

When not coupled with a strobe or an artificial light, cameras are an example of a passive 

imaging system.  According to a communication with the British Journal of Photography 

in 1985, the first underwater photograph was taken by solicitor and natural historian 

William Thompson [6].  In 1856 Thompson lowered to a depth of approximately 6 metres 

a wooden box containing a 13 × 10 cm2 plate camera, obtaining the first underwater 

image using an exposure of ten minutes.  Unfortunately, the pressure underwater was high 

enough to allow water to leak into the wooden box, ruining the image taken by Thompson.  

For this reason, some of the literature reports the French marine zoologist Louis Boutan 

[6] as the first who took a photograph underwater.  In 1893, Boutan used a plate camera 

in a wooden box similar to Thompson’s equipment, but manually used the camera 

underwater.  He was able to take a photograph of himself at a depth of approximately 

50 metres in the French Mediterranean coast.  The photograph is shown in Figure 2.1.  

Due to the depth and the low light level, Boutan used an exposure of 30 minutes, requiring 

him to stay underwater for hours.  Eventually, Boutan was able to include a magnesium 
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powder lamp in his equipment, which drastically reduced the exposure time [6], and 

represented the first example of an active system used underwater. 

 

Figure 2.1.  First published underwater photograph.  The photograph was 

taken by the marine zoologist Louis Boutan. From [6]. 

Since the first photograph, underwater photography has seen several landmarks.  For 

example, improvements in photography films brought about the first underwater colour 

photograph in 1926, taken by scientist William Longley and photographer Charles 

Martin.  Advances in underwater cameras, lighting, and robotics led to the historical 

photographs set of the Titanic shipwreck in 1985.  Oceanographer Robert Ballard and 

photographer Emory Kristof used the remotely operated vehicle ARGO [7], shown in the 

photograph in Figure 2.2a), which was equipped with film and video cameras.  The video 

system inspected the seabed at a depth of approximately 3800 metres in the North Atlantic 

Ocean, which allowed for the location of the shipwreck.  The first image obtained with 

the video system revealed one of the boilers of the Titanic (Figure 2.2b), confirming in 

real-time that the shipwreck was nearby.  Once the shipwreck was identified, the film 

cameras recorded more than 20,000 photographs, providing detailed information on the 

damage caused by the iceberg that sank the Titanic.  
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Figure 2.2.  a) Photograph of the ARGO system.  b) First image of the 

boilers of the Titanic, obtained with a video taken in 1985.  Both from [8]. 

Over the last few decades, advances in silicon CMOS focal plane arrays has seen a shift 

from film cameras to digital cameras, greatly improving achievable range and resolution.  

Under ideal illumination conditions, digital cameras are able to image up to 3 attenuation 

lengths [9] whilst maintaining an acceptable level of image resolution and contrast.  

However, advances in solid-state lasers have allowed further progress to be made in 

underwater imaging systems and techniques.  These technological advances have enabled 

some of the most difficult challenges in the underwater environment to be tackled, as 

discussed in the next section. 

2.3. Active systems 

Since Boutan’s pioneering work, many of the complications of the underwater 

environment have been identified, including water and pressure resistant camera 

enclosures, suitable power supplies, lighting, and several other problems related to 

scattering underwater still experienced by the most modern systems. 

The invention of the laser permitted the exploration of new techniques, which sought to 

improve the resolution, contrast, and range achievable with an underwater optical system.  

Indeed, significant improvements in image quality at longer distances can be obtained 

with active systems, in particular with systems that use a laser as their light source.  

However, adding a light source to an imaging system can significantly reduce the image 

contrast and resolution due to scattering of light in water.  In this case further 

considerations on the propagation of light in water have to be discussed. 



11 

 

Although a more in-depth overview of the attenuation of light in water will be given in 

Chapter 4, it is important to say that absorption is strongly dependent on the wavelength.  

Hence, to mitigate the effect of absorption of light in water, the wavelength of the laser 

source can be selected to correspond to a minimum of absorption, typically towards the 

blue-green region of the visible spectrum.  However, scattering events should also be 

considered at the same time.  Scattering comprises several contributions, which are shown 

schematically in Figure 2.3.  Multiple backscatter is light scattered back to the receiver 

because of the turbidity of the medium, and has not interacted with the target.  Volume 

backscatter is caused by the overlap of the outgoing light and the receiver field of view.  

These two contributions act as clutter returns, causing a reduction in the contrast of the 

image.  The last contribution is forward scattered light, which is caused by small angle 

scattering events that slightly deviate the light while travelling from the source to the 

target and on the way back to the receiver.  Forward scattered light causes the image to 

be blurred, reducing the resolution. 
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Figure 2.3.  Schematic representation of scattered light.  From [10]. 

Several techniques were developed in order to limit the effect of scattering.  They can be 

summarised in three main categories: temporal discrimination, spatial discrimination, and 

modulation discrimination.  Each technique will be discussed in the subsequent sections 

alongside a few examples of active systems based on laser techniques.  

2.4. Temporal discrimination 

Several methods have been devised to reduce the limiting effect of scattered light when 

imaging in underwater environments.  An example is time-gated imaging, where the 

receiver is time-gated to only allow a detected signal in correlation with the expected 

return of the pulsed illumination from the target, hence removing much of the 
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backscattered light whilst maintaining the full return signal.  A schematic of this approach 

is shown in Figure 2.4.  In Figure 2.4a), the system emits a laser pulse, which propagates 

to the target (Figure 2.4b).  The gating is maintained closed while the light pulse travels 

to the target and from the target to the system.  In Figure 2.4c), the light pulse reflected 

by the target reaches the system, the gating is open and the receiver is able to collect the 

signal from the target.  

 

Figure 2.4.  Schematic of the principle of the time-gated technique in 

underwater imaging.  (a) The system emits a laser pulse, (b) which 

propagates to the target.  The gate of the imager is closed in a) and b), 

while in (c) it is open in correspondence with the reflected light pulse 

arriving back at the system.  From [11]. 

To the best of the author’s knowledge, the first example of time-gated experiment was 

performed by Heckman et al. in 1967 [12].  The experimental setup comprised a laser 

source, yielding a 20 ns duration pulse at the wavelength λ = 530 nm and optical power 

of approximately 500 μW.  The receiver was a film image-converter camera gated by 
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means of a wire grid, controlled by an external voltage.  The schematic of the 

experimental setup is shown in Figure 2.5. 

 

Figure 2.5.  Schematic of the experimental setup developed by Heckman 

et al. in 1967.  The system comprised a pulsed laser source with 

wavelength λ = 530 nm, and average optical power of approximately 

500 μW.  The receiver was a gated film image converter camera.  From 

[12]. 

With this setup, Heckman et al. demonstrated the advantages of the gated technique with 

respect to non-gated techniques, taking several photographs of a target consisting of a 

black tape cross on a reflective material.  The improvement in the image is evident in the 

example shown in Figure 2.6.  The figure shows two photographs of the black tape cross 

target placed at a stand-off distance of 3.5 attenuation lengths.  The photograph in 

Figure 2.6a) is taken with the gated technique and it is possible to discern the target.  

While Figure 2.6b) shows the non-gated photograph of the target under the same 

conditions.  In this case, the target is not visible due to the strong effect of the 

backscattered light. 
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Figure 2.6.  Photograph of the black cross target taken with (a) a gated 

and (b) non-gated configuration.  The system comprised a pulsed laser 

source with wavelength λ = 530 nm, and average optical power of 

approximately 500 μW.  The receiver was a film image converter camera.  

The target was at a stand-off distance of 3.5 attenuation lengths.  The 

target is visible in the photograph shown in a), while in b) it is not possible 

to discern the target because of the effect of backscattering. 

Another example of an underwater range gated system was developed by Fournier et al. 

in 1993 [13].  In its first version, the Laser Underwater Camera Image Enhancer (LUCIE 

system) comprised a gated CCD camera and a pulsed laser source with 532 nm central 

wavelength at a repetition rate of 2 kHz, and an average optical power of 80 mW.  The 

system was mounted on a remotely operated vehicle (ROV) designed to dive to a 

maximum depth of 200 m.  With this technique, Fournier et al. were able to increase the 

operational range by a factor 3 when compared to passive vision, meaning an achievable 

operational range of approximately 3-4 attenuation lengths.  At a later stage, they 

improved the original system to include a larger field of view, an illumination field 

matched to camera field of view, and an improved user interface.  In addition, the system 

was placed in a more compact ROV, making the manoeuvrability easier for the user.  The 

improved system was called LUCIE II, and allowed for images up to approximately 

5 attenuation lengths [14, 15].  A third version of the same system was developed between 

2006 and 2009, and in this case the improvements were dedicated mostly to the ROV.  

Reduced weight, size, and power consumption allowed the construction of a handheld 

system, which could be used by divers [16].  Photographs of the three systems are shown 

in Figure 2.7. 



16 

 

 

Figure 2.7.  Three generations of the LUCIE system.  a) Photograph of 

LUCIE (1990-1996).  b) Photograph of LUCIE II (1998-2006).  c) 

Photograph of LUCIE (2009).  From [17].  

However, LUCIE systems obtained only 2-D images by gated-viewing.  A system based 

on similar hardware was developed by Busck in 2005, with the addition of an algorithm 

to construct an underwater 3-D image.  The system recorded a sequence of 2-D images 

with different gating windows.  The gating width was increased with a known regular 

step, which allowed the algorithm to return 3-D underwater profiles, at the same 

operational range [18].  Figure 2.8 shows few examples of depth profiles obtained with 

this system.  The target was a cone section 5 cm high, with top diameter equal to 6 cm, 

and bottom diameter equal to 12 cm.  The target was camouflaged with sand and placed 

on a sandy floor, meaning a low contrast scenario, as shown in the photograph in 

Figure 2.8a). Figure 2.8b) shows the depth profile of the target placed in sea water at a 

stand-off distance of 5 metres from the system.  The graphs in c) and d) show the depth 

profiles obtained at 4 metres of stand-off distance in sea water and tap water, respectively.  

No information was given about the attenuation coefficient of the sea water, hence it was 

not possible to estimate the stand-off distances of the target in attenuation lengths.  

However, 4 metres in unfiltered tap water was typically equivalent to approximately a 

half attenuation length, when the laser source uses a wavelength in the green region. 
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Figure 2.8.  The photograph in a) shows the target (6 cm and 12 cm are 

the top and the bottom diameters, and 5 it is cm high) camouflaged by 

sand on a sandy back-ground, hence the contrast between the target and 

the background was very low.  The system used to obtain 3D profiles of 

the target comprised a gated CCD camera and a pulsed laser source of 

wavelength λ = 532 nm.  In b), the graph shows the depth profile of the 

target placed in sea water at stand-off distance of 5 metres from the 

system.  The graphs in c) and d) show the depth profiles obtained at 4 

metres of stand-off distance in sea water and tap water, respectively.  All 

from [18]. 

2.5. Spatial discrimination 

Another technique used to reduce the effect of backscattering is based on spatial 

discrimination, which consists of minimising the overlap between the transmitted light 

and the field of view of the receiver.  The most intuitive way of achieving this is to 

separate the source and receiver.  This technique may improve the performance of the 

conventional camera-strobe systems because the light backscattered in the water volume 
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common to the field of view of the receiver and the illumination source is reduced, and 

only the weak side-scattered photons can reach the receiver, as shown in Figure 2.9. 

 

Figure 2.9.  Separating the source (S) and the receiver (R) reduces the 

common volume of the field of view of the receiver and the illumination 

source, hence reducing the backscattered light. 

This method permits imaging at distances of up to 3-4 attenuation lengths, but then the 

effect of the backscattered light reduces drastically the contrast of the image [19]. 

This technique was commonly adopted on small submarines or underwater robots (3-

5 metres) [20].  However, once unmanned underwater vehicles (UUV) became available 

it was not always possible to separate the receiver and source due to the limited space.  

Thus, more complex configurations were needed. 

To further reduce the overlap between the field of view of the receiver and the volume 

illuminated by the source, different combinations of source and receiver can be used, as 

shown schematically in Figure 2.10.  From the schematic, it can be seen that the choice 

of a receiver with a narrow field of view, or a narrow source (i.e. collimated or focused 

light), results in a smaller overlap between transmitted light and field of view of the 

receiver (Figure 2.10b) and c)).  Ultimately, the overlap is minimised when both narrow 

source and narrow field of view are selected, as shown in Figure 2.10d).  The latter case 

is known as synchronous scan imaging, and can achieve from 3 to 7 attenuation lengths 

[19]. 
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Figure 2.10.  Different combinations of receiver field of view, and 

illumination source.  a) Wide source and wide receiver field of view.  b) 

Wide source and narrow receiver field of view.  c) Narrow source and 

wide receiver field of view.  d) Narrow source and receiver field of view.  

Adapted from [8]. 

In synchronous scan imaging, the target is generally scanned with a highly collimated 

source and the receiver has a narrow field of view.  Several variations of this method have 

been developed in the last three decades.  One of these is the laser line scan (LLS) 

approach, where a highly collimated laser beam is used.  This method allows for 3D image 

acquisition by triangulation or time-of-flight.  

Triangulation uses the geometric relation between the receiver, the source, and the target.  

The principle is shown schematically in Figure 2.11 for a basic laser scanning system. 
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Figure 2.11.  Triangulation geometric principle for a basic laser scanning 

system.  From [21]. 

The depth D of the target is calculated as [21] 

  Equation 2.2 

where S is the distance between the centre of the light source and the centre of the receiver, 

while θ and ω are the scanning and viewing angles, respectively.  From Figure 2.11, it 

can be seen that  

   and   Equation 2.3 

where the angles θ
0
 and ω

0
 are the offset mounting angles for the source and the receiver, 

respectively.  θ
S
 is the laser beam angle, generally with respect to a galvanometer mirror 

of the optical setup, and ω
c
 is the pixel viewing angle with respect to the receiver housing.  

Therefore, 
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  Equation 2.4 

Both angles θ
0
 and ω

0
 have to be calculated by calibration, otherwise the depth of the 

target cannot be evaluated.  This is the main disadvantage of the triangulation technique, 

as the calibration process has to be done before every measurement.  Calibration 

techniques have been studied for years, and several routines were developed and 

optimised on the basis of the optical configuration of the systems in free-space [22, 23] 

and in underwater environments [24, 25].  

The time-of-flight approach relies on measuring the distance of a target surface by the 

round-trip time of an optical pulse, typically a short laser pulse.  If the light spends the 

time ToF to travel from the system to the target and back, then the distance d of the target 

is evaluated as 

  Equation 2.5 

where c is the speed of light in vacuum, and n is the refractive index of the propagation 

medium.  This method is particularly suitable for underwater environments, as it allows 

temporal discrimination between back-scattered light and signal from the target.  In 

addition, it can be used in both monostatic and pseudo-monostatic systems.   

2.6. Laser line scan systems 

Laser line scan systems were the most studied and developed systems for underwater 

imaging, and this section will give a brief review of these systems. 

Initially, continuous wave lasers at a blue-green wavelength were used, however the 

contrast of the images obtained was still limited by both multiple backscatter and common 

volume backscatter [15].  One solution which could be employed to further limit the effect 

of the backscattered light was increasing the distance between source and receiver.  

However, this introduced additional problems such as the requirement of bulky systems, 

often not compatible with UUV, as previously mentioned.  Furthermore, one of the 

disadvantage of many basic LLS is the small depth of field (DOF) over which the receiver 
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and the source can be scanned synchronously.  In such systems, a small DOF can lead to 

frequent image drop-out which prevents image acquisition.  In LLS systems DOF 

depends on several factors, including distance system-to-target, source-receiver distance, 

beam divergence, and field of view of the receiver [26].  Using an increased distance 

between source and receiver reduces the common volume back-scattering, but decreases 

the DOF, as schematically shown in Figure 2.12.  

 

Figure 2.12.  Effect of source-receiver separation on the DOF of an LLS 

system.  a) A wide separation between source and receiver reduces the 

common volume backscattering but leads to a small DOF.  b) A small 

separation between source and receiver leads to an improved DOF but 

more common volume backscattering.  From [6]. 
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In the same way, a narrow receiver field of view reduces the common volume 

backscattering, but decreases the DOF, as schematically shown in Figure 2.13. 

 

Figure 2.13.  Effect of receiver field of view on the DOF of an LLS system.  

a) A narrow field of view of the receiver reduces the common volume 

backscattering but leads to a small DOF.  b) A narrow field of view of the 

receiver leads to an improved DOF but more common volume 

backscattering.  From [6]. 

In 1993 Kulp et al. developed a synchronous scanning underwater system that employed 

a continuous laser line to scan the target, and a photomultiplier tube (PMT) to collect the 

return signal from the target [27].  With such a system the achievable range was 

approximately 4 attenuation lengths.  For several years, research groups developed 

computational models of LLS, predicting an achievable range up to 6 attenuation lengths 
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[28].  These results were demonstrated by Caimi et al. with laboratory-based experiments 

in the early 2000s [29].  For example, Figure 2.14 shows three scans of a white on black 

USAF resolution chart performed with a LLS system using a 1.5 W continuous wave 

laser at a green wavelength.  The receiver was a photomultiplier tube (PMT), placed at a 

few centimetres from the light source.  The target was placed at a stand-off distance of 

7 metres from the system, equivalent to a stand-off distance of 1.85 attenuation lengths 

(Figure 2.14a), 5.68 attenuation lengths (Figure 2.14b), 6.46 attenuation lengths 

(Figure 2.14c).  The results showed that for distances longer than 6 attenuation lengths, 

the contrast and resolution of the scans were greatly affected by scattering in water. 

 

Figure 2.14.  Scans of a white on black USAF resolution chart target 

placed at a stand-off distance of (a) 1.85 attenuation lengths, (b) 5.68 

attenuation lengths, and (c) 6.46 attenuation lengths.  The scans were 

performed with a LLS system using a 1.5 W continuous wave laser at a 

green wavelength, and a PMT receiver placed few centimetres apart from 

the light source.  From [29]. 

At the same time, the same research group demonstrated with computational models that 

the use of a pulsed laser source and a gated receiver could improve the contrast of the 

images [30].  The use of spatial and temporal discriminations on the same system made 

it possible to exclude most of the back-scattering contributions, increasing the achievable 

range up to more than 7 attenuation lengths.  For example, Figure 2.15 shows the 

comparison performed by Dalgleish et al. [31] between the results obtained with a 

continuous wave laser source (CW-LLS) and a pulsed laser source (PG-LLS), both at the 

wavelength λ = 532 nm.  CW-LLS used a power of 2.2 W, while the PG-LLS used an 

average optical power of 1.3 W.  In both cases, the receiver was a PMT placed a few 

centimetres apart from the light source, and in the PG-LLS system it was used in a gated 

configuration.  The experiments validated the computational model, demonstrating an 
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achievable range up to 7 attenuation lengths.  At longer distances, the effect of scattered 

light did not allow the target to be discerned.  

 

Figure 2.15.  Images sequence of a black on white USAF resolution chart 

target, performed with two LLS systems with wavelength λ = 532 nm: a 

continuous wave LLS system (CW-LLS) with a power of 2.2 W, and a 

pulsed laser and gated receiver LLS system (PG-LLS), with average 

optical power of 1.3 W.  The scans were performed at several attenuation 

lengths (AL).  From [31]. 

It is worth noting that the techniques summarised so far allowed for the rejection of 

multiple backscattering and common volume backscattering, but no considerations were 

given to the forward scattering component.  A narrow instantaneous field of view (IFOV) 

of the receiver can spatially filter out the forward scattered signal, improving the 

resolution of the images. 

Therefore, in addition to the comparison between CW-LLS and PG-LLS, Dalgleish et al. 

performed another set of experiments considering two different IFOVs of the receiver, 

15 mrad and 30 mrad, and a few examples are shown in Figure 2.16 [31].  The target was 

a white on black USAF resolution chart placed at a stand-off distance of 7 metres, and 

the scans were performed with the PG-LLS system.  The results show that for a wider 

IFOV the images are more blurred, resulting in a lower resolution.  However, they 

performed a quantitative study based on the contrast-signal-to-noise ratio, defined as [31] 
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  Equation 2.6. 

The results showed that the CSNR was higher for CW-LLS and a wider IFOV for 

stand-off distances less than 3 attenuation lengths, and non-dependent on the IFOV for 

stand-off distances between 3 and 5 attenuation lengths.  For stand-off distances longer 

than 5 attenuation lengths, the PG-LLS with a narrower IFOV showed the best 

performance, as characterised by the highest CSNR.  For completeness, the graph of the 

CSNR versus the number of attenuation lengths is shown in Figure 2.17. 

 

Figure 2.16.  Image sequence of a white-on-black USAF resolution chart 

target, performed with a PG-LLS system with wavelength λ = 532 nm and 

1.3 W average optical power, for two different IOFVs of the receiver: 

15 mrad on the left column, and 30 mrad on the right column.  The 

comparison was performed at different values of attenuation lengths.  

From [31]. 
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Figure 2.17.  Evaluation of CSNR versus the number of attenuation 

lengths for different configurations of LLS systems: continuous and pulsed 

LLS when two different instantaneous field of view are considered, 15 and 

30 mrad.  From [31]. 

The work performed by Dalgleish et al.[31] aimed to improve the achievable range of an 

underwater optical system, while other systems were developed with the aim of 

high-resolution 3D imaging.  Thanks to the wide FOV achieved by LLS systems, the 

synchronous scan technique is preferred for topography [32] and bathymetry [33].  

However, it is also a well-established technique for subsea equipment inspection, as it 

allows high-resolution images at short ranges.  For example, McLeod et al. in 2013 

developed a LLS system based on the time-of-flight approach [34].  The system uses a 

pulsed laser source at the wavelength λ = 532 nm, but no information about the average 

power is provided.  The system was tested in different water conditions, obtaining images 

of a custom calibration target (Figure 2.18a) in a clear water test tank, at stand-off 

distances up to 20 metres. Figure 2.18a) shows the photograph of the target, which is 

2.1 metres wide, 0.5 metres high on the right side and 1 metre high on the left side. 

Figure 2.18b) shows the target in the water tank at a stand-off distance of approximately 

8 metres, and the processed scan is shown in Figure 2.18c).  In addition, Figure 2.19 

shows a zoomed-in scan demonstrating that the system was able to resolve smaller details 

of the target.  For example, the black writing was only 8 mm deep, while the fins were 

20.5 cm apart and 17.8 deep. 
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Figure 2.18.  (a) Photograph of the target in air; (b) photograph of the 

target in a fresh water test tank; (c) processed point cloud image of the 

target.  The system used for the scan was a PG-LLS system with 

wavelength λ = 532 nm based on the time of flight approach.  From [34] 

and[35]. 

 

Figure 2.19.  (a) Photograph of the target section in air; (b) photograph 

of the target in a fresh water test tank; (c) processed point cloud image of 

the target at different projections.  The system used for the scan was a 

PG-LLS system with wavelength λ = 532 nm based on the time of flight 

approach.  From [35]. 

This research has allowed commercially available systems to be marketed [36, 37], which 

allow extended range in comparison to systems based on triangulation approach, although 

the latter show a superior resolution.  Figure 2.20 shows an example of scan performed 

with a commercially available LLS based on triangulation [38], in this case the resolution 
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varies between 0.01 millimetre at a stand-off distance of 0.13 metre, to 0.3 millimetre at 

a stand-off distance of 1 metre, as stated by the manufacturer [39]. 

 

Figure 2.20.  (a) 3D point cloud map of an underwater jacket joint.  (b) 

Detail of the jacket joint.  The system used for the scan was the ULS-100 

by 2G Robotics, a LLS system with wavelength λ = 532 nm based on the 

triangulation approach.  From [38]. 

In this section, particular attention was dedicated to systems using highly collimated light 

sources.  However, different light source configurations can be considered, as discussed 

in the next section. 

2.7. Structured light 

In order to reduce the acquisition time for a 3D image, a different light source 

configuration can be used.  For example, structured light is a technique based on 

triangulation, and consists of projecting a known light pattern on to the target.  Then, with 

appropriate signal processing techniques, 3D images can be obtained studying the 

deformation of the original pattern [40, 41].  

Commonly, systems based on structured light comprise a digital light projector and a 

camera, placed at a known distance apart.  The light patterns can be manifold, and several 

examples can be found in the literature [42].  However, small patterns are preferable in 

order to limit the effect of back-scattering.  For example, Narasimhan et al. in 2005 used 

a projector to illuminate the target with a stripe of white light [43], as shown schematically 
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in Figure 2.21.  The receiver was a CCD camera, placed at a known distance from the 

light source. 

 

Figure 2.21.  Schematic of stripe structured light.  The light stripe was 

swept across the target surface through a light projector, and a CCD 

camera was placed at a known distance from the light source.  From [43]. 

This system was used to obtain images of two objects in water, under different scattering 

conditions, and a few image examples are shown in Figure 2.22.  The scattering was 

varied by adding milk to tap water, and no attenuation coefficients were provided. 
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Figure 2.22.  Target scene in water at different concentrations of milk.  

The first column shows the projector illuminating the wide field scene.  

The second column shows the projector illuminating the targets with a 

single light stripe.  The third column shows the depth of the target scene, 

obtained scanning the targets with a single light stripe and detecting the 

light scattered back from the target with a camera.  The last column shows 

the reconstruction of the target reflectance.  From [43]. 

The results show that the system was able to identify the targets also in highly scattering 

conditions (last row of Figure 2.22), and the reconstructed surface is shown in the point 

cloud graph in the third column.  In addition, Narasimhan et al. developed an algorithm 

to recover the reflectance of the targets at different colour channels [43], and the results 

are shown in the last column of Figure 2.22.  It is interesting to note that in highly 

scattering conditions, they were able to recover the depth and reflectance of most of the 

target scene, although the handle of the cup is missing because of the low signal detected 

due to the high level of attenuation.  However, no details about the resolution were 

provided in the reference. 

Structured light techniques can be improved by adding more receivers to the system, and 

in this case several configurations can be considered.  For example, Bruno et al. in 2011 

used two CCD cameras in conjunction with a projector, which illuminates the entire target 

with a programmable light pattern [44].  However, despite each pattern covering the entire 

target scene at once, the 3D image acquisitions required the projection of 50 patterns.  
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With this system, Bruno et al. were able to obtain images at stand-off distances up to 

approximately 4 attenuation lengths, and few results are shown in Figure 2.23.  The figure 

shows in column a) the photographs of the target illuminated by one light pattern, in three 

different water conditions.  While column b) in Figure 2.23 shows the point cloud graphs 

obtained by structured illumination technique. 

 

Figure 2.23.  (a) Photographs of one pattern projected on the target at 

different turbidity levels.  (b) Point cloud graphs of the reconstructed 

target.  The system comprised two CCD cameras and a light projector, 

programmed to project different light patterns.  Adapted from [44]. 

Alternatively, a different source can be considered for structured light.  For example, 

Massot-Campos et al. in 2014 used a CCD camera in conjunction with a green continuous 

wave laser and a diffractive optical element in front of the laser beam [45].  This system 

allowed for the use of multiple laser lines at the same time in order to form a structured 

illumination, as shown schematically in Figure 2.24.  The laser used a wavelength of 

λ = 532 nm and 5 mW optical power, and it is shown in Figure 2.25a).  The photograph 
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shows the laser in the white housing, while the camera is in the black housing.  The system 

was tested in unfiltered tap water in the tank of the Ocean Systems Laboratory at 

Heriot-Watt University.  The tank was 4 metres long, 3 metres wide, and 2 metres deep 

(Figure 2.25b). 

 

Figure 2.24.  Schematic of single frame structured light system based on 

triangulation.  A light pattern is projected on the target, which deforms 

the original pattern.  Studying the deformations, it is possible reconstruct 

a 3D map of the target.  From [45]. 

 

Figure 2.25. (a) Photograph of the system, the black housing comprised a 

CCD camera, while the white housing comprised a laser with wavelength 

λ = 532 nm and 5 mW optical power. (b) The system was tested in the 

water tank of the Ocean Systems Laboratory at Heriot-Watt University. 

From [46]. 
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Figure 2.26 shows an example of a non-processed 3D reconstruction of a 15 cm plastic 

weight plate in unfiltered tap water, (b) front view and (c) bottom view [45].  Preliminary 

tests showed that the laser based structured light system allowed sharp and clear details 

[46].  However, a quantitative study in clear and turbid water conditions was not yet 

performed and is part of future work. 

 

Figure 2.26.  (a) Laser input frame obtained with the system in Figure 

2.25 illuminating a 15 cm plastic weight plate.  (b) Front view of the 3D 

reconstruction of the weight plate.  (c) Bottom view of the 3D 

reconstruction of the weight plate.  From [45]. 

2.8. Modulation discrimination 

The frequency domain provides another way to discriminate between the backscattering 

component and the target signal using the modulation technique.  This approach uses light 

modulated in the microwave range.  Transmitted and received light experiences multiple 

scattering events in the transmission medium and then sums incoherently at the receiver.  

At the same time, un-scattered light reaching the target will fully retain the modulation 

characteristic [47].  By filtering the received signal, the modulated return from the target 

can be distinguished from the backscattered light [48].  In addition, the target signal is 
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characterised by a phase term which is directly proportional to the target distance.  

Therefore, target range information is obtained by the measurement of the phase 

difference between the transmitted and the reflected signals simultaneously for each pixel, 

allowing for the construction of the 3D profile of the target [49]. 

This technique was implemented in several configurations, including the use of 

pseudo-monostatic or bi-static platforms, continuous wave or pulsed lasers, and different 

receivers, typically CCD cameras or PMTs. 

The potential of a system based on the modulation technique was initially investigated by 

Mullen et al. for airborne LiDAR systems [47, 50, 51].  In 2004, Mullen et al. 

demonstrated the technique for underwater imaging at different target stand-off distances 

[49].  They used a pseudo-monostatic system, with a CCD camera and a continuous wave 

laser, at the wavelength λ = 532 nm and 5 W optical power.  Different modulation 

frequencies were investigated in the range 10 to 100 MHz, and target images were 

obtained at stand-off distances equivalent to up to 6.7 attenuation lengths [49]. 

A similar system was developed by Bartolini et al. in 2005 [52].  In this case, the authors 

were more interested in clear water, hence they used a laser at the wavelength λ = 405 nm, 

which is closer to the minimum of absorption of pure water, and an optical power of 

20 mW.  The receiver was a PMT, which was placed in a pseudo-monostatic 

configuration with the laser source.  The system allowed for the estimation of the target 

depth at a stand-off distance of approximately 1.5 m in unfiltered tap water, and an 

example is shown in Figure 2.27.  The target was a steel surface 10 cm wide and 3.8 cm 

high, with 1 cm steps, coated with a high-reflectivity paint.  The authors performed a 

synchronous scan of the target using a pixel format of 80 × 40 and an acquisition time of 

10 ms per pixel, meaning an overall acquisition time of approximately 32 seconds.  Figure 

2.27a) shows a set of data reporting the phase versus the range, which shows the profile 

(i.e. the depth) of the target.  Figure 2.27b) shows the 3D reconstruction of the target, 

from four different perspectives [52]. 
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Figure 2.27.  (a) Phase versus the range for one row of pixels, showing 

the target profile.  (b) 3D reconstruction of the target, from four different 

perspectives.  The system comprised a laser at the wavelength λ = 405 nm 

and optical power of 20 mW, and a PMT to detect the backscatter signal 

from the target.  From [52]. 

Since 2008, Bartolini et al. studied the contrast and the SNR as function of the modulation 

frequency, suggesting that given the water attenuation coefficient and the required target 

range window, optimal working modulation frequencies may be selected in order to 

optimise SNR and contrast [53, 54].  In addition, in 2014 Mullen et al. demonstrated that 

the modulation discrimination technique can be used to suppress the forward scattered 

light if high modulation frequencies (of the order of 1 GHz) are used [55].  

It is worth saying that the modulation technique was implemented also on bi-static 

configurations, where the source was placed close to the target and the receiver was in a 

different platform at several metres from the laser source [56, 57].  This configuration has 

the advantage of avoiding multiple and back-scattering events, and minimising 

attenuation of light between the source and the target, allowing for imaging at stand-off 
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distances of more than 10 attenuation lengths.  However, it is important to note that this 

configuration requires a priori knowledge of where the source can be placed, making the 

implementation of this configuration in a real environment extremely difficult. 

2.9. Conclusions 

This chapter presented a brief review of the main systems developed to image man-made 

objects underwater.  Optical imaging systems can be divided in to two main classes, 

passive and active systems.  Passive systems use natural light for illumination while active 

systems employ an artificial light source.  Passive systems can image up to approximately 

3 attenuation lengths under ideal illumination conditions.  However, significant 

improvements in image quality at longer distances can be obtained with active systems, 

in particular with systems that use laser-based techniques.  Generally, using a light source 

can significantly reduce the image contrast due to scattered light, which is often a major 

issue in turbid media.  Several methods have been devised to reduce the limiting effect of 

back and forward-scattered light when imaging in underwater environments.  The main 

techniques used to limit backscattered light are based on temporal discrimination, spatial 

discrimination, or modulation discrimination.  

In temporal discrimination, the receiver is time-gated to only allow a detected signal in 

correlation with the expected return of the pulsed illumination from the target, hence 

removing much of the backscattered light whilst maintaining the full return signal. 

Spatial discrimination consists of minimising the overlap between the transmitted light 

and the field of view of the receiver, for example by separating the source and receiver.  

However, this task can also be performed by narrowing the field of view of the receiver, 

the source, or both.  The latter case is known as synchronous scanning, which is on the 

basis of laser line scan systems. 

The modulation technique uses light modulated in the microwave range.  While 

propagating from the source to the target and back to the receiver, modulated transmitted 

light experiences multiple scattering events in the transmission medium, and will sum 

incoherently at the receiver.  At the same time, un-scattered light reaching the target will 

fully retain the modulation characteristic, allowing for discrimination between target 
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signal and backscattered signal.  In addition, if high modulation frequency is used, the 

forward scattered component can also be discriminated by the target return.  

Each technique allows 2D imaging to stand-off distances of up to 5-6 attenuation lengths.  

A combination of these techniques allows for imaging of up to more than 7 attenuation 

lengths.  In addition, it is important to note that all the systems considered in this chapter 

use average optical power in the range from few milli-watts to several Watts, which are 

likely to exceed eye-safety thresholds, as well as requiring high electrical power 

consumption. 

These techniques can be implemented in different configurations: monostatic, 

pseudo-monostatic, and bi-static.  In a monostatic configuration, the source and the 

receiver are in the same platform and share one or more optical elements.  While in a 

pseudo-monostatic configuration, source and receiver are on the same platform but have 

dedicated optical setups.  A bi-static configuration generally uses two separated platforms 

for the source and receiver.  Particular attention was given to monostatic and 

pseudo-monostatic configurations, as a bi-static configuration requires a priori knowledge 

of where the source should be placed, which is a difficult condition to satisfy in a real 

underwater environment. 

A 3D profile can be obtained if additional techniques are used.  For example, temporal 

and spatial discrimination can be used in conjunction with triangulation or time-of-flight 

approaches.  The triangulation approach estimates the depth of the target on the basis of 

the known system baseline.  However, this technique requires appropriate calibration 

techniques before each measurement.  The time-of-flight approach measures the distance 

of a target surface by the round-trip time of an optical pulse.  Usually, triangulation 

provides a higher resolution with respect to the time-of-flight approach, but at the cost of 

a shorter range. 

Modulation discrimination allows for 3D target profiles, as the target signal is 

characterised by a phase term which is directly proportional to the target distance.  

Therefore, target range information is obtained by measurement of the phase difference 

between a reference signal and the reflected signal simultaneously for each pixel of the 

receiver. 
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In conclusion, the selection of the technique and the development of the system are strictly 

related to the final application and involve several considerations, including achievable 

range, absorption and scattering properties of the environment, resolution requested, and 

platform available.  
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Chapter 3 

Time-correlated single-photon counting and single-photon detection 
 

3.1. Introduction 

The time-correlated single-photon counting technique is a particularly effective optical 

detection approach for applications where a very low photon return is expected, offering 

high sensitivity and a temporal resolution of a few picoseconds.  This chapter will give 

an overview of the time-correlated single-photon counting technique, as well as a brief 

introduction to the most important single-photon detector technologies currently 

available. Due to the wide range of applications that require the capability of 

measurement of fast optical signals, it is important to understand the physics underlying 

the operation of single-photon detectors and their key performance characteristics. 

Specific attention is given to silicon single-photon detectors, which are the detectors 

used in the experiments reported in this Thesis.  However, single-photon detectors for 

the infrared wavelength range will also be introduced for comparison and completeness. 

3.2. Time-correlated single-photon counting 

The time-correlated single-photon counting (TCSPC) technique relies on the 

measurement of the time difference between an optical input pulse, typically a repetitive 

pulsed laser signal, and a photon event recorded by a single-photon detector.  If the 

pulsed laser signal provides the start of the measurement and the detector provides the 

stop signal, the operating mode is called forward mode, and this is shown schematically 

in Figure 3.1.  A schematic of a typical experimental implementation of the technique is 

shown in Figure 3.2.  When a photon is detected, the timing difference between the 

corresponding laser pulse and the detection event is recorded and added to a timing 

histogram.  Repeated over many pulses, the timing histogram can be a highly accurate 

representation of the optical transient signal being measured.  An example of timing 

histograms recorded in a time-of-flight measurement is shown in Figure 3.3.  The width 

of each timing histogram bin can be set before the measurement, and it can be as short 

as  one picosecond using the data acquisition hardware employed for the experiments 

reported in this Thesis [1].  
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Figure 3.1.  Timing diagram of start-stop time measurements.  If used in 

forward mode (as shown here), the start signal is provided by an 

external clock pulse, the stop signal corresponds to an electrical output 

pulse provided by the detector for each detected photon.  Reverse mode 

starts on a detector pulse and ends on a laser pulse.   Δt represents the 

difference between the start and the stop pulses.   

 

Figure 3.2.  Schematic of a typical time-correlated single-photon 

experiment operated in forward mode [2].  The laser source provides the 

start signal while the detector provides the stop. 
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Figure 3.3.  Examples of histograms in a time-of-flight measurement for 

different acquisition times.  For longer acquisition times, the timing 

histogram gives a highly accurate representation of the time of flight 

information.  Due to latency and delays from electronic components, an 

arbitrary zero was chosen for the displayed time-scale.  

To obtain accurate results, the probability of detecting one photon per start signal has to 

be much less than one [2].  This means that the likelihood of two or more photons being 

incident after a given pulse is kept very small.  If this condition is not satisfied, then the 

probability distribution across the timing window is skewed, leading to a distortion in 

any timing measurement. This effect is known as “pulse pile-up”, and it is shown 

schematically in Figure 3.4.  The figure shows also the dead time, which is the time 

spent by the electronics to reset after a detection event, and during this time no more 

events can be detected.  Therefore, when more than one photon event occurs within one 

period of the clock signal (pulse pile-up), just one of these photons can be detected.  

Typically, only early events are recorded and, as a result, the timing histogram is 

skewed toward the start of the timing window, as shown in Figure 3.5 for the case of 
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fluorescence decay measurements.  To avoid pulse pile-up, the count rate of the TCSPC 

system must not exceed 5% of the excitation rate [2]. 

 

Figure 3.4.  Diagram of the pile-up effect over one period of operation.  

The dead time starts when the first photon is detected. 

 

Figure 3.5.  Distortion of a fluorescence decay histogram due to pulse 

pile-up.  From [1]. 

Since photon detections can be treated as independent events, they follow Poissonian 

statistics.  Therefore, the probability to detect N number of photons over an interval 

time Δt is [3] 

   Equation 3.1  
 

!

kte t
P N k
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   
 
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where λ is the number of events expected in the unit time interval, such that λΔt 

represents the number of events expected in the time interval Δt.  The uncertainty 

associated with this distribution is known as photon noise, and its standard deviation 

corresponds to .  Hence, to improve the accuracy of a measurement, 

the number of counts has to be high with respect to the background, meaning that the 

measurements should be recorded at the highest count rate possible within the 

limitations discussed before.  One source of background noise is non-correlated photons 

from ambient light sources.   Another source of noise is given by the dark counts of the 

detector, discussed in more detail in section 3.4.3.  The detector dark counts generate a 

background that limits the sensitivity of the system, and the parameters of this particular 

contribution to the background are a characteristic of the type of detector used.  

However, a mean background level can be subtracted from the recorded histogram. 

A useful parameter used to compare the signal to the background level is the signal-to-

background ratio (SBR), defined as 

   Equation 3.2 

where np is the number of photons in the highest bin in the peak (shown in red in 

Figure 3.6), and nb is the average background photons per bin. 

t t N    
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p

b

n
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Figure 3.6.  Example of histogram showing in red the number of photons 

in the highest bin in the peak, np.  An arbitrary zero was chosen for the 

displayed time-scale. 

However, the SBR does not depend on the acquisition time chosen and consequently it 

does not take into account that the shape of the instrumental response converges 

asymptotically to the convolution of the instrumental responses of all components.  A 

parameter that considers the shape of the instrumental response is the signal-to-noise 

ratio (SNR), defined as [4]: 

 
SBR

SNR
SBR 1

p

p

p b

n
n

n n
 


  Equation 3.3 

This difference is explained in Figure 3.7, where three simulated histograms with 

different acquisition times are shown.  The SBR is approximately 15 in all three cases 

while the SNR decreases for shorter acquisition times. 
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Figure 3.7.  Simulated histograms for three different acquisition times, 

10 seconds, 1 second, 0.1 seconds.  Apart from acquisition times, the 

simulations are made under identical conditions.  The histograms 

present the same SBR (SBR = 15) but different SNR, which decreases for 

shorter acquisition times. 
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3.3. TCSPC hardware 

Figure 3.8 shows the block diagram of a conventional forward mode TCSPC system.  

The level trigger adapts the sync signal so that it is accepted by the TCSPC system.  The 

timing information (the stop signal) is provided via a Constant Fraction Discriminator 

(CFD), which compares the detector signal with a copy of it, delayed by a constant, 

inverted, and amplified by a constant fraction.  The signal obtained from the comparison 

changes polarity at the height of the detector signal constant fraction.  This zero 

crossing point gives the timing information, which is independent of the amplitude of 

the detector signal. Figure 3.9 provides a diagram of the operation of a CFD. 

 

Figure 3.8.  Block diagram of a conventional TCSPC system.  The 

system comprises a Constant Fraction Discriminator (CFD), a Time to 

Amplitude Converter (TAC), an Analogue to Digital Converter (ADC), 

and a Histogrammer. 

 

Figure 3.9.  Diagram of a CFD operation.  (a) The detector signal is 

delayed by a constant time  δ, (b) attenuated by the factor f and inverted.  

The sum of (a) and (b) is shown in (c), and where the curve changes 

polarity provides the zero crossing point that gives the timing 

information.  From [5]. 
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The signals from the trigger level and the CFD are sent to a Time to Amplitude 

Converter (TAC), which generates a voltage ramp that starts with the sync signal and 

stops with the CFD signal, as shown in Figure 3.10.  The output voltage is proportional 

to the time difference between the start and the stop signals, and it is sent to an Analog 

to Digital Converter (ADC) that provides the digital timing value to be used by the 

histogrammer [1].  The amplitude of the voltage ramp when the stop signal occurred is 

used as a record of the time at which the stop signal occurred.  The ADC measures that 

amplitude to some precision and records it as a numeric value that is taken as a measure 

of the time difference between start and stop signals. 

 

 

Figure 3.10.  Principle of operation of a Time to Amplitude Converter. 

As discussed before, the probability of detecting a photon per clock period is much less 

than unity, meaning that the TAC has to be restarted every time a clock period has 

elapsed without a recorded event.  A dedicated circuit can be included in the system to 

reset the TAC, but this solution works well only when the sync signal repetition rate is 

low.  When high repetition rates are used, the dead time of the system has to be 

considered.  If the period of the clock signal is shorter than the dead time of the TAC 

and ADC, the system is not able to record events that may occur for laser pulses that 

take place during the reset process.  This problem can be solved by using a reverse start-

stop configuration, where the start signal is provided by the detector event while the 

stop is provided by the next clock signal [1].  
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In modern TCSPC systems, the function of the TAC and ADC can be performed by a 

Time to Digital Converter (TDC), a crystal clock digital counter based on high-speed 

all-digital technology.  A TDC measures the time differences between signals in logic 

gates, offering high-speed time measurements with picosecond-resolution.  This 

configuration permits retention of temporal information about the photon arrival, thanks 

to a coarser timing performed on each event with respect to the clock signal [6].  This 

acquisition mode is called Time-Tagged Time-Resolved data collection [7], and it will 

be discussed more in detail in Chapter 5. 

3.4. Single-photon detectors 

Several parameters can be defined to evaluate the performance of single-photon 

detectors based on different technologies.  Each parameter will be briefly defined here, 

and then considered in greater detail later.  

Dead time is the time spent by the detection system to reset itself after a detection event. 

During this time the detector is not able to detect any other event, hence long dead times 

can affect the total count rate.  The detector dead time can be considerable, depending 

on the type of detector.  In many cases, the reset time of other components in the 

acquisition chain can be greater than the detector dead time, for example, the dead time 

of the ADC or TDC is often greater than the time spent by the detector for the reset 

Detection efficiency is defined as the probability that an incident photon generates a 

measurable current pulse, assuming that the time between photon arrivals is greater than 

the dead time of the detection system [8].  This is an overall efficiency that includes 

several contributions: coupling efficiency (probability that the photon is incident on the 

active area of the detector), absorption efficiency (probability that a photon is absorbed 

by the detector), and the triggering efficiency (probability that a photon absorbed in the 

active volume of the detector produces a readable output pulse).  

Timing jitter can be defined as an estimation of the error in the timing of the detection 

response.  When considering the histogram of the studied optical signal, the timing jitter 

is typically described in terms of the Full Width at Half Maximum (FWHM) of the 

distribution, as shown in Figure 3.11.  
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Figure 3.11.  Timing histogram showing  the timing jitter of a Micro 

Photon Devices (MPD) PDM series Si-based single-photon detector at 

λ = 670 nm.  

Some events can be recorded by the detector even in the absence of incident light.  

These events are called “dark events”.  They represent the internal noise of a single-

photon detector and are typically expressed in counts/sec, the average number of times 

the detector is triggered in 1 second by events that cannot be attributed to external 

photons. Dark events can be caused by several mechanisms, which will be discussed in 

more detail in section 3.4.3. Since false events contribute to the total count rate in the 

measurement, the dark count rate has to be as low as possible in order to optimise the 

SNR. 

Every detector works in a specific range of wavelengths.  This depends on the 

absorption efficiency of the detector, and on the probability that the absorption leads to 

a self-sustaining avalanche which can be detected.  It is therefore useful to have a single 

parameter that can compare different detectors across different architectures, material 

compositions, and operational wavelengths.  One potential comparative figure of merit 

for single-photon detectors is the noise equivalent power (NEP).  This depends on the 

single-photon detection efficiency () and the dark count rate (DCR), and it is defined 

as  
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  Equation 3.4 

where  is the wavelength of the incident light.  The NEP is defined as the signal power 

required to attain a unity signal-to-noise ratio within 1 second of integration time [8].  

The lower the NEP, the more sensitive is the detector. 

 

3.4.1. Photomultiplier Tubes 

A photomultiplier tube (PMT) is the first example of a single-photon detector 

considered here. It was first demonstrated in 1935 [9] and used in a wide range of 

application.  Figure 3.12 shows a diagram of the device.  PMTs use a photocathode 

placed at the incident end of a vacuum tube, and a series of dynodes placed before an 

anode, which is at the far end. When a photon is absorbed in the photocathode, an 

electron is emitted because of the photoelectric effect.  The electron is accelerated in an 

electric field toward the first dynode. When it hits the dynode more electrons are 

released via secondary emission and subsequently accelerated toward the next dynode.  

Each dynode is biased with a higher positive voltage than the previous, resulting in an 

increasing number of electrons propagating through the vacuum tube until the electron 

cascade reaches the anode creating a current pulse of typically 106 or more electrons [8].  

PMTs have a high internal gain, compared to the silicon semiconductor single-photon 

detectors employed in the experiments reported in this Thesis.  When N dynodes are 

used, the multiplication factor M is  

     Equation 3.5 

where  is the secondary electron coefficient.  Typical values  = 5 and N = 10 gives a 

multiplication factor of 107 [10].  

NEP 2DCR
hc




NM 
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Figure 3.12.  Schematic of a photomultiplier tube. 

Compared to the detector described later in this chapter, PMTs have a large collecting 

area (i.e. a large photocathode) – typically a few mm in diameter.  However, PMTs 

typically show NEP values of the order of 10-16 WHz-1/2[11], low to moderate 

single-photon detection efficiency, and the timing jitter is approximately in the range of 

1 ns, because of the transit time spread between photocathode and anode [8].  Hence in 

an application where high detection efficiency and low timing jitter are required, 

detectors based on different technologies are preferred.  

3.4.2. Microchannel plates 

Another example of a photocathode based detector is the microchannel plate (MCP).  

An MCP consists of a two-dimensional array of thousands of channels composed of 

thin glass tubes with a diameter typically of the order ~ 10 m.  The inner wall of each 

channel is made with a photo-emissive material that serves as an emitter of secondary 

electrons.  The first input electron is accelerated along the channel.  When this collides 

with the walls, a secondary electron cascade is started.  The process is repeated for each 

secondary electron, resulting in an exponential multiplication of the electron flux along 

the channel [12].  A schematic of an MCP structure is shown in Figure 3.13.  Compared 

with PMTs, the gain of MCPs is lower and limited to approximately 104 [13].  

However, the timing jitter of MCPs is of the order of 20 – 30 ps thanks to the short 

electron transit times and very low transit time spread in these devices [14].  In addition, 

the large 2D array configuration makes the MPCs particularly suitable for being used as 

an image intensifier, an X-ray diagnostic tool and for non-destructive imaging [12]. 



 57 

 

Figure 3.13.  Schematic structure of an MCP.  From [13]. 

3.4.3. Single-photon avalanche photodiodes 

A more efficient alternative to dynode-based detectors is given by single-photon 

avalanche diodes (SPADs).  These devices convert an optical signal into an electrical 

signal, exploiting the conductive properties of semiconductors. When a photon is 

absorbed, an electron is promoted from the valence band to the conduction band, 

leaving a hole in the valence band that will act as a positive charge.  In this way, an 

electron-hole pair is formed, which generates a measurable photocurrent when 

accelerated by an electric field [15]. The most basic detector uses a p-n junction, formed 

by two semiconductors, one with an excess of holes (p-type) and the other with an 

excess of electrons (n-type).  In equilibrium, the difference in doping concentrations 

leads to a diffusion of the carriers: holes diffuse toward the n-type semiconductor 

leaving ion acceptors, and electrons diffuse toward the p-type semiconductor leaving 

ion donors [16]. Due to the diffusion of the carriers, a small charged region is formed at 

the interface, known as depletion region because it is depleted of charge carriers [17].  

As a result, an electric field E
0
 is created in proximity of the junction, causing the holes 

to drift toward the p-type semiconductor, and the electrons to drift in opposite direction. 

At the equilibrium, the diffusion current due to the different doping concentration 

balances the drift current due to the electric field, meaning that the total current in the 

junction is zero. This process is shown schematically in Figure 3.14. 
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Figure 3.14.  P-n junction in equilibrium conditions.  The depletion 

region is enlarged in the figure.  In equilibrium, the difference in doping 

concentrations leads holes to diffuse toward the n-type semiconductor 

leaving ion acceptors , and electrons to diffuse toward the p-type 

semiconductor leaving ion donors . 

If an external potential difference is applied to the junction, the potential across the 

junction can be lowered (forward bias) or increased (reverse bias), as shown in 

Figure 3.15.  When the junction is forward biased, the charge carriers move to re-

establish an equilibrium condition, creating a current across the junction.  If reverse 

biased, the diffusion of the charge carriers is inhibited because the holes in the p-type 

semiconductor move away from the depletion region increasing the number of negative 

acceptor ions, and at the same time the electrons in the n-type semiconductor move 

away from the depletion region increasing the number of positive donor ions.  This 

results in a wider depletion region in both the p-side and the n-side. 

-

aN

+

dN
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Figure 3.15.  A p-n junction diode forward biased in (a) and reverse 

biased in (b).  When the junction is forward biased, the charge carriers 

move across the junction, resulting in a current in the device.  When the 

junction is reverse biased, the charge carriers are inhibited from 

moving.  From [17]. 

When a photon with energy greater than the band gap of the material is absorbed in the 

depletion region of a reverse biased p-n junction, it creates an electron-hole pair.  The 

electron and the hole will drift in opposite directions, producing a measurable current in 

the device, called photocurrent and often denoted by Iph.  However, the photon can be 

absorbed outside the depletion region.  In this case, the charge carriers will contribute to 

the photocurrent just after they diffuse into the depletion region.  In general, the 

diffusion is a slow process and it should be avoided for fast detector operation.  This can 

be accomplished changing the width of the depletion region to increase the likelihood of 

photons being absorbed within the depletion region.  If a layer of intrinsic (not doped) 

semiconductor is grown between the p-side and n-side, a wider depletion region can be 

achieved.  When reverse biased, the intrinsic layer is depleted and the electric field is 

extending over the thickness of the intrinsic region.  Such a device is called p-i-n 

junction, and in Figure 3.16 it is compared to a reverse biased p-n junction.  The 

advantages of the p-i-n photodiode are increased detection efficiency, and higher carrier 

mobility in the i-region allowing faster carrier transport in this lower capacitance 

design.  
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Figure 3.16.  Reverse biased p-n junction (on the left) and p-i-n junction 

(on the right).  From [18]. 

Figure 3.17 shows an example of an I-V characteristic curve for a photodetector.  The 

graph shows that increasing the magnitude of the reverse bias leads to the breakdown 

region.  In this case, the electric field is high enough to let a drifting electron gain 

sufficient kinetic energy to impact on atoms of the crystal lattice and promote a bound 

electron from the valence band to the conduction band.  This electron will go through 

the same process, resulting in an avalanche multiplication.  This process is called impact 

ionisation and it is shown schematically in Figure 3.18.  Devices operating in this mode 

are known as Avalanche Photo-Diodes (APDs), and the operation mode is called “linear 

multiplication mode”. 
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Figure 3.17.  Example of I-V characteristic curve for a photodetector.  

From [17]. 

 

Figure 3.18.  (a) If a photon is absorbed in the depletion region of the 

junction and its energy is high enough, an electron is promoted to the 

conduction band, leaving a hole in the valence band.  (b) If the electric 

field in the junction is high enough, the charge carriers can gain 

sufficient kinetic energy to cause more impact ionisation events colliding 

with the lattice, resulting in an avalanche effect. 

If the device is biased beyond the avalanche breakdown region, it operates in “Geiger 

mode”.  In this case, a very high electric field drifts all the free charge carriers and no 

current flows in the depletion region.  When a photon is absorbed, it creates an electron-

hole pair that will be induced to drift by the electric field, and impact ionisation will 

take place. However, this process is self-sustaining due to the high electric field [19], 

and the avalanche current will flow until externally quenched.  Avalanche photodiodes 

operating in this mode are referred to as Single-Photon Avalanche-Diodes (SPADs). 
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To stop the avalanche current, three types of quenching can be applied: passive, active, 

and gated.  In passive quenching, most of the external bias drops across a high 

impedance load, connected in series with the SPAD [20].  However, this configuration 

requires long recovery times, typically of the order of 1 μs [21].  Shorter recovery times 

(of the order of a few nanoseconds) can be obtained with active quenching, where a 

negative pulse is superimposed to the external bias quenching the avalanche process 

[22, 23].  A different approach is used for the gated quenching, in this case the device is 

biased above the breakdown level just for a small temporal interval when the photon is 

expected.  Hence, the knowledge of the arrival time of the photon is required, making 

this technique unsuitable for an application like time-of-flight ranging, where the 

distance to the target is, in general, unknown.  

As mentioned before, the dark count rate represents the internal noise of a SPAD and 

can limit the performance of the device.  Dark events in SPADs can be due to different 

mechanisms such as, for example,  carriers thermally generated in the active area of the 

detector or generated by tunnelling processes [24].  These two mechanisms cause 

avalanche events even in the absence of incident photons.  Thermally generated carriers 

can be significantly reduced by reducing the operating temperature of the device. 

However, charge carriers can also be generated by tunnelling processes, which are not 

dependent on temperature.  These processes depend on the electric field in the device, 

setting a lower limit to the dark count rate because the electric field has to be high 

enough to ignite avalanche multiplication.  Dark counts can also be due to the effect of 

afterpulsing, caused by carriers emitted from trapping levels that were previously 

populated, for example when a previous dark count or an incident photon triggered an 

avalanche process in the detector [25].  Defects and impurities in the crystal generate 

local levels at intermediate energies between the band edges, which act as traps that 

hold carriers during an avalanche multiplication.  When the device is quenched, the 

traps release the carriers, which can trigger another avalanche multiplication if the 

quenching is stopped before all the traps are empty.  This effect is mainly dependent on 

the bias voltage: at high voltage more carriers are free to move, increasing the 

probability that a trap holds a carrier.  Hence, the afterpulsing can be effectively 

reduced limiting the carriers in the detector and using appropriate quenching circuits 

[21].  However, this comes at the cost of a lower photon detection efficiency, which 

increases with the excess bias voltage applied [26]. 
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3.4.3.1. Silicon single-photon avalanche diodes 

Silicon (Si) based SPADs operate in the wavelength range 400-1000 nm, and they are 

widely used in several applications including time-of-flight ranging [27], and quantum 

communication [28, 29].  The main designs of Si-SPADs in use at present are 

sometimes referred to as “thick junction” and “thin junction”, and examples of device 

design schematics are shown in Figure 3.19.  The difference between the two junctions 

is in the depletion region, which leads to different performances of the devices.  In thick 

junctions the depletion region is 10-100 μm wide [30], and due to the long interaction 

length these devices have a single-photon detection efficiency of the order of ~65% at 

λ = 700 nm [31]. The timing jitter is of the order of 400 ps in devices with active area of 

approximately 200 m [31], however it is possible to optimise the detector timing 

response by up to 40% using external timing circuitry [32].  In thin junction detectors 

the depletion region is a few μm wide [33], resulting in a lower detection efficiency of 

~50% at λ = 550 nm [34].  However, the timing jitter in this case is greatly improved, 

and it can be up to 50 ps when the active area is ~50 μm diameter [34]. 

 

Figure 3.19.  (a) Schematic of a thick junction silicon single-photon 

avalanche diode, and (b) a thin junction silicon single-photon avalanche 

diode.  From [30]. 

The first practical design of a Si-SPAD was implemented by Cova et al. in 1981 [23], 

using thin junction geometry.  However, the early devices exhibited a long diffusion 
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tail, caused by carriers absorbed in the substrate and diffusing more slowly towards the 

depletion region [35], as shown in Figure 3.20.  Over the years, improvements in the 

design of thin junctions allowed the suppression of diffusion tails [36, 37], also 

achieving a temporal resolution of a few hundreds of picoseconds at 1/100th of the 

maximum of the detector response [38, 39].  

 

Figure 3.20.  (a) Timing histogram showing the response of a planar 

Si-SPAD.  (b) Avalanche process when a photon is absorbed in the 

depletion layer and in the substrate.  Both from [39]. 

While the photon detection efficiency is not dependent on the active area of the device 

[28], the dark count rate increases for larger active areas.  An example is shown in 

Figure 3.21, where the dark count rate is shown for devices with three different active 

areas, in the temperature range from -50°C to 20°C [40].  At room temperature, typical 

values are ~900 cps for 50 μm active area, ~4000 cps for 100 μm active area, and 

~40000 cps for 200 μm active area [40].  As the temperature decreases, the probability 

of thermally generated events drastically reduces and the dark count rate decreases 

exponentially. 
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Figure 3.21.  Dark count rate versus temperature for three Si-SPADs 

with different active areas [40]. 

It is worth noting that values of NEP of the order of 10-17 WHz-1/2 were demonstrated 

for a 50 μm diameter thin junction Si-SPAD, operating at room temperature using an 

incident wavelength of λ = 850 nm [40].  While typical NEP values of the order of 10-18 

WHz-1/2 for thick junction are achievable at a temperature of approximately -25 °C, and 

at room temperature, the NEP can be also of the order of 10-16 WHz-1/2 [8]. 

Silicon devices were selected to perform the experiments reported in this Thesis, as they 

offer high detection efficiencies in the visible wavelength range, corresponding to a low 

attenuation for water (refer to Chapter 4).  Semiconductor devices were chosen since 

they are relatively compact, Peltier cooled modules with low timing jitter compared to 

alternatives such as PMTs.   Three silicon-based single-photon detectors were used, a 

thick junction Si-SPAD manufactured by Perkin Elmer (Canada), and two different thin 

junction Si-SPADs manufactured by Micro Photon Devices (Italy).   

The Perkin Elmer SPCM-AQR series (SPCM – CD 2882) offers single-photon 

detectors based on the thick junction Slik silicon avalanche photodiode [32, 33, 41].  

The model available for this project had an active area of 180 μm.  The photon detection 
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efficiency was approximately 65% at the wavelength λ = 700 nm, with a maximum dark 

count rate of 500 cps, as specified by the manufacturer.  A typical curve of photon 

detection efficiency versus the wavelength is reported in Figure 3.22b). 

 

Figure 3.22.  (a) Photograph of the thick junction Perkin Elmer Si-SPAD 

SPCM – CD 2882.  (b) Photon detection efficiency of the same SPAD 

versus the wavelength. Both from [31]. 

When an event was detected, the module provided a differential TTL positive electrical 

pulse.  The pulse was re-shaped using an inverter and several attenuators to meet the 

input requirements of the TCSPC module.  The temporal response of the Perkin Elmer 

module stated by the manufacturer was approximately 350-400 ps. However, during the 

experiments the overall temporal response of the system is a combination of the jitter of 

all the components, resulting in an overall jitter of approximately 530 ps.  

The detectors mainly used during this PhD project were two Micro Photon Devices 

(MPD) PDM series Si-based thin junction single-photon detectors.  One of the modules 

had an “FC” fibre-receptacle pre-aligned to the optical detector, the other was pigtailed 

with a multi-mode fibre of 62.5 μm diameter core.  In general, the specifications of the 

two modules are similar, however under the same conditions they exhibited a different 

response, showing different SNR, gating window width, and background events 

detected, as will be discussed in Chapter 5.  The nominal active area of both detectors 

was 50 μm diameter.  These detectors had a low jitter, which was stated by the 

manufacturer to be less than 50 ps.  However, this came at the cost of lower detection 

efficiency compared to the thick-junction Si SPADs, as shown in Figure 3.23.  The 

graph shows a peak single-photon detection efficiency of 48% at the wavelength 

λ = 550 nm, with the efficiency reducing to approximately 30% at λ = 700 nm.  
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Figure 3.23.  (a) Photograph of the fibre receptacle version of the Si-

SPAD manufactured by Micro Photon Devices.  (b) Photon detection 

efficiency of the same SPAD versus the wavelength.  Both from [34]. 

The MPD Si-SPADs are thermoelectrically cooled, meaning that they are ready to 

collect events after only a few seconds of being powered on.  The integrated active 

quenching circuit includes a built-in fast gating function that requires an external TTL 

signal to gate the detector on for a temporal window up to a few nanoseconds.  This 

gives the advantage that the single-photon detector can be used to study weak optical 

signals, whilst gating out the undesired counts that occur at times outside the timing 

window of interest. 

In the early 2000s, Si-SPADs were integrated into complementary metal oxide 

semiconductor (CMOS) technology [42], opening the way to the fabrication of compact 

high pixel density SPAD arrays.  Early implementations of SPAD arrays did not 

integrate a time-to-digital converter (TDC) on chip, meaning that only one pixel per 

time was active [43, 44].  However, in 2008 Niclass at el. developed a 128 × 128 array 

with a bank of 32 integrated TDCs and a fast parallel readout circuitry [45].  A group of 

4 pixels shared a TDC allowing one to activate an entire row at once, resulting in the 

first row-wise parallel acquisition array.  Ideally, the integration of one TDC per 

detector is preferable in order to achieve a fast data acquisition over the entire array.  

The first example of such a design, as well with its characterisation, was presented in 

2009 by Gersbach et al. [46].  They designed and characterised a 32 × 32 TDC array, 

demonstrating a timing jitter of approximately 120 ps. However, the design of the array 

showed non-uniform performance in the detection efficiency and in the measured 

arrival time, limiting the timing resolution [47].  In addition, when in-pixel circuitry is 

included in the array design, the detector photo-sensitive area available is compromised.  
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A useful parameter to quantify this issue is the geometric fill-factor, defined as the ratio 

of photo-sensitive area to total pixel area.  For example, in reference [46] a fill-factor of 

2.3% is reported, meaning a low overall active area available despite the large number 

of pixels.  In 2014, Villa et al. reported a 32 × 32 array made of fully independent pixels 

operating in parallel [47].  In this case, each pixel had a SPAD detector with an active 

area of 30 μm diameter, fabricated in a 0.35 μm CMOS technology, which provides a 

better SPAD performance [48] than the standard deep-sub-micron CMOS technology 

used in the previously mentioned references.  A micrograph of the array is shown in 

Figure 3.24a), while Figure 3.24b) shows the block diagram of a single pixel.  

 

Figure 3.24.  (a) Micrograph of the SPAD array.  (b) Block diagram of a 

single pixel.  Both from [47]. 

This design presented a fill factor of 3.14%, which was later improved with the 

integration of diffractive microlens arrays [49].  Recently, a fill-factor of almost 20% 

was achieved by Parmesan et al. basing the sensor on sample and hold Time-to-

Amplitude Converter (TAC) pixels [50].  For each pixel a 2 bit column-parallel flash 

ADC was designed, and the histogram time generation is schematically shown in Figure 

3.25.  Each column comprised 4 comparators, which sampled 4 voltage references 

generated by a single ramp.  The two reference voltages V
+ and V

- 
can be adjusted by 

the user, allowing to zoom into the time region of interest.  This means that the TCSPC 

time bin range can be matched to the optical signal to be observed, contrary to the 

previous cases where the time bin range was fixed.  
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Figure 3.25.  Column-parallel flash ADC digital readout.  From [50]. 

3.4.3.2. InGaAs/InP single-photon avalanche diodes 

SPAD detectors have been developed for near-infrared light detection.  Generally, these 

detectors are not suitable for the underwater environment because of the high 

attenuation of infrared wavelengths in water.  Below is a short discussion of available 

near-infrared SPAD detectors for comparison.  

Indium gallium arsenide/indium-phosphide (InGaAs/InP) SPADs are the established 

technology for infrared single-photon counting at near-room and room temperature.  In 

this case, separate absorption and multiplication layers are used to improve the 

performance of the device, in particular to reduce the effects of tunnelling on the narrow 

gap InGaAs region which will contribute to increased dark noise and reduced 

efficiency. An example of a cross-section of an InGaAs/InP SPAD is given in Figure 

3.26, in which is shown that the absorption takes place in the InGaAs region, and 

impact ionisation takes place in the wide-gap InP layer.  
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Figure 3.26.  Schematic of a diffused-junction planar-geometry 

InGaAs/InP SPAD.  On the right of the figure, the behaviour of the 

electric field is reported for the centre of the device (in red) and for the 

edge of the diffused region (in grey).  From [51]. 

The major issue for these devices is afterpulsing, which is reduced by using the detector 

in electrically gated mode.  Gating the detector off allows the traps to empty and helps 

avoid further secondary avalanches caused by carriers emitted by the traps.  In addition, 

more rapid quenching techniques have been developed to reduce the afterpulsing effect 

in these SPADs, allowing detection efficiencies up to 10.8% at λ = 1550 nm, and 

afterpulsing probability down to 2.8%, in rapid gated mode of up to 1.5 GHz [52, 53].  

In recent years, advances in the growth and design of InGaAs/InP SPADs led to devices 

with single-photon efficiencies of up to 45% at λ = 1550 nm, 3 kcps dark count rate at 

200 K operation, and 30 ps timing jitter, as reported by Itzler et al. in 2007 [54, 55].  In 

2012, Tosi et al. designed and fabricated an InGaAs/InP SPAD working in gated mode 

at 225 K, exhibiting a detection efficiency of more than 25% at λ = 1550 nm and 40% at 

λ = 1000 nm, with a dark count rate below 100 kcps [56].  A number of references 

report also several techniques to operate an InGaAs/InP SPAD [57-60], however several 

researches are still ongoing on this field, in order to minimise dark count rate and 

afterpulsing with good efficiency. 

As before, a wide range of NEP values can be found in the literature.  To give an 

example, a value of the order of 10-17 WHz-1/2 was demonstrated at room temperature, 
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with the device operating in free-running mode [61].  However, improvements can be 

obtained at low temperature, and NEP of the order of 10−16 W Hz−1/2 at the temperature 

77 K can be achieved [25]. 

3.4.3.3. Germanium based single-photon avalanche diodes 

Due to the promising absorption properties at a wavelength of ~1500 nm of germanium 

(Ge) at room temperature [62], commercially available Ge-APDs were investigated in 

Geiger mode for the first time for photon-counting applications in 1994 [24, 63]. 

However, these devices were shown to have large dark count rate, low detection 

efficiency, and high afterpulsing probability compared to Si-SPADs at shorter 

wavelengths. However, subsequent studies demonstrated that using separate Ge 

absorption and Si multiplication layers improves the performance of the device [64].  In 

this case, the photon is absorbed in the Ge layer, creating an electron-hole pair.  The 

electron is accelerated towards the interface between the two layers, before entering the 

Si multiplication layer.  Here, impact ionisation takes place, and if the electric field is 

above the avalanche breakdown value, more impact ionisations can create a self-

sustaining current.  An example of a Ge-on-Si SPAD structure is shown in Figure 3.27. 

 

Figure 3.27.  Schematic cross-section of a Ge-on-Si APD.  From [65]. 

The main challenges in this field are concerned with the growth and the fabrication [66, 

67], and several designs were developed in order to improve the detection efficiency 

and reduce the dark count rate and the afterpulsing effect [68].  Several research groups 

characterised Ge-on-Si SPADs based on different designs [69-71], presenting 

improvements in the detection efficiency (up to 14% at  = 1310 nm in [69]) or the 

operating temperature (100 K in [71]).  However, these devices presented high dark 

count rates (DCR > 108 Hz), which limited the performance of the devices. 
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In the literature, the reported values of the NEP vary in a wide range, however, as an 

example, values of less than 10-17 WHz-1/2 at a wavelength of λ = 1550 nm have been 

demonstrated at room temperature [72]. 

3.4.4. Superconducting single-photon detectors 

Another class of detectors is based on superconducting materials. Superconductivity 

was discovered by Kamerlingh Onnes in 1911 while he was studying the electrical 

resistance behaviour of pure metals at low temperature.  He observed that the resistance 

of some metals suddenly dropped down to zero at a particular temperature, called the 

critical temperature TC, characteristic of the metal under study [73].  This discovery 

started a new research field, which has seen several landmarks over the years.  

The absorption of a photon perturbs the electrical properties of the superconducting 

material, and these properties were exploited to create high sensitivity single-photon 

detectors for the infrared wavelength range. 

3.4.4.1. Superconducting transition-edge sensors 

Transition-edge sensors (TES) are built with a film of superconducting materials, kept 

at a temperature just below the transition-edge from superconducting to 

non-superconducting state.  The absorption of an incident photon heats the material, 

causing a change in the resistance.  If the detector is biased with a constant voltage, a 

current can be read out using a superconducting quantum interference device (SQUID) 

amplifier [74].  The current pulse is proportional to the energy of the photon absorbed 

or to the photon number when a fixed wavelength is used [75].  These detectors offer 

high single-photon detection efficiency, of the order of 95% at λ = 1550 nm.  However, 

they exhibit timing jitter in the region of 100 ns.  Thanks to their capability in resolving 

photon number, these detectors are widely used for quantum optics experiments [76]. 

3.4.4.2. Superconducting nanowire single-photon detectors 

Superconducting nanowire single-photon detectors (SNSPDs) were developed for the 

first time in 1991 by Gol’tsman et al. [77].  The operation of an SNSPD is shown 

schematically in Figure 3.28.  The material is kept at a temperature below its critical 

temperature.  When an incident photon with energy greater than the superconducting 

energy gap is absorbed, it creates a local resistive hotspot with an average temperature 
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above TC.  The hotspot grows as hot electrons move away from the centre.  At the same 

time, the supercurrent is perturbed and expelled from the hotspot, being concentrated 

between the hotspot and the edge of the wire.  If the bias current is greater than the 

critical current, a non-superconducting region is rapidly formed, which creates a 

resistive strip on the wire, leading to a measurable voltage pulse.  

 

Figure 3.28.  Schematic of the operating principle of a superconducting 

nanowire single-photon detector (SNSPD).  The time constants τ
1
 and τ

2
 

represent the rise time and decay of the voltage pulse.   From [78]. 

Wires have to be narrow so that the resistive strip can form across the wire.  However, 

such a narrow wire represents a small area for the absorption of a photon.  Usually, the 

superconducting wire is arranged in a meander design that covers an area of up to 

20 μm × 20 μm [79], as shown schematically in Figure 3.29, to increase the active area. 

Small area SNSPDs (3 μm × 3 μm) offer a detection efficiency of up to 20% at 

 = 1550 nm and a timing jitter of 30 ps [80], while large area SNSPDs have detection 

efficiencies of approximately 1% at  = 1550 nm and a timing jitter of 65 ps [74]. 

However, the detectors need to be cooled below the critical temperature in order to 

reach the superconducting state.  Hence, the use of refrigerators or cryogens is essential, 

making SNSPDs highly expensive and difficult to employ in many applications where 

space, mass and power consumption are critical factors. 
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Figure 3.29. (a) Scanning electron microscope image of a 

superconducting nanowire single-photon detector [81].  (b) schematic of 

the meander design of a superconducting nanowire single-photon 

detector.  From [8]. 

3.5. Conclusions 

This chapter presented a brief review of the TCSPC technique and explained how 

picosecond optical transients can be measured in photon-starved regimes.  This 

technique is used in several applications like time-resolved fluorescence [82], quantum 

communication [83], and long-range depth imaging [84].  The extension of this 

technique to underwater depth imaging will be investigated in this thesis, showing how 

the high sensitivity and precise temporal resolution of the TCSPC technique can be used 

to provide high spatial and depth resolution imaging also in highly scattering 

environments.  

Appropriate considerations have to be made of the single-photon detection technologies 

available in order to choose the most suitable detector for implementation in the optical 

experiments.  Hence, an overview of the main single-photon detectors was reported in 

this chapter, with particular attention to their key figures of merit, advantages, and 

limiting factors. 
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Si-SPADs are the best candidates for underwater imaging, as at room temperature they 

offer high detection efficiencies in the visible wavelength range, which corresponds to a 

low attenuation for clear water and scattering environments.  Si-SPADs are relatively 

compact, Peltier cooled modules with low timing jitter compared to alternatives such as 

PMTs.  Two different technologies of silicon detectors were used during this PhD 

project, a thick junction Si-SPAD by Perkin Elmer, and two thin junctions Si-SPADs by 

MPD. 

The Perkin Elmer SPCM-AQR series thick junction exhibited a photon detection 

efficiency of approximately 65% at the wavelength λ = 700 nm, with a maximum dark 

count rate of 500 cps, as specified by the manufacturer.  However, despite the high 

detection efficiency, the temporal response observed during the experiments was of the 

order of 530 ps. 

In order to improve the temporal response of the system, two thin junctions by MPD 

were tested during this project.  MPDs thin junctions offered a temporal response in the 

range 60 – 120 ps, but this came at the cost of a lower detection efficiency.  The two 

thin junctions had a photon detection efficiency up to 49% at the wavelength 

λ =550 nm, as stated by the manufacturer. 

In addition, the thin junctions MPD detectors include in the modules the appropriate 

circuitry to be gated.  Gated detectors offer the opportunity to temporarily deactivate the 

detector in order to exclude unwanted optical signals, as back-reflections in the system 

or backscattering events which may occur in highly scattering envirnments.  

For completeness, a brief review of the SPADs for infrared single-photon detection was 

given in this chapter, including InGaAs/InP SPAD, Ge-on-Si SPAD, and SNSPD. 

However, these detectors are not suitable for the underwater environment because of the 

high attenuation of infrared wavelengths in water. 
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Chapter 4 

Attenuation of light in water 

4.1. Introduction 

This section describes the experiments performed to obtain transmittance and attenuation 

spectra of the water samples subsequently used for the depth profile measurements.  

These preliminary results permitted selection of an appropriate operational wavelength 

for each of the different scattering levels of the environments considered in this Thesis. 

Section 4.2 will give a few considerations about attenuation of light in water. Section 4.3 

will explain the experiments performed to characterise the water sample selected, and it 

will provide some considerations about the settling times of the scattering agent used. 

4.2. Propagation of light in water 

To understand how the performance of an underwater imaging system may be improved, 

it is important to consider the physical properties of the propagation medium.  In water, 

the light is attenuated mainly by absorption and scattering.  Absorption includes all the 

irreversible thermodynamic processes, typically the transformation of photon energy into 

thermal kinetic energy of the propagation medium [1], and it can be described through 

the absorption coefficient a.  Scattering events take place because of particles with feature 

sizes comparable to the wavelength of light.  All the events can be described with the total 

scattering coefficient, b, defined as the superposition of many scattering events that occur 

in all directions. Indicating with 𝛽(𝜗, 𝜑) the scatter per unit metre and per unit steradian 

in the direction (𝜗, 𝜑), the scattering coefficient b can be expressed as [2] 

    
2

0 0 0

, sin 2 sinb d d d

  

                Equation 4.1 
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Both effects can be considered through a single attenuation coefficient α=a+b, which can 

be related to the optical power level, P(r), after propagation of a distance r in the medium 

[3]: 

  -

0

rP r P e   Equation 4.2 

where P0 is the initial power.  

The attenuation coefficient of water exhibits a strong dependence on wavelength [4], with 

the attenuation minimum typically in the visible range [5].  For example, Figure 4.1 shows 

the optical absorption coefficient of pure water. The minimum of absorption is 

approximately in the blue range of the visible spectrum, where transitions between energy 

states in the water molecule are not induced.  

 

Figure 4.1. Optical absorption coefficient of pure water. Data from [5]. 

As the water becomes more turbid, the attenuation coefficient increases and the 

attenuation minimum shifts to longer wavelengths [6].  In general, the optical properties 

of naturally occurring water vary significantly, as they depend on different factors 

including temperature, salinity [7], and the nature of the dissolved organic matter and 

suspended sediments present in the water [8, 9].  Hence, spectral transmittance 
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measurements were performed on a number of different water samples across the 

wavelength range 500-900 nm, in order to characterise the water types used in the 

experiments reported in this Thesis.  More specifically, the transmittance spectra of 

unfiltered tap water and coastal seawater were obtained to study natural waters.  In 

addition, different volumes of Maalox were added to a tank of tap water to simulate the 

effects of scattering.  Maalox is a commercially available antacid medicine that strongly 

affects scattering without inducing significant optical absorption [10]. The main 

ingredients of the agent were dried aluminium hydroxide gel 220 mg / 5 ml, and 

magnesium hydroxide 195 mg / 5 ml, which had an average particle size of 

approximately 40 μm. This scattering agent permitted to simulate real conditions, as its 

volume scattering function is similar to the volume scattering function of sea water [11].  

4.3. Characterisation of water samples  

In these measurements, a supercontinuum laser source, SuperK EXTREME – EXW12 

(NKT Photonics, Denmark), was used in conjunction with an acousto-optic tunable filter 

(AOTF), SuperK Select multi-line tunable filter (NKT Photonics, Denmark), in order to 

select a single wavelength, whose spectral width was approximately 5 nm FWHM.  Both 

of these components will be described in more detail in Chapter 5. As shown 

schematically in Figure 4.2, the monochromatic laser light emitted from a 50 μm diameter 

multi-mode optical fibre was collimated into a beam of approximately 6 mm in diameter 

and directed with into an 110 litre capacity tank (1750 mm long, 250 mm high, 250 mm 

wide).  A mirror was placed in the tank of water at an angle of 45° to the beam and 

directed the light out through the side wall of the tank.  To determine the transmittance of 

the water samples, optical powers were recorded with a silicon detector (Newport Power 

Meter 1830C and 818-UV detector head).  First, the optical power readings were taken at 

Position 1, as shown in Figure 4.2.  For each optical power measurement, two separated 

irises were aligned in front of the detector 21 cm apart.  This configuration of spatial 

filtering allowed the laser beam to efficiently pass but blocked most of the 

forward-scattered light that could cause an over-estimation of the power of the transmitted 

light.  The optical power was then measured with another mirror in Position 2 and the 

transmittance over one metre of propagation within the transmission medium was 

calculated from the ratio of these two power values.  The medium’s attenuation 

coefficient for that wavelength was then calculated using Equation 4.2. By repeating these 

optical power measurements at a series of different discrete wavelengths, the 
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transmittance and attenuation length spectra were ascertained. Figure 4.3 reports a 

photograph of the experimental setup. 

 

Figure 4.2.  Schematic of the experimental setup used for the water 

transmittance measurements.  The setup comprised a supercontinuum 

laser source, an acousto-optic tuneable filter (AOTF), an optical fibre 

collimation package (FCP), a tank, six mirrors, four irises and a silicon 

optical power meter. 

 

Figure 4.3.  Photograph of the setup used for the transmittance 

measurements.  The mirrors inside the tank are 1 metre apart, in order to 

measure the transmittance of the medium in the tank over 1 metre. 

Several volumes of Maalox in unfiltered tap water [12] were investigated and the main 

results are reported in Table 4.1. 
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Water sample Attenuation 

length (m) 

Optimum 

wavelength (nm) 

1 Unfiltered tap water 8.90 525 

2 Water + 0.0007% of Maalox 2.18 565 

3 Water + 0.0015% of Maalox 1.40 565 

4 Water + 0.003% of Maalox 0.70 585 

5 Water + 0.006% of Maalox 0.40 690 

6 Water + 0.01% of Maalox 0.28 690 

7 Water + 0.0123% of Maalox 0.22 695 

8 Water + 0.0125% of Maalox 0.21 695 

9 Water + 0.016% of Maalox 0.18 695 

10 Water + 0.018% of Maalox 0.17 695 

11 Water + 0.021% of Maalox 0.15 695 

12 Water + 0.025% of Maalox 0.12 700 

13 Water + 0.026% of Maalox 0.11 700 

Table 4.1.  The table shows a list of all the concentrations of scattering 

agent in water investigated.  The attenuation length and the optimum 

wavelength for transmission are reported for each water sample.  The 

water types in bold (1, 4, 6, 8, 9 and 10) are the water sample used for the 

scans reported in this Thesis. 

The attenuation length for unfiltered tap water is reported in Figure 4.4, which shows that 

the attenuation length decreases for longer wavelengths. The turning points at 

approximately λ = 600 nm and λ = 740 nm correspond to the major absorption shoulders 

in the visible range examined and the first absorption peak in the near infrared [13]. 

Secondary turning points are visible also at approximately λ = 555 nm and λ = 650 nm, 

corresponding to the secondary absorption shoulders in the visible range [13].  Figure 4.4 

shows also the attenuation length spectra of tap water from Heriot-Watt University with 

different low concentrations of Maalox while Figure 4.5 reports the attenuation length of 
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high concentrations of Maalox in tap water. From Figure 4.4 and Figure 4.5, it is evident 

that as the concentration of Maalox is increased, the attenuation increases at all 

wavelengths. However, the maximum of attenuation length shifts towards longer 

wavelengths because the scattering is more pronounced at shorter wavelengths.  

 

Figure 4.4.  Plots of attenuation length versus wavelength for tap water 

and different concentrations of Maalox simulating low levels of scattering. 

 

Figure 4.5.  Plots of attenuation length versus wavelength for unfiltered 

tap water and different concentrations of Maalox simulating high levels of 

scattering.  Unfiltered tap water and 0.01% of Maalox is reported in this 

graph as a comparison. 
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The same measurements of the attenuation length spectra for coastal sea water (collected 

at North Berwick 56°3′2N, 2°43′W) are reported in Figure 4.6.  This naturally occurring 

water contains a mixture of varying particle size, and some of the particles settle if left 

undisturbed.  Hence, attenuation length spectra were measured at different settling times. 

The “stirred” set was done by mixing the water and waiting few seconds for the ripples 

to settle before every optical power measurement.  In this case, a narrower wavelength 

range was investigated because of the high level of scattering, and the attenuation length 

spectrum was obtained from λ = 500 nm to λ = 750 nm, therefore including the main 

attenuation shoulder.  Additionally, sets of measurements were performed after the water 

had settled for 1 hour, 2 hours, and 15 hours.  From the measured transmission spectra 

the wavelength for which the minimum attenuation occurs was determined for each 

sample of water. 

 

Figure 4.6.  Plots of attenuation length versus wavelength for coastal sea 

water.  Since the sea water was collected close to the coast and contained 

a range of different sized scattering particles, the attenuation spectra were 

measured at different settling times.  Unfiltered tap water is reported as a 

comparison. 
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Based on these characterisation measurements, a small subset of the water samples 

investigated were selected for the depth profiles discussed in this Thesis.  Unfiltered tap 

water without Maalox contamination was used as the reference sample, with an 

attenuation length of 8.9 m at the optimum wavelength λ = 525 nm. Water with 0.003% 

of Maalox was chosen because its attenuation length spectrum is comparable with sea 

water after 15 hours of settling, as shown in Figure 4.7.  This concentration of Maalox 

corresponds to an attenuation length of 0.7 m at the optimum wavelength λ = 585 nm.  To 

simulate a highly attenuating environment, water with 0.01%, 0.012%, and 0.016% of 

Maalox was used to characterize the system.  For these last three concentrations the 

transmission peak is at λ = 690 nm, corresponding to attenuation lengths of 0.30 m, 

0.21 m, and 0.18 m respectively. 

 

Figure 4.7.  Comparison between attenuation length spectra of water with 

0.003% of Maalox and coastal sea water settled for 15 hours. 

In addition to sea water, two other natural waters were investigated. Figure 4.8 shows the 

attenuation length spectrum of water collected in Loch Earn (56°23′N 4°14′W), a 

freshwater lake with a rocky coast.  Even if the lake bed close to the coast was covered 

by stones instead of sand, and the water therefore did not present a high level of scattering 

due to suspended material, the water was allowed to settle for 2 hours before the 

measurements.  In this case, the maximum of transmittance occurs at the wavelength 
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λ = 645 nm, although it worth noting that the curve is flat in the entire wavelength range 

640 – 700 nm.  Two concentrations of Maalox are reported in the same graph for 

comparison with the water sample under study. Figure 4.8 shows that in the first part of 

the spectrum the attenuation length is between that of unfiltered tap water with 0.0015% 

and 0.003% of Maalox.  While in the wavelength range 700 – 900nm, the attenuation 

length spectrum of loch water follows the same behaviour as unfiltered tap water with 

0.0015% of Maalox.  

 

Figure 4.8.   Plot of attenuation length versus wavelength for loch water. 

Since the water was collected close to the coast, the water settled for 2 

hours before the measurements.  Water with 0.0015% of Maalox and 

water with 0.003% of Maalox are reported as a comparison. 

Another water sample was collected in Harlaw reservoir (55°52′10″N 3°18′40″W), a 

reservoir with a fine sandy floor.  In this case, the measurements were performed in the 

wavelength range 500 - 740 nm, and the results are reported in Figure 4.9.  Because of 

the fine sand contained in this water sample, the water was allowed to settle for 2 hours 

before the measurements.  Due to the higher level of scattering, the optimum wavelength 

shifted to λ = 685 nm.  In the graph, the attenuation length curve of unfiltered tap water 

with 0.01% of Maalox is shown as a comparison.  
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Figure 4.9.  Plot of attenuation length versus wavelength for reservoir 

water.  Since the water was collected close to the coast, the water settled 

for 2 hours before the measurements.  Unfiltered tap water with 0.01% of 

Maalox is reported as a comparison. 

From the results it is evident that lake water samples strongly attenuate the light in the 

wavelength range 500 – 600 nm, resulting in a maximum of transmittance contained in 

the narrow range between λ = 640 nm and λ = 690 nm.  As the scattering increases, the 

maximum of transmittance shifts towards longer wavelengths, and the attenuation length 

curve shows a pronounced peak around λ = 690 nm. 

In order to investigate the settling time of Maalox in water, power measurements were 

recorded over one hour in water with 0.012% of Maalox, at the optimum wavelength 

(λ = 690 nm).  Power readings were recorded as previously described in Figure 4.2, 

approximately every 5 minutes without stirring the water sample.  The transmittance over 

one metre was calculated for each measurement, and the results are shown in Figure 4.10.  

The graph shows how the transmittance slightly increases during the first quarter and then 

linearly increases over the time.  Hence, for the scans reported in this Thesis, overall 

acquisition times of approximately 20 - 30 minutes were chosen when concentrations of 

0.012% of Maalox or higher were used, meaning that the target distance expressed in 
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attenuation lengths changed less than 5% during a scan.  For concentrations of up to 

0.01% of Maalox in water, the target distance expressed in attenuation lengths varied less 

than 5% over approximately one hour, and overall acquisition times up to one hour were 

suitable for high-resolution scans. 

 

Figure 4.10.  The graph reports the transmittance of water with 0.012% 

of Maalox, recorded over one hour at the wavelength λ = 690 nm. 

Due to the relatively quick settling times of Maalox, the setup was modified in order to 

permit simultaneous 3D depth profile scanning and verification of the stand-off distance 

of the target.  This came at the cost of using two supercontinuum systems, one for the 3D 

depth profile scans and one to verify the transmittance.  A schematic of the revised setup 

is shown in Figure 4.11.  The setup was modified by including a moving stage on the 

support in Position 1, which permitted the mirror to be lifted in the water so that the beam 

could propagate to Position 2, 50 cm further along the tank.  The two mirrors were placed 

closer to the side wall of the tank, in order to not block the beam for the 3D depth profile 

scan.  The transmittance of the medium in the tank was ascertained at the operational 

wavelength through Equation 4.2, before and after each scan when highly scattering 

environments were used. 
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Figure 4.11.  Schematic of the experimental setup used to verify the target 

distance in attenuation length.  The setup comprises two supercontinuum 

laser sources and two acousto-optic tuneable filters (AOTF), the 

supercontinuum “source 1” is used to perform the scans, and the 

supercontinuum “source 2” is used for power readings in two positions 

0.5 metres apart.  The “Transceiver Unit” is the 3D depth profiling system 

described and used in subsequent chapters of this thesis. 

4.4. Conclusions 

The measurements reported in this chapter permitted to ascertain the attenuation length 

spectra for a number of water samples.  The minimum of attenuation was determined for 

all the samples, allowing to select the most appropriate environments in which to 

investigate the potential of the depth imaging system, as described in the following 

chapters.  From the results it can be seen that the minimum of attenuation is in the 

wavelength range 525 – 690 nm, showing a shift towards longer wavelengths of this 

range as the scattering level is increased.  The main advantage of this approach is that it 

permits optimal adaptation of the operating wavelength to the scattering level of the 

environment where the scan is performed.  Therefore, both transmitted and received 

signals are optimised, even in highly scattering environments.   

In addition, the settling times of the scattering agent was studied for all the water samples 

selected.  The study showed that for concentrations above 0.012%, the target distance in 

attenuation lengths changed significantly over 30 minutes.  This put a limit to the overall 
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acquisition time for the scans in highly scattering environments, allowing for the selection 

of appropriate parameters for the depth imaging experiments, including acquisition time 

per pixel and pixel format. 
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Chapter 5 

Underwater depth imaging using TCSPC 
 

5.1 Introduction 

This chapter will describe an active depth imaging system based on the single-photon 

time of flight approach.  The system can be used to measure depth profiles of objects 

placed underwater.  Firstly, a detailed description of the system will be provided in 

sections 5.2 to 5.7, as well as an illustration of the targets used during the experiments.  

Then in section 5.8 and 5.9, the potential of the system is investigated at low and 

medium levels of scattering, while highly scattering environments are considered in 

section 5.10 to 0.  In addition, the spatial and depth resolutions were investigated for 

different configurations of the system, and the results are reported in sections 5.13 and 

5.14. 

5.2 Scanning system 

The scanning transceiver used to obtain the results in this Thesis was designed and built 

by the Single-Photon group at Heriot-Watt University for single-photon depth imaging 

over long distances in free-space [1].  With appropriate reconfiguration, the transceiver 

unit has been used with a range of different detectors and laser sources.  The system has 

been used over a range of wavelengths from 500nm to 1550nm, and has also been used 

with several wavelengths operating simultaneously [2-4].  In the transceiver assembly, 

the optical components are arranged on a slotted base-plate, which allows the optical 

alignment to be optimised for the experiment [5], and maintain long-term stability in 

field trial situations.  The transceiver assembly was made of black anodised aluminium, 

in order to reduce the stray light inside the transceiver.  The unit was then covered with 

a black anodised aluminium lid to further minimise the background light during the 

experiments. Figure 5.1 is a schematic representing the optical configuration, while 

Figure 5.2 shows a photograph of the transceiver unit. 

The transmit and receive channels in the transceiver system were coaxial and therefore 

most of the optical components were common to both channels.  The light from the 

laser was collimated using an optical fibre collimation package in the transmit channel 

(FCP-Tx in Figure 5.1).  The transmit beam was overlapped to the receive channel via a 
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polarising beam splitter (PBS).  The light was reflected by the first scanning mirror 

(y-axis), passed through two telecentric relay lenses and reflected by the second 

scanning mirror (x-axis).  The light was then focused by a third relay lens before 

passing through the objective lens.  The objective lens was used to focus the transmitted 

light to the target and collect the back-scattered light from the target.  The return 

photons followed the same path up to the polarising beam splitter, where the receive and 

transmit channels are separated.  Then, the return signal is coupled into an optical fibre 

with a collimation package (FCP-Rx), and then onto the detector. 

 

Figure 5.1.  Schematic of the transceiver unit.  The optical components 

shown in the transceiver unit included two optical fibre collimation 

packages, for the transmit channel (FCP-Tx) and receive channel (FCP-

Rx).  A polarising beam splitter (PBS) was used to overlap and separate 

the transmit and receive channels.  Three relay lenses (RL1, RL2, RL3) 

were used in conjunction with two galvanometer mirrors (SM1, SM2) to 

perform the raster scan of the target.  A camera objective lens (OBJ) was 

used to focus the transmitted laser light onto the target surface and 

collect the scattered return signal. 
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Figure 5.2.  Photograph of the transceiver unit.  The input light was 

fibre-coupled into the transmit channel, shown in red, via a fibre-

collimation package (FCP-Tx).  The path in yellow is the receive 

channel, which was fibre-coupled to the detector via the fibre-

collimation package FCP-Rx.  The two channels were overlapped at a 

polarising beam splitter (PBS), and the common optical path is 

highlighted in blue.  The common channel comprised three relay lenses 

(RL1 - RL3), which relayed the image operating at infinite conjugates.  

Two galvanometer scanning mirrors (SM1 and SM2) were used to 

perform a raster scan of the target.  A camera objective lens (OBJ) was 

used to focus the light on the target and collect the light scattered by the 

target. 

The telecentric configuration was needed to guarantee that the beam was always on-

axis, independent of the deflection angle.  At the same time, the relay lens RL3 was 

used as a scan lens, forming an image on the image plane of the objective lens.  This 

limited the field of view of the transceiver, imposing a lower limit on the f-number of 

the entire system of approximately f/4.  The transceiver unit was optimised and aligned 

before every experiment, and the optical components were selected on the basis of their 

performance at the wavelength range to be used in the experiment.  In general, the 

optical elements were chosen with a high performance anti-reflective coating in order to 

minimise the back-reflections, which can find their way into the detection channel in 
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this monostatic configuration.  If the wavelength during the experiment was varied over 

a wide range, the alignment was performed at a weighted intermediate wavelength to 

take into account the chromatic characteristics of the system.  The same alignment 

procedure was followed for all the optical configurations reported in this Thesis.  

The two scanning mirrors were placed at conjugate planes of the system, and the relay 

lenses were chosen so that the distance between the mirrors was twice the sum of their 

focal lengths.  In order to perform the alignment, the light was delivered from the laser 

source (described in section 5.3) to the transmit channel via a polarisation maintaining 

optical fibre.  The PBS was placed in the transceiver unit to overlap the transmit and 

receive channels, and the light transmitted by the PBS was maximised rotating the 

optical fibre collimation package FCP-Tx.  A more precise overlap of the two channels 

was performed after all the optical components were aligned.  Two temporary lenses 

were used to place the relay lenses in the right position.  As shown in Figure 5.3a), a 

temporary lens with appropriate focal length was used to focus the light on the SM2 

galvo-mirror, while this was moving.  An image was formed on a CCD camera using a 

concave mirror with focal length 505 mm to allow the relay lens RL3 to be placed at a 

distance equal to its focal length from SM2.  The relay lenses RL1 and RL2 were pre-

aligned in a lens tube, on a separate setup, to set them at a distance equal to the sum of 

their focal lengths.  Then, the block with the two lenses was placed between SM1 and 

SM2, as well with a temporary lens with appropriate focal length before SM1 

(Figure 5.3b).  Through this configuration a spot was imaged on the CCD camera, and 

the focus was adjusted varying the distance of the pair from SM1. 
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Figure 5.3.  Setup for the alignment of the relay lenses RL1, RL2, and 

RL3 with the two galvanometer mirrors SM1 and SM2.  The focus was 

adjusted using two temporary lenses, in (a) to adjust the position of RL3, 

and in (b) to adjust the position of the pair RL1 and RL2. 

The last step was the optimisation of the coaxial overlapping of the transmit and receive 

channels.  This was achieved by delivering the laser light from both channels through 

optical fibres, and collimated in free space.  Then, light was focused on the CCD camera 

by the concave mirror, showing the light spots from the two channels.  To perform an 

efficient coaxial alignment, the overlapping of the transmit and receive spots needs to be 

verified in two different positions.  Hence, the camera was moved forward and 

backward to inspect the images formed in focus and de-focus positions, as shown 

schematically in Figure 5.4.  For a more precise adjustment of the overlap between 

transmit and receive channels, a microscope objective lens was mounted on the camera 

to magnify the image, and better highlight small mis-alignments. 
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Figure 5.4.  Coaxial overlapping of transmit and receive channels.  In a) 

the two channels are not overlapped, hence moving the CCD camera 

away from the focus position two separate spots will be visible (de-focus 

position in the figure).  In b) the two channels are coaxial, and the spots 

imaged are overlapped for different positions of the CCD camera. 

The two galvanometer mirrors were controlled by an electrical driver system, 

schematically shown in Figure 5.5.  The voltage ranges required to scan the target area 

in x and y-axes were manually set through custom software, as well with the overall 

acquisition time of the scan and the pixel format.  These parameters were used by a 

digital-to-analogue converter (DAC), which provided the control voltage to drive the 

galvanometer mirrors, and the trigger signal to mark a new pixel.  The servo controllers 

and the motors for the mirrors were located beneath the slotted base-plate. 

 
Figure 5.5.  Schematic of galvanometer mirrors scanning system.  A 

digital-to-analogue converter provided control voltages (preset by 

computer) to the servo controllers to move the X and Y mirrors, 

performing the raster scan of the target.  At the same time, the DAC 

provides the trigger signal to the TCSPC module to mark a new pixel. 
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5.3 Supercontinuum laser systems 

The laser source used was a supercontinuum source, which provided a high power 

broadband white-light spectrum. In particular, two supercontinuum sources were used, 

SuperK Extreme EXW-6 and EXW-12 (NKT Photonics, Denmark), both photonic 

crystal fibre (PCF) based, meaning that their spectra are generated by sending a pulsed 

master seed laser pulse into a PCF [6, 7].  The master seed laser source was a 

diode-pumped Nd:YAG laser of wavelength λ = 1064 nm with a pulse width of 

approximately 5 ps FWHM, for both supercontinuum lasers. The range covered was 

485 nm – 2400 nm for the EXW-6, and 460 nm - 2400 nm for the EXW-12. 

 

Figure 5.6.  Spectra of the two supercontinuum sources used for the 

experiments.  From [8]. 

The master seed laser source had a repetition rate of 80 MHz, with lower repetition rates 

up to approximately 300 kHz being enabled by a pulse picker option, which divided the 

seed repetition rate by a number of discrete ratios.  The output from both 

supercontinuum sources was collimated and delivered via an armoured fibre.  Each 

supercontinuum laser source could be used in conjunction with an acousto-optic tunable 

filter (AOTF) (SuperK SELECT multi-line tunable filter, NKT Photonics, Denmark) 

able to select up to 8 wavelengths at the same time over a wide spectral range, thanks to 
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the integration of two AOTF crystals.  For all the measurements presented in this 

Thesis, the AOTF crystal VIS-nIR was chosen, allowing the selection of the operational 

wavelength in the range 500 nm – 900 nm.  When the AOTF was connected to the 

source, the light was delivered to a polarisation maintaining fibre through a fibre 

delivery system (SuperK CONNECT, NKT Photonics, Denmark), with the output light 

power being maximised using the two mirrors included in the delivery system.  

Particular attention needed to be given to this step because when the AOTF was not 

properly aligned, the spectral peak corresponding to a single wavelength was shifted, 

giving an incorrect value of the central wavelength and with a wider spectral response 

than expected.  An example of 7 spectral peaks after a full alignment procedure is 

shown in Figure 5.7.  The data were collected with a spectrometer (USB Serie 

HR2B805 by Ocean Optics, USA), and the optical power in each case was adjusted in 

order to not saturate the detector of the spectrometer.  As expected, from the results it 

can be seen that the FWHM slightly increases for longer wavelengths. 

 

Figure 5.7.  Spectral lines for seven different wavelengths after the 

alignment of the AOTF.  In each case, the optical power level of the laser 

was adjusted in order to not saturate the detector of the spectrometer. 

As an alternative to the AOTF, a combination of coated optical filters was used for 

wavelength selection from the supercontinuum spectrum, which had the advantage of 
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allowing higher average optical power levels due to the reduced optical loss and a 

choice of wider operational spectrum. 

5.4 TCSPC modules and data acquisition modes 

Two TCSPC modules were used during this project: the PicoHarp 300 and HydraHarp 

400, both manufactured by PicoQuant GmbH, Germany. Both modules offered two 

time-tagged-time-resolved (TTTR) acquisition modes, called T2 and T3 modes.  In 

general, the main difference between the two modes is that in T3 mode one channel is 

dedicated to the synchronisation signal and the times of all detector events are measured 

relative to the last synchronisation signal (known as micro-time), while in T2 mode all 

timing inputs of the TCSPC module are identical, with no dedication of a channel to a 

synchronisation signal, and all times are recorded relative to the start of the 

measurement (macro-time) [9].  This means that in T2 mode every occurrence of a 

repetitive synchronisation signal will be recorded with full timing precision.   

There are major differences between the operation of each of these modes in the two 

modules considered.  Although both of the operating modes use 32 bit records on each 

device, the structure of the data within these 32 bits is different in each case.  When data 

are recorded with T2 mode in the PicoHarp 300, 28 bits are used to record the time of 

each event on both the detector and the synchronisation channel [10].  However, a 

limitation of the TCSPC hardware module meant that the frequency of its clock input 

could not exceed 10 MHz, meaning that higher synchronisation signal frequencies had 

to be divided externally.  In addition, the size of the recorded file could be extremely 

large, significantly increasing the memory requirements and the time required for the 

data analysis after the measurement.  When the 28 bits used to record the time 

“overflow” (after 228 “ticks” of the internal clock) then a special “overflow-reset” 

marker is injected into the data and the 28 bits of the time record are reset to 0 to start 

again. 

The T3 mode of the PicoHarp 300 includes an internal dividing function, allowing the 

use of higher laser repetition rates, by only synchronising on the divided frequency.  In 

this case, 12 bits are used to record the timing of an event on just the detector channel 

relative to the time of the last synchronisation channel event.  The event times of the 

repetitive synchronisation signal are not stored and, hence, the file size is reduced.  

However, fewer bits are dedicated to the timing precision of the measurement of the 
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time from the start signal, resulting in a maximum histogram length of up to 212 bins 

since overflow markers are not injected into the data.  This limitation can be overcome 

using short synchronisation periods, which fit within the maximum number of bins.  

The PicoHarp 300 can be replaced with the more advanced HydraHarp 400.  T3 mode 

in the Hydraharp 400 uses 15 bits to record the time of the event on just the detector 

channel.  This allows a histogram of 32768 bins with a timing precision of up to 1 ps 

bin width [11], depending on the synchronisation signal period, still with compact and 

efficient data file sizes.  It is worth noting that T2 mode is also available in 

HydraHarp400.  In this case, T2 mode allows the use of identical input channels and 

recording the macro-time for both channels independently, with no need for a 

synchronisation signal.  This makes the T2 mode on the HydraHarp 400 particularly 

useful in applications where non-periodic signals are studied.  

The data presented in this Thesis were acquired using T2 mode in Picoharp 300 and T3 

mode in HydraHarp 400.  When T2 mode was used with the PicoHarp 300, a histogram 

for each pixel was built by the TCSPC module and then recorded in an independent file, 

streamed by custom software from the TCSPC module to the storage memory.  When 

T3 mode in Hydraharp 400 was used, each pixel was identified with a marker, which is 

an electrical signal from the galvanometer mirror driver being sent to the “Marker” 

input of the TCSPC module.  The raw data consist of only one file including the time-

tag information for each event detected.  The file was streamed by custom software 

from the TCSPC module to the storage memory, and the histograms were reconstructed 

for each pixel with a custom script in MatLab.  This allows for the extraction of time 

tagged events in order to replicate histograms with shorter acquisition times from a long 

acquisition time measurement, meaning that there was no need to make multiple 

measurements of same scene when shorter acquisition times had to be investigated.  In 

addition, larger pixel formats could be considered thanks to the smaller size of the 

recorded file, greatly increasing flexibility of the system. 

The custom software was initially developed by Dr. Nils J. Krichel and Dr. Robert J. 

Collins, it was then modified for the T3 acquisition mode by Dr. Ximing Ren, who also 

modified the MatLab script to reconstruct the histograms. 
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5.5 Analysis method for histograms 

Once the histograms were obtained for each pixel, a cross-correlation was performed 

between each histogram and a normalised instrumental response.  The instrumental 

response was measured using a reference Lambertian scatterer, a Spectralon target 

(SRT-99-020 Spectralon Diffuse Reflectance Target, Labsphere), which will be 

described in more detail in section 5.7.1.  The target was placed approximately at 

normal incidence to the beam, and a single pixel measurement was performed using an 

acquisition time of 100 seconds.  Generally, the instrumental responses were recorded 

using unfiltered tap water as the transmission medium in order to have a well defined 

peak return from the target.  A different instrumental response was recorded for each 

configuration presented in this Thesis, taking into consideration any change in the 

optical or electrical component. If R denotes the normalised instrumental response with 

r timing bins, and H the histogram recorded with h timing bins, the cross-correlation C 

performed for each pixel is 

 Equation 5.1 

with i varying in .  The highest value of the cross-correlation reveals the time-of-

flight to the target with respect to the reference for that individual pixel.  By collecting 

this time-of-flight information for all of the pixels, a depth image for the scanned field 

of regard was then estimated.  

At the same time, a range of 30 bins was used to collect the number of events around 

the highest value of the cross-correlation for each pixel.  This allowed an intensity map 

to be produced in order to represent the number of counts per pixel, to form an image of 

the area scanned.  When the return from the target is sufficiently high with respect to the 

background, the intensity map provides valuable additional information about the target. 

5.6 Specifications of the water tank 

The experiments reported here were conducted in a custom-designed water tank on an 

optical bench, in an air-conditioned laboratory.  The tank was 1750 mm long, 250 mm 

high, 250 mm wide, hence, it has a capacity of approximately 110 litres.  It was made of 

10 mm thick Optiwhite glass from Pilkington that has, according to the datasheet, a 

1

r

i i j j

j

C H R



 

 - ,r h



 109 

transmittance of 91% in the visible part of the spectrum, significantly higher than the 

standard float glass typically used in the construction of aquariums.  A hole in bottom 

corner of each end of the tank facilitated emptying the tank when needed.  In the 

experiments described in this chapter, the tank was placed at a slight angle with respect 

to the incident beam thereby avoiding unwanted back-reflections in the scanning 

system. 

5.7 Summary of the Targets 

Several targets were used to perform the experiments in order to investigate the 

potential of the system, and a detailed description is given below.  

5.7.1 Spectralon targets 

Reference targets were used during the experimental work to investigate the 

instrumental response of the system and to calibrate the intensity distribution for 

different optical configurations.  The reference targets were made of Spectralon 

reflectance material, a thermoplastic resin with known reflectance ρ = . This 

material is highly hydrophobic, which makes it particularly suitable for measurements 

underwater.  The surface and subsurface structure of Spectralon exhibit highly 

Lambertian behaviour in a wide wavelength range, from 300 nm up to 2400 nm [12].  

When the material is doped with black pigment, different reflectance values can be 

available maintaining the Lambertian behaviour over the same wavelength range.  In the 

experiments performed during this PhD project, four Spectralon targets were used. 

Figure 5.8 shows three targets of area 5 × 5 cm2, with reflectance equal to (a) 2%, 

(b) 10%, (c) and 99%.  Another Spectralon target with ρ =  and area 13 × 13 cm2 

was used for wide area scans. 

 

Figure 5.8.  Photographs of Spectralon targets of area 5 × 5 cm2 and 

different reflectance values, (a) 2%, (b) 10%, (c) and 99%. 
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5.7.2 Plastic and copper pipe connections 

The target mainly used for the scans underwater was a commercially available plastic 

pipe connection.  This is an elbow connection with millimetre and sub-millimetres 

depth features at both ends.  The target was approximately 8 cm wide, 5 cm high, and 

3.5 cm deep and is shown in Figure 5.9a).  In addition, some scans were performed with 

a commercially available copper T-connection of the same dimensions as the plastic 

pipe, in order to investigate materials with lower reflectivity than the white plastic pipe 

target.  The photograph of the copper pipe target is shown in Figure 5.9b). 

 
Figure 5.9.  These photographs show the targets used for the depth 

profile measurements, (a) a plastic pipe and (b) a copper pipe, both 

approximately 8 cm wide, 5 cm high, and 3.5 cm deep.  

5.7.3 Tennis ball 

Preliminary measurements were performed using a tennis ball (Figure 5.10) as a target.  

The diameter of the tennis ball was approximately 6.5 cm, suitable for the limited 

dimensions of the tank.  However, the target was made of white rubber covered by 

yellow fibrous felt, and mono-material targets were preferred to investigate the potential 

of the system.  The case of the multi-material target will be discussed in Chapter 8. 
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Figure 5.10.  Photograph of the tennis ball.  The target had a diameter of 

approximately 6.5 cm. 

5.8 Preliminary measurements 

A number of preliminary scans were performed with the experimental setup 

schematically shown in Figure 5.11.  It is important to note that the system was 

optimised for a different free-space, multi-spectral experiment to be performed using 

simultaneously the wavelengths λ1 = 531 nm, λ2 = 570 nm, λ3 = 670 nm, λ4 = 780 nm, 

as detailed in [4].  Hence, the wavelengths used to obtain the results reported in this 

section differ only slightly from the optimum wavelengths established in Chapter 4, so 

we took advantage of an existing set-up for these preliminary measurements. 

The SuperK Extreme EXW-6 supercontinuum source was used in conjunction with the 

AOTF, and fibre-coupled to the transceiver unit with a photonic crystal fibre, an 

armoured optical fibre of 9 μm diameter core.  The repetition rate used for this 

experiment was 2 MHz, and the average optical power range was varied from a few 

nanowatts up to 520 nW.  For all the scans presented in this Thesis, the optical power 

measurements were performed with a silicon detector (Newport Power Meter 1830C 

and 818-UV detector head), in the transceiver unit just before the objective lens, unless 

otherwise specified in the text.  The TCSPC module was the PicoHarp 300, which 

received the electrical clock signal from the laser source, and the stop signal from the 

Perkin Elmer Si-SPAD.  The receive channel of the transceiver unit was fibre-coupled 

via an armoured 9 μm diameter core single mode fibre to a wavelength routing system 

based on a diffraction grating [13].  At the same time, the detector was fibre-coupled to 

a single wavelength channel of the routing unit through a 50 μm diameter core multi-

mode fibre.  
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The transceiver unit was configured and aligned to work in the visible wavelength 

range.  The relay lenses were chosen with anti-reflection coatings with reflectance less 

than 0.4% in the wavelength range 400 nm – 700 nm, providing high light transmission 

in the wavelength range of interest and minimising the back-reflection within the 

transceiver unit.  In addition, the selected polarising beam splitter provided a 

transmittance of p-polarised light above the 95% in the wavelength range 420 nm –

 800 nm.  The objective lens was a single-lens reflex camera lens (Canon EF 200mm 

f/2.8L II USM), which was used for all the measurements presented in this chapter.  

 
Figure 5.11.  Schematic of the single-photon depth imaging system.  It 

comprised the pulsed supercontinuum laser source SuperK Extreme 

EXW-6, the monostatic scanning transceiver unit, with alignment 

optimised for the wavelength range 500 nm – 780 nm.  The scanning 

transceiver was fibre-coupled to a wavelength routing unit, fibre-coupled 

to an individual thick junction Si-SPAD detector by Perkin Elmer. 

The instrumental response is reported in Figure 5.12.  The histogram was recorded 

using a 16 ps bin width, the wavelength λ = 670 nm, an average optical power of 

approximately 20 nW, and an acquisition time of 30 seconds.  The target used was the 

Spectralon with 99% reflectance, placed at a stand-off distance of approximately 

1.7 metres in clear water.  The timing jitter of the system is shown in the histogram, and 

it was approximately 500 ps.  Due to the optical configuration used in the transceiver 

and the high sensitivity of the single-photon detector, the optical back-reflections in the 

system can be significant, contributing to the overall dead-time of the detection system 

and reducing the transceiver effectiveness.  If high optical powers are used, the back 
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reflections can saturate the single-photon detector and prevent detection of the returns 

from the target.  With detectors operating in free running mode, optical powers must 

therefore be selected to ensure that the detector is not saturated and the target can still be 

resolved, when this is possible.  The effect of these back-reflections is apparent in the 

histogram, showing their relevant contribution to the total count rate. 

 
Figure 5.12.  The instrumental response of the system.  The first peak is 

due to the back-reflections from optical components in the monostatic 

configuration, while the second peak is the return signal from the target.  

The histogram was recorded using the 99% reflectance Spectralon 

target, placed at a stand-off distance of approximately 1.7 metres in 

unfiltered tap water.  The laser repetition rate was 2 MHz, using the 

wavelength λ = 670 nm, and an acquisition time of 30 seconds. 

5.8.1. 3D depth profile results 

One example of depth profile performed using the tennis ball as the target is shown in 

Figure 5.13a).  The target was placed in unfiltered tap water, at a stand-off distance of 

approximately 1.7 metres, equivalent to 0.2 attenuation lengths between target and 

system. The measurement was performed using a 60 × 60 pixel format, 100 ms 

acquisition time per pixel, and an average optical power of 450 nW at the single 
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wavelength λ = 531 nm.  The light was focused on a middle plane of the half target 

scanned.  From the results, it can be seen that the entire surface of the target is well 

resolved in the depth profile, even on the edge of the target despite the spherical shape.  

However, little information can be deduced from the intensity map, shown in 

Figure 5.13b).  In this case, just the two strips of white rubber can be distinguished, 

while the return from the yellow fibrous felt is not enough to identify the target. 

 
Figure 5.13.  (a) Depth displayed in a 3D graph.  (b) The number of 

counts per pixel is displayed in.  The colour scale shown in the inset 

displays the number of counts per pixel.  The scan was performed in 

clear water, at the wavelength λ = 531 nm. The average optical power 

was approximately 450 nW, and the acquisition time per pixel was 

100 ms, with a 60 × 60 pixel format. 

The scan of the same target was repeated in water with 0.01% of Maalox, meaning a 

stand-off distance of 5.7 attenuation lengths between target and system.  In this case, the 

wavelength was λ = 670 nm and the average optical power was set to 520 nW.  This 

was the highest average optical power possible since the return peak due to the 

back-reflections increased the detector count rate to such an extent that this put an upper 

limit to the power range that could be used.  If a higher optical power was used, then the 

measurement would be subject to the deleterious effects of pulse pile-up described 

previously in the thesis.  The pixel format used was 60 × 60 also in this case, but the 

acquisition time per-pixel was increased to 300 ms because of the very low return from 

the target at this low power level.  The results are shown in Figure 5.14. 
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Figure 5.14.  A scan of the tennis ball performed in water with 0.01% of 

Maalox, at the wavelength λ = 670 nm.  The average optical power was 

approximately 520 nW, and the acquisition time per pixel was 300 ms, 

with a 60 × 60 pixel format.  The depth is displayed in a 3D graph in 

figure (a), and figure (b) shows the intensity map.  The depth and the 

number of photons are displayed in the colour scales shown in the insets. 

From the results, the effect of scattering is evident in both depth profile and intensity 

map.  In the depth profile, the return from the edge of the target is not high enough for 

the cross-correlation to determine the time of flight for those pixels.  Compared to the 

case of clear water, there is a reduction of almost 8% in target-pixels, i.e. those pixels 

reporting the depth of the target.  This lack of target-pixels is particularly evident on the 

top and bottom of the profile, resulting in an apparent alteration of the shape and size of 

the target.  As in the case of unfiltered tap water, the intensity map does not provide 

enough information to distinguish the target. 

These preliminary measurements show promise from the point of view of measuring 

depth profiles of targets in highly attenuating environments.  However, some major 

issues with the system were highlighted.  For example, if high optical powers are used, 

the back-reflections in the monostatic system can saturate the single-photon detector 

and prevent detection of the returns from the target.  Electrically gated detectors offer 

the opportunity to temporarily deactivate the detector during the expected arrival time 

for photons from the back-reflections, allowing higher optical powers to be used. 



 116 

The next section explains how such a configuration can be implemented, allowing the 

use of higher average optical powers, which can significantly improve the performance 

of the system. 

5.9 Underwater depth profiles in low and medium levels of scattering 

Several modifications were made to the system in order to improve its performance.  

Firstly, the wavelength routing unit was removed and the transceiver unit was fibre-

coupled to the detector.  This allowed avoiding additional coupling losses in the system, 

as the routing system introduced an attenuation factor in the range 5 dB to 9 dB, 

depending on the wavelength channel [14].  Secondly, a higher repetition rate for the 

laser was used in order to increase the average optical power and obtain a higher return 

signal from the target.  However, this also meant greater back-reflections in the 

transceiver unit, contributing to the overall dead-time of the system, and limiting the 

overall power possible prior to the onset of pulse pile-up.  By using an electrically gated 

detector, the back-reflections could be excluded by disabling the detector at the 

expected return time of the back-reflections, allowing a greater average power to be 

used to examine targets in highly scattering media.  

In order to implement these system improvements, a different detection scheme was 

adopted, as shown schematically in Figure 5.15.  The pulsed laser source was the 

SuperK Extreme EXW-12 fibre-coupled to the AOTF, and the light was delivered from 

the AOTF to the transmitting channel of the scanning transceiver unit with an armoured 

photonic crystal fibre with a 5 μm diameter core.  The transceiver unit was reconfigured 

to work in the wavelength range 500 nm – 700 nm.  The Perkin Elmer detector was 

replaced with the pigtailed version of the MPD module.  This allowed to use the 

detector in a time-gated detection scheme, meaning that the detector was temporarily 

deactivated during the expected arrival time for photons from the back-reflections, so 

that the detection of the internal back-reflections was avoided and higher optical powers 

could be used.  The detector was activated for a temporal window of 6 ns in 

correspondence with the approximate expected return time from the target, gating out 

these unwanted back-reflections.  The gating scheme was implemented by applying an 

external TTL signal from a Pulse Pattern Generator (PPG) (Agilent 81110A) with the 

same frequency as the clock signal.  The laser source provided an electrical 

synchronization signal to trigger both the TCSPC module (PicoHarp 300) and the 

detector gating. In these experiments, a 19.5 MHz laser repetition rate was used.  
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However, a limitation of the TCSPC hardware module meant that the frequency of its 

clock input could not exceed 10 MHz and as a result the synchronization signal was 

divided by a factor of 10 with a Constant Fraction Discriminator (CFD).  Consequently, 

this modified the number of optical pulses per start signal to 10, and hence, every 

histogram had 10 return peaks from the target, as shown in Figure 5.16.  In the timing 

histograms, a bin width of 16 ps was chosen to record the data.  This configuration 

allowed to increase the average optical power to approximately 120 µW, allowing more 

rapid data acquisition.  This compared with a maximum of only ~ 520nW using the 

free-running thick junction Si-SPAD detector. During the course of the measurements 

the laboratory was kept in dark conditions, to avoid ambient light contributing to the 

background level of the detector.  Under these conditions, the detector background level 

was approximately 10 counts per second. 

 

Figure 5.15.  Schematic of the single-photon depth imaging system.  It 

comprised the pulsed supercontinuum laser source SuperK Extreme 

EXW-12, the monostatic scanning transceiver unit, with alignment 

optimised for the wavelength range 500 nm – 750 nm, was fibre-coupled 

to an individual thin junction MPD Si-SPAD detector.  A time-gated 

configuration was used, with the single-photon detector being gated on 

for a 6 ns temporal window in correspondence with the return signal 

from the target. 
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Figure 5.16.  An example of timing histogram recorded with the system 

described.  The use of an external frequency divider of the clock signal 

caused several optical pulses per start signal.  

This configuration had an overall system temporal jitter of approximately 100 ps 

FWHM, and an example of the timing distribution in the recorded histogram is shown 

in Figure 5.17.  This compares to a timing jitter of ~400ps from the previous 

configuration using the free-running detector.  The use of such low timing jitter means 

better timing resolution and depth estimation, as the uncertainty  in the depth 

estimation depends on the number of integrated counts N and the timing jitter of the 

system σ by means of  [15] 

  Equation 5.2 

However, it is worth noting that the improvement in the timing jitter of the system came 

at the cost of a small decrease in detection efficiency.  In this case, the photon detection 

efficiency of the thin junction Si-SPAD was approximately 48% at the wavelength 

λ = 550 nm and decreases down to approximately 30% at λ = 700 nm, as stated by the 

manufacturer.  While in the case of the thick junction Si-SPAD, the photon detection 

efficiency was approximately 55% λ = 550 nm, and up to 65% at the wavelength 

λ = 700 nm. 
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Figure 5.17.  An enlarged view of one of the 10 peaks in a timing 

histogram recorded with the depth imaging system described in the text.  

The timing jitter of the system (99 ps FWHM in this case) and the gating 

window are shown in the figure. Due to latency and delays from 

electronic components, an arbitrary zero was chosen for the displayed 

time-scale.  

5.9.1. 3D depth profile results from the modified scanning system 

Initially, the detector was fibre-coupled to the receive channel with a single mode fibre 

of 5 µm diameter core.  The scan of the tennis ball was performed again in water with 

0.01% of Maalox, at the operational wavelength λ = 690 nm, using an average optical 

power of approximately 115 µW, and a 60 × 60 pixel format.  In this case, the light was 

focused approximately on a middle plane of the target, hence slightly further away from 

the system compared to the previous experiment.  In addition, the return from the target 

was high enough to use a shorter acquisition time of 100 ms per pixel.  The results are 

shown in Figure 5.18, where it can be seen that the depth profile obtained with the 

pixel-wise cross-correlation approach resolves more pixels than the previous experiment 

(Figure 5.14), covering the entire area of the target and restoring the spherical shape of 

the tennis ball.  It is interesting to note that there is a reduction of only 1% in 

target-pixels, with respect to the case of unfiltered tap water (refer to Figure 5.13).  

Most of the un-resolved pixels are in the centre of the scan, where there is a fewer 

number of counts.  It is likely that the lower number of counts in the centre of the 

profile is due to the light being focused on a middle plane of the target, therefore the 

focus is not well optimised for the pixels in the centre of the scan.  Improvements are 
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visible also in the intensity map, where it is possible to recognise the target despite the 

low return. 

 
Figure 5.18.  Scan of the tennis ball performed in water with 0.01% of 

Maalox, at the wavelength λ = 690 nm.  The average optical power was 

approximately 115 µW, and the acquisition time per pixel was 100 ms, 

with a 60 × 60 pixel format.  Figure (a) shows the depth profile of the 

target, while Figure (b) shows the intensity map.  The number of photons 

is displayed in the colour scale shown in the inset. 

From Figure 5.18b) it is evident the gap between the returns from the two target 

materials, due to their different reflectance.  From now on, targets made of a single 

material were used to investigate the potential of the system.  The specific case of 

targets composed of a number of different materials will be studied in Chapter 8. 

The level of surface detail recovered from the depth profile depends on a number of 

factors, including the spacing of the illuminated pixels at the target and the number of 

photon events recorded at each pixel, which is dependent on the acquisition time, the 

reflectance of the target, and the diameter of the fibre collecting the return photons in 

the receive channel.  Hence, different pixel formats and acquisition times per pixel were 

investigated for two different targets and for two different optical fibres coupled to the 

receive channel.  For example, Figure 5.19 shows the depth profiles of the plastic pipe 

connection performed in unfiltered tap water, at a stand-off distance equivalent to 

0.2 attenuation lengths between target and system, at an operational wavelength 

λ = 525 nm, at four different acquisition times per pixel.  To obtain the results shown in 
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column a), the detector was fibre-coupled to the transceiver unit with a 5 µm diameter 

core single mode fibre, and the average optical power used was approximately 120 nW.  

In column b), the displayed profiles were recorded by coupling the receive channel to 

the detector via a 50 µm core multimode fibre, and using an average optical power of 

~ 8 nW. The results obtained in the two cases are equivalent when the optical power is 

properly adjusted, therefore, just one fibre was chosen to perform the next experiments.   

In particular, the multimode fibre was selected in order to use very low optical powers 

necessary in low scattering water, and maximising the photon return when the scans 

were performed in highly scattering environments. 

 

Figure 5.19.  Depth profile images of the plastic pipe target performed in 

clear water at λ = 525 nm, when the detector was fibre-coupled to the 

transceiver via a single mode fibre (column a), and a multimode fibre 

(column b).  The target was at a stand-off distance equivalent to 0.2 

attenuation lengths, and a pixel format of 60 × 60 was used for each 

scan.  The results in column a) were obtained using an average optical 

power of approximately 120 nW, while an average power of 8 nW was 

used in column b).  Different per-pixel acquisition times are shown in 

both cases (0.5 ms, 1 ms, 10 ms and 100 ms).  
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Figure 5.20 reports results from measurements of the plastic pipe connection in order to 

illustrate how the depth profile is affected by the use of different acquisition times.  The 

results are shown for the case of unfiltered tap water in column (a) at the operational 

wavelength, λ = 525 nm.  The target was placed at a stand-off distance of 1.7 m, 

equivalent to 0.2 attenuation lengths in unfiltered tap water.  Four different per-pixel 

acquisition times were used, 0.5, 1, 10, 100 ms, with a very low average power, 8 nW.  

The same target was measured in water with 0.003% of Maalox (λ = 585 nm), at a 

stand-off distance of 1.2 attenuation lengths, using the same average power and 

acquisition times, and the depth profiles for this case are shown in column (b).  From 

these results, it is evident that even at the shortest acquisition times of 0.5 ms per pixel it 

is possible to resolve the shape of the target in unfiltered tap water, although some 

pixels have insufficient returns for a distinct time-of-flight measurement to be 

determined from the pixel-wise cross-correlation procedure.  When the scattering level 

was increased, the depth profile degrades significantly as the per-pixel acquisition time 

is reduced, and at 0.5 ms acquisition time the shape of the pipe cannot be discerned 

from the depth image when using this pixel-wise data analysis approach. 



 123 

 
Figure 5.20.  Depth profile images of the plastic pipe target performed in 

clear water at λ = 525 nm (column a) and water with 0.003% of Maalox 

at λ = 585 nm (column b) using 60 × 60 pixels in all cases.  Clear water 

(column a) corresponded to 0.2 attenuation lengths from transceiver to 

target, whilst column (b) corresponded to 1.2 attenuation lengths.  An 

average power of just 8 nW was used in all measurements, and different 

per-pixel acquisition times are shown (of 0.5 ms, 1 ms, 10 ms and 

100 ms) in order to investigate how the depth profile obtained with 

cross-correlation approach changes using different acquisition times. 

The same scans were performed with the copper pipe in order to study a target with low 

reflectance.  In Figure 5.21, the case of unfiltered tap water is shown in column (a) at 

the operational wavelength λ = 525 nm, and the case of water with 0.003% of Maalox at 
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the operational wavelength λ = 585 nm is in column (b).  As before, four acquisition 

times were investigated, 0.5, 1, 10, 100 ms, and the target was placed at a stand-off 

distance of 1.7 metres, equivalent to 0.2 attenuation lengths in unfiltered tap water and 

1.2 attenuation lengths in water with 0.003% of Maalox.  Due to the low reflectance of 

the target, the average optical power was increased to approximately 235 nW.  Also, in 

this case, the target is resolved even at the shortest acquisition time in unfilterd tap 

water.  While at a higher level of scattering, the analysis performed with the pixel-wise 

cross-correlation approach does not allow sufficient pixels to provide enough depth 

information such that the target can be distinguished from the noise clutter.  These scans 

suggest that the results obtained for the plastic and copper pipes are equivalent as long 

as the average optical power is properly adjusted, in accordance with the target 

reflectance. However, a more detailed study on target reflectance will be reported in 

Chapter 7. 
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Figure 5.21.  Depth profile images of the copper pipe target performed 

in clear water at λ = 525 nm (column a) and water with 0.003% of 

Maalox at λ = 585 nm (column b) using 60 × 60 pixels in all cases.  

Unfiltered tap water (column a) corresponded to 0.2 attenuation lengths 

from transceiver to target, whilst column (b) corresponded to 1.2 

attenuation lengths.  An average power of 234 nW was used in all 

measurements, and different per-pixel acquisition times are shown (of 

0.5 ms, 1 ms, 10 ms and 100 ms) in order to investigate how the depth 

profile changes using different acquisition times. 

More scans were performed with a greater pixel format in order to increase the level of 

detail of both the depth profile and intensity map. Figure 5.22 reports a 256 × 256 pixel 

depth scan of the plastic pipe in unfiltered tap water, at an operational wavelength of 
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λ = 525 nm, performed using an acquisition time per pixel of 30 ms, and an average 

optical power of approximately 9 nW.  From the results high-resolution details of sub-

millimetre dimensions can be observed.  In particular, in Figure 5.22a) the depth profile 

shows the couplings of the pipe, which present depth details of approximately 

1.5 millimetres.  At the same time, the grooves at both ends of the pipe are visible in the 

intensity map, as reported in Figure 5.22b). 

 
Figure 5.22.  Figure (a) shows a 256 × 256 pixel depth scan of the 

plastic pipe target made in clear water at λ = 525 nm, and a stand-off 

distance of 1.7 metres, corresponding to 0.2 attenuation lengths between 

transceiver and target.  Each pixel had an acquisition time of 30 ms and 

an average optical power 8.7 nW.  Figure (b) shows the same target 

displayed with the number of photons returned per pixel, ie the intensity 

map.  The depth and the number of photons are displayed in the colour 

scales shown in the insets. 

Measurements of the same target were then performed in water with a concentration of 

0.01% of Maalox. Since the amount of scattering is considerably greater at this 

concentration, the measurements were taken at the longer wavelength of 690 nm, which 

corresponds to the minimum attenuation, and the average optical power was increased 

to 121 μW.  This case corresponded to an attenuation of 5.7 attenuation lengths between 

system and target. A per-pixel acquisition time of 50 ms was used for this measurement. 

The results of the 256 × 256 pixel depth profile and the intensity map are reported in 

Figure 5.23a) and Figure 5.23b).  Also, in this case, the features on the pipe with sub-

millimetre dimensions are clearly evident in the depth profile and intensity map despite 

the attenuation length being only 30 cm. 
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Figure 5.23.  Figure (a) shows a 256 × 256 pixel depth scan made in 

water with 0.01% of Maalox at λ = 690 nm, and a stand-off distance of 

1.7 meters, corresponding to 5.7 attenuation lengths between transceiver 

and target.  A per-pixel acquisition time of 50 ms and an average optical 

power 121 μW was used.  Figure (b) shows the same target displayed 

with the number of photons returned per pixel.  The depth and the 

number of photons are displayed in the colour scales shown in the insets. 

The high-resolution scans presented so far show a high level of detail, however, the 

overall acquisition time was approximately 30 minutes for the scan in Figure 5.22, and 

more than 50 minutes for the scan in Figure 5.23.  A shorter acquisition time per pixel 

was used in the case of unfiltered tap water, in order to study a more realistic case and 

avoiding long acquisition times.  A 256 × 256 scan was performed in clear water at the 

operational wavelength λ = 525 nm, with 8 nW average optical power, and 0.5 ms 

acquisition time per pixel.  In this case, the overall acquisition time was less than 1 

minute, and from the results (Figure 5.24) it can be seen that the overall shape of the 

target is still resolved as well as most of the major characteristics, although some of the 

sub-millimetre details are not visible anymore.  However, the analysis performed so far 

is based just on the cross-correlation approach without additional post-processing of the 

data, which can greatly improve the image, as will be discussed in Chapter 6. 
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Figure 5.24.  Figure (a) shows a 256 × 256 pixel depth scan of the 

plastic pipe target made in clear water at λ = 525 nm, and a stand-off 

distance of 1.7 metres, corresponding to 0.2 attenuation lengths between 

transceiver and target.  Each pixel had an acquisition time of 0.5 ms and 

an average optical power 8 nW.  Figure (b) shows the same target 

displayed in the intensity map.  The depth and the number of photons are 

displayed in the colour scales shown in the insets. 

The high-resolution scan of 256 × 256 pixel format was also performed in the reservoir 

water, in order to have a comparison with a naturally occurring scattering environment. 

In this case, the operational wavelength was λ = 685 nm, corresponding to 

4.6 attenuation lengths between system and target.  The average optical power was 

120 μW, and the acquisition time per pixel was 10 ms, meaning an overall acquisition 

time of approximately 10 minutes.  The results are shown in Figure 5.25, where sub-

millimetre features are clearly visible in both the depth profile and the intensity map.  
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Figure 5.25.  Figure (a) shows a 256 × 256 pixel depth scan of the 

plastic pipe target made in reservoir water at λ = 685 nm, and a stand-

off distance of 1.7 metres, corresponding to 4.6 attenuation lengths 

between transceiver and target.  Each pixel had an acquisition time of 

10 ms and an average optical power 120 µW.  Figure (b) shows the 

intensity map.  The depth and the number of photons are displayed in the 

colour scales shown in the insets. 

5.10 Underwater depth profiles in highly scattering environments 

The results presented so far demonstrated the capability of the system to perform depth 

profiles at stand-off distances equivalent up to 6 attenuation lengths.  The potential of 

the system was then investigated in highly scattering environments, in order to establish 

the most extreme environments in which the system is capable of obtaining target depth 

profiles.  In order to achieve these objectives, several further changes were made to the 

system, including: improvements to the output power of the source; improvements to 

the relay lenses for a more uniform optical field and lower optical loss; the use of the 

HydraHarp 400 data acquisition module for easier processing and less complex 

electrical set-up; and the use of an improved shallow-junction Si-SPAD which 

permitted further reductions in jitter.  

To conduct these experiments, a few modifications were made to the electronics and the 

optical configuration of the transceiver unit, as schematically shown in Figure 5.26.  

Firstly, the TCSPC module was replaced with the HydraHarp 400, and the data were 

acquired in T3 mode (described in section 5.4), allowing scans with a greater pixel 

format.  The repetition rate of the laser was kept to 19.5 MHz, and the synchronisation 

signal frequency was reduced by a factor 8 with the internal synchronisation frequency 

divider of the HydraHarp 400. In addition, the bin width of the temporal histogram was 
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changed to 2 ps in order to increase the depth resolution of the system.  Since the 

experiments were performed in highly scattering environments, the optimum 

wavelength was λ = 690 nm for most of the water samples investigated, as established 

in Chapter 4.  Therefore, the alignment of the transceiver unit was performed at 

λ = 690 nm, and the optical components were chosen to maximise the transmitted light.  

In particular, the pair of relay lenses RL1 and RL2 was selected with anti-reflection 

coating characterised by reflectance less than 0.4% in the wavelength range 400 nm –

 700 nm, while the relay lens RL3 was a high-performance custom lens [16].  The 

advantage of using this custom lens was that it permitted obtaining images with fewer 

distortions and aberrations, and it had a flatter field, with respect to the optical 

configurations previously considered. 

 
Figure 5.26.  Schematic of the single-photon depth imaging system.  It 

comprised the pulsed supercontinuum laser source SuperK Extreme 

EXW-12, the monostatic scanning transceiver unit, with alignment 

optimised for the wavelength λ = 690 nm, was fibre-coupled to an 

individual thin junction Si-SPAD detector manufactured by MPD.  A 

time-gated configuration was used, with the single-photon detector being 

gated on for a 9 ns temporal window in correspondence with the return 

signal from the target. 

The laser source was the SuperK Extreme EXW-12, used in conjunction with the AOTF 

to select the operational wavelength λ = 690 nm.  In this case, a fine optimisation of the 

transmitted light was achieved acting on the polarising orientation lock ring of the 

photonic crystal fibre coupling the AOTF to the transceiver unit.  This optimised the 

match between the polarisation plane of the fibre with the polarisation of the output 
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light from the AOTF, allowing the use of average optical power levels up to 

approximately 800 µW. 

The fibre receptacle version of the MPD Si-SPAD was mainly used in these 

measurements, and it was fibre-coupled to the receive channel of the transceiver unit via 

a 50 μm diameter core multi-mode fibre.  A time-gated detection scheme was used to 

avoid detection of the back-reflection in the scanning unit.  As before, the detector was 

gated by applying an external TTL signal from the PPG with the same frequency as the 

clock signal.  For this configuration, the gating window was 9 ns wide, and the timing 

jitter was approximately 60 ps FWHM.  The instrumental response is shown in 

Figure 5.27. 

 
Figure 5.27.  Instrumental response recorded with the depth imaging 

system described in the text.  The timing jitter of the system (62 ps 

FWHM in this case) and the gating window are shown in the figure.  Due 

to latency and delays from electronic components, an arbitrary zero was 

chosen for the displayed time-scale. 
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A scan of the plastic pipe target was performed in water with 0.012% of Maalox, 

equivalent to a stand-off distance of 8 attenuation lengths between system and target.  

The average optical power was 0.63 mW, while the pixel format was 256 × 256, with an 

acquisition time per pixel of 30 ms.  The results of the scan are reported in Figure 5.28, 

where both the depth profile (Figure 5.28a) and the intensity map (Figure 5.28b) still 

show the sub-millimetre features of the target despite the high level of scattering. 

 
Figure 5.28.  Figure (a) shows a 256 × 256 pixel depth scan of the 

plastic pipe target at a 0.012% Maalox concentration, and a stand-off 

distance of 1.7 metres, corresponding to 8 attenuation lengths between 

transceiver and target.  The average optical power used was 0.63 mW.  

Each pixel had an acquisition time of 30 ms and the analysis used was a 

pixel-wise cross-correlation approach.  Figure (b) shows the same target 

displayed with the number of photons returned per pixel.  The depth and 

the number of photons are displayed in the colour scales shown in the 

insets. 

The scan of the pipe was performed again in water with 0.016% of Maalox, equivalent 

to a stand-off distance of 9 attenuation lengths between target and system.  The area 

scanned was reduced to 48 × 48 mm2 and just one end of the pipe was used as a target.  

The pixel format was 120 × 120, with an acquisition time per pixel of 100 ms.  The 

average optical power was 0.79 mW, and the results are shown in Figure 5.29.  In this 

case, the depth is displayed in a two-dimensional graph (Figure 5.29a), which shows 

that the target can still be resolved despite the high attenuation level of the environment. 

However, Figure 5.29b) shows that the target is much less obvious in the intensity map 
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because of the presence of backscattered light, meaning the weak signal return is not far 

above the noise level. 

 

Figure 5.29.  (a) Depth map and (b) intensity map of a 120 × 120 pixel 

scan, with 100 ms acquisition time per pixel, and an average optical 

power of 0.79 mW.  The plastic pipe target was placed at a stand-off 

distance of 1.7 metres in water with 0.016% of Maalox, equivalent to 9 

attenuation lengths. 

In general, the intensity map was obtained counting the number of events over a 30 bins 

range centred on the highest value of the cross-correlation (refer to section 5.5), 

meaning counting the recorded events over the 15 bins on the left side of the peak and 

the 15 bins on the right side of the peak.  The intensity map of the previous scan was 

constructed with the same technique, but using different bin ranges in order to improve 

the image.  Figure 5.30 shows the intensity map built counting the number of events 

over a (a) 10, (b) 40, and (c) 60 bins range centred on the highest value of the cross-

correlation.  The results suggest that a wider bin range allows the resolution in the 

intensity map to be improved, allowing the shape of the target to be discerned.  It is 

important to remember that the analysis is based only on the pixel-wise cross-

correlation approach with no attempt to apply any spatial correlation, which is likely to 

improve the results of the scans.  A more advanced analysis will be discussed in 

Chapter 6. 
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Figure 5.30.  Intensity maps of a 120 × 120 scan performed at a stand-

off distance of 9 attenuation lengths, using an average optical power of 

0.79 mW and an acquisition time per pixel of 100 ms.  The intensity maps 

were obtained identifying the highest value of the cross-correlation 

between the timing histogram and an instrumental response, and 

considering all the events in a bin range centred on the highest value of 

the cross-correlation.  The figure shows the case of (a) a 10 bins range, 

(b) 40 bins range, (c) and 60 bins range. 

In order to carry out a comparison between the two thin junction SPADs, the pigtailed 

version of the Si-SPAD by MPD was fibre-coupled to the receive channel, via the 

50 µm core multi-mode fibre.  The instrumental response of this case is shown in 

Figure 5.31 (red curve), where it is also compared to the instrumental response recorded 

with the fibre receptacle version of the same detector (black curve).  From the graph, it 

can be seen that the two detectors have different responses despite having the same 

quoted specifications.  The two instrumental responses were obtained using an 

acquisition time of 100 seconds, and an average optical power of 35.8 µW. The target 

used was the plastic pipe connection, placed at a stand-off distance of approximately 

1.7 metres in water with 0.012% of Maalox, equivalent to 8 attenuation lengths.  The 

measurements were recorded at a stand-off distance of 8 attenuation lengths because 

when the target is 9 attenuation lengths away from the system, the return was too weak 

to highlight the differences between the two detectors.  Under the same conditions, the 

fibre receptacle version of the thin junction detector presents a signal-to-noise ratio 

equal to SNR = 20.13, while the pigtailed version has SNR = 16.97.  There is clearly a 

higher peak in the former case, despite the overall integrated counts being 

approximately the same in each case.  The better performance of the fibre receptacle 

detector can be explained by the reduced jitter of approximately 50 ps, compared to the 

timing jitter of approximately 75 ps of the pigtailed detector.  In addition, there is also 
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an increased background count level in the latter case, which could be as a result of 

afterpulsing [17].  This combination of issues means that the fibre-receptacle detector is 

the better detector for time-of-flight measurements, particularly in highly scattering 

environments, as it provides the higher value of SNR under identical conditions.   

 

Figure 5.31.  Instrumental response when the fibre receptacle version 

(black) and the pigtailed version (red) of the Si-SPADs by MPD are 

fibre-coupled to the receive channel of the transceiver unit.  The 

measurements were performed placing the plastic pipe target at a stand-

off distance of 1.7 metres in water with 0.012% of Maalox, equivalent to 

8 attenuation lengths between system and target.  The average optical 

power used was 35.8 µW, and the integration time was 100 seconds. 

Under these conditions, the fibre receptacle SPAD shows an 

SNR = 20.13, while the pigtailed version of the SPAD has SNR = 16.97. 

Nevertheless, despite its reduced performance, the pigtailed version of the thin junction 

MPD detectors was used to perform a scan of the plastic pipe target at a stand-off 

distance of 9 attenuation lengths, with appropriate analysis. Figure 5.32a) and 

Figure 5.32b) report the depth and intensity maps, respectively.  The scan was 

performed using an average optical power of approximately 0.78 mW, and 120 × 120 

pixel format, with an acquisition time per pixel of 100 ms, the same conditions as the 
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scan previously presented in Figure 5.29.  In this case, it is not possible to obtain any 

depth or intensity information with the pixel-wise cross-correlation approach. In these 

highly scattering conditions and high average optical power, secondary back reflections 

within the transceiver unit can be visible in the timing histograms recorded, even if the 

detector is gated.  Because of the lower SNR, the return from the target is lower than the 

secondary back-reflections, leading to the cross-correlation providing the wrong 

time-of-flight information.  However, the results can be greatly improved by software 

gating the histograms recorded. Software gating consists of performing the pixel-wise 

cross correlation in a pre-defined time window, which allows the algorithm to ignore 

any event recorded outside this window.  This is different to previous analyses which 

perform the cross-correlation on all the data, and then evaluate the intensity by counting 

the recorded events on a selected bin range centred on the highest value of the 

cross-correlation.  By using a narrower timing window in software at around the region 

of interest permits to isolate the optical return to investigate, when needed. 

The effect of software gating is shown in Figure 5.32c) and 5.32d), where the depth and 

intensity maps, respectively, were obtained performing the cross-correlation over a bin 

range as narrow as 1200 bins, gating out most of the back-reflections in the system.  

The results show how the software gating can improve the depth and the intensity maps, 

allowing recovery of the shape of the target only by narrowing the region of the timing 

histogram considered by the algorithm. 
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Figure 5.32.  120 × 120 pixel depth map of the right end of the plastic 

pipe target, placed at a stand-off distance of 9 attenuation lengths.  The 

average optical power used was 776 μW, at the optimum wavelength 

λ = 690 nm.  The detector used for this measurement was the pigtailed 

version of the thin junction SPADs by MPD.  Each pixel used an 

acquisition time of 100 ms and the analysis used was a pixel-wise cross-

correlation approach. Figures a) and b) show the depth and intensity 

maps respectively, when the entire gating window is used in the 

algorithm.  While Figures c) and d) show the depth and intensity maps 

obtained considering only a timing window of 1200 bins around the 

expected return time from the target.  The depth and the number of 

counts are displayed in the colour scales shown in the insets. 

The use of software gating helped improve results of a measurement when the detector 

with a lower SNR was used.  However, the next section will show how it can be of great 

advantage also when the fibre-receptacle thin junction detector (i.e. with a better 
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performance) is used in conjunction to high average optical power levels, which cause 

higher secondary back-reflections. 

5.11 Underwater depth profiles using high average optical power 

In order to investigate higher power levels, the operational wavelength was selected by 

the use of three optical filters: 

- Short pass filter with cut-off wavelength at λ = 700 nm 

- Long pass filter with cut-off wavelength at λ = 600 nm 

- Bandpass filter centred in λ = 700 nm, 50 nm FWHM 

The transmittance of the filters was measured with a spectrophotometer, UV-2550 by 

Shimadzu, in the wavelength range 450 – 1100 nm, and the results are shown in 

Figure 5.33.  This allowed selection of a 25 nm wide wavelength range from the 

supercontinuum spectrum and an increase in the average optical power up to 2.6 mW. 

 

Figure 5.33.  Spectra of optical filters used to select a 25 nm wavelength 

range centred at approximately λ = 690 nm. 

Firstly, a scan of the plastic pipe was obtained in water with 0.012% of Maalox, 

meaning that the target was at a stand-off distance of 8 attenuation lengths.  The 

measurement was performed using an average optical power of 2.6 mW, 240 × 240 

pixel format, and 30 ms acquisition time per pixel. Figure 5.34a) shows the depth 
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profile of the target obtained with the pixel-wise cross-correlation approach, while 

Figure 5.34b) shows the intensity map. In this case, the cross-correlation was performed 

over the entire timing window, as the return from the target was higher than the 

secondary back-reflection in the timing histogram.  Both graphs show in great detail all 

the features of the target, allowing the small grooves inside the end of the pipe to be 

resolved. 

 
Figure 5.34.  Figure (a) shows a 240 × 240 pixel depth scan of the 

plastic pipe target at a stand-off distance of 8 attenuation lengths 

between transceiver and target.  The average optical power used was 

2.6 mW, and each pixel had an acquisition time of 30 ms.  Figure (b) 

shows the same target displayed with the number of photons returned per 

pixel.  The analysis was performed with the pixel-wise cross-correlation 

approach over the entire timing window.  The depth and the number of 

photons are displayed in the colour scales shown in the insets. 

Combining the depth and intensity information together, the scan shows clearly all the 

sub-millimetre features of the target.  This provided a high depth and spatial resolution 

scan of the plastic pipe target at 8 attenuation lengths, showing how the TCSPC 

technique can be a useful tool for high-resolution images in photon-starved 

environments. 
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Figure 5.35.  Depth estimation combined with intensity information of 

the plastic pipe at a stand-off distance equivalent to 8 attenuation lengths 

between transceiver and target. 

Then, the scan was obtained in water with 0.016% of Maalox in order to have the target 

at 9 attenuation lengths.  The measurements were performed using 2.6 mW of average 

optical power and a pixel format of 120 × 120, while the acquisition time per pixel was 

increased to 120 ms.  Figure 5.36 reports (a) the depth and (b) intensity maps obtained 

with the cross-correlation approach.  In this case, the analysis was performed by 

software gating the timing window, by selecting 1000 timing bins in correspondence 

with the return from the target, therefore excluding the optical signal from back 

reflections.  The main features of the target are still visible, in particular in the depth 

map, while sub-millimetre dimension details cannot be resolved. 
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Figure 5.36.  Scan of the plastic pipe target at a stand-off distance of 

9 attenuation lengths.  The scan was performed selecting a 25 nm 

wavelength range via optical filters.  The average optical power was 

2.6 mW, the acquisition time per pixel was 120 ms, with a pixel format of 

120 × 120.  The depth profile is displayed in (a), while the intensity map 

is shown in (b).  The depth and intensity were obtained with the pixel-

wise cross-correlation approach performed on a software selected 

timing window of 1000 bins. 

The main limitation that prevents depth imaging in environments with a shorter 

attenuation length is an unexpected background component.  It was observed that the 

background level increased with the average optical power, reducing significantly the 

signal to noise ratio.  Further studies revealed that this background component was 

introduced by the detector, and it was dependent on the count rate, and it could be a 

result of afterpulsing.  This effect in conjunction with the background due to the high 

level of scattering did not allow observation of the return from the plastic pipe target at 

a stand-off distance of 10 attenuation lengths with the system as described in this 

Thesis.  However, it is worth noting that in this case weak secondary back-reflections 

could be observed in the histogram, and they were not avoidable with the gating 

scheme, hence they contributed to the total count rate.  A way to avoid the detection of 

the secondary back-reflections is to move the target to a different position, but it was 

not possible to investigate this option because of the limited space available in the tank. 
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5.12 Underwater depth profiles using low average optical power using 

semiconductor lasers 

The advantage of using the supercontinuum laser system is that the operational 

wavelength can be adapted depending on the scattering level of the environment where 

the target is placed.  However, an implementation of this configuration for field trials 

would be difficult to realise due to the weight and dimension of this supercontinuum 

laser system which was designed for laboratory use.  Therefore, the supercontinuum 

laser source was replaced with a PicoQuant PDL800-B pulsed diode laser of 

wavelength λ = 685 nm, in order to test the system with a single wavelength source.  

The wavelength was chosen as a compromise that minimises the attenuation in highly 

scattering environments, and at the same time provides sufficient transmittance in water 

with low scattering levels.  The repetition rate of the laser source was set to 20 MHz, 

and it has to be noted that the instrumental response is dependent on the input current 

settings.  For example, Figure 5.37 reports the instrumental response for two values of 

optical power, 455 µW (black) and 85 µW (red), showing that the timing jitter increases 

as the input current settings is increased for higher output power levels.  Such an 

increase in the pulse width duration will affect the depth resolution of the system.  

Hence, low optical power levels were preferred to perform the scans, when possible. 
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Figure 5.37.  Instrumental response of the system for two different 

average optical power levels of the laser diode source, 455 µW (black), 

and 85 µW (red).  Both measurements were recorded placing the 

Spectralon target at a distance of 1.7 metres, in water with 0.012% of 

Maalox, equivalent to 8 attenuation lengths between transceiver and 

target.  The acquisition time used was 100 seconds. 

Several scans of the plastic pipe target were obtained with this configuration, and a few 

examples are shown in Figure 5.38 and 5.39.  In all cases, the target was placed at a 

stand-off distance of 1.7 metres, equivalent to: 

- 2.5 attenuation lengths in water with 0.003% of Maalox 

- 6 attenuation lengths in water with 0.01% of Maalox 

- 8 attenuation lengths in water with 0.012% of Maalox 

- 9 attenuation lengths in water with 0.016% of Maalox 

The scans were performed with a 120 × 120 pixel format, while the optical power level 

and the acquisition time per pixel were adjusted depending on the scattering level.  

Figures 5.38 a) and b) report the depth profile and intensity map, respectively, in water 

with 0.003% of Maalox, when an average optical power of 1.3 µW and 1 ms acquisition 

time per pixel were used.  Following the results presented so far, a higher average 

optical power or a longer acquisition time per pixel can be used to improve the result of 

the scan, while a greater pixel format can improve the resolution of both the depth 

profile and intensity map.  
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The scan of the same target was performed in water with 0.01% of Maalox, increasing 

the average optical power to 80 µW and the acquisition time per pixel to 10 ms.  The 

depth profile is shown in Figure 5.38c) and the intensity map in Figure 5.38d).  In both 

figures it can be seen that the target is still clearly discernible, despite the lower 

resolution. 

 
Figure 5.38.  (a) Representation of a 120 × 120 pixel depth scan of the 

plastic pipe acquired in water with 0.003% of Maalox, at a stand-off 

distance of 1.7 meters, corresponding to 2.5 attenuation lengths between 

transceiver and target.  Each pixel had an acquisition time of 1 ms and 

an average optical power 1.3 µW was used.  (b) The same target 

displayed with the number of photons returned per pixel.  (c) A 

120 × 120 pixel depth scan made in water with 0.01% of Maalox, at a 

stand-off distance of 1.7 metres, corresponding to 6 attenuation lengths 

between transceiver and target.  A per-pixel acquisition time of 10 ms 

and an average optical power 80 μW was used.  (d) Intensity map of the 

same target displayed with the number of photons returned per pixel.  

The depth and the number of photons are displayed in the colour scales 

shown in the insets. 
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The same conclusions can be drawn from the scan of the same target performed in water 

with 0.012% of Maalox.  In this case, the average power was limited again to 80 µW, 

while the acquisition time per pixel was increased to 100 ms.  This modification was 

enough to obtain a depth map (Figure 5.39a) sufficiently resolved to distinguish the 

sub-millimetre features of the target.  At the same time, the intensity map (Figure 5.39b) 

allows recognition of the shape of the target, although the details are not visible.  

When the scan was performed in water with 0.016% of Maalox, the average optical 

power was increased to approximately 190 µW, with an acquisition time per pixel of 

100 ms. Figure 5.39c) reports the depth map, showing clearly the shape of the target 

despite the high level of scattering.  However, the intensity map (Figure 5.39d) makes it 

difficult to recognise the target because of the low SNR. 

It is important to note that all the results presented in this paragraph were obtained using 

an average optical power of less than 200 µW, showing how this technique allows scans 

with low optical power levels to be perfomed in highly scattering environments. 
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Figure 5.39.  (a) Representation of a 120 × 120 pixel depth scan of the 

plastic pipe acquired in water with 0.012% of Maalox, at a stand-off 

distance of 1.7 meters, corresponding to 8 attenuation lengths between 

transceiver and target.  Each pixel had an acquisition time of 100 ms 

and an average optical power 80 µW was used.  (b) The same target 

displayed with the number of photons returned per pixel.  (c) A 

120 × 120 pixel depth scan made in water with 0.016% of Maalox, at a 

stand-off distance of 1.7 metres, corresponding to 9 attenuation lengths 

between transceiver and target.  A per-pixel acquisition time of 100 ms 

and an average optical power 188 μW was used.  (d) Intensity map of the 

same target displayed with the number of photons returned per pixel.  

The depth and the number of photons are displayed in the colour scales 

shown in the insets. 

5.13 Spatial resolution 

To investigate the spatial resolution of the system, a sector star test reference target was 

scanned in different water types.  This target (shown schematically in Figure 5.40) has 

36 equally spaced (by 5°) opaque chrome bars on glass radiating out from a shared 
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centre.  The overall diameter is 10 mm, and the clear centre circle has a diameter of 

200 μm.  The glass substrate measured 25 × 25 × 1 mm.  The thickness c of one bar at 

distance r from the centre is given by the formula 

      Equation 5.3 

where ϑ is the angle in degrees covered by a pair of bars.  The minimum thickness of a 

bar resolved by the system provides an estimation of the spatial resolution of the 

system.  

 

Figure 5.40.  Diagram of the sector star target. 

Several scans of the sector star test reference target were performed in different water 

types.  The wavelengths were selected on the basis of the minimum of attenuation for 

the particular medium used, and the average optical power was increased to take 

account of the increased scattering.  Images of 150 × 150 pixels with a per-pixel 

acquisition time of 10 ms were taken, and the results are shown in Figure 5.41, in (a) for 

clear water (λ = 525 nm, average power = 10 nW), in (b) for water and 0.003% of 

Maalox (λ = 585 nm, average power = 720 nW), in (c) for water with 0.01% of Maalox 

(λ = 690 nm, average power = 260 μW), and in (d) for water with 0.012% of Maalox 

(λ = 690 nm, average power = 950 μW).  For each of these environments, Figure 5.41 

shows the intensity map and the graph of the number of counts in the pixel line closest 

to the sector star centre, where distinct peaks are still resolved.  Every peak in the graph 

corresponds to a chrome bar, and this line is shown in light blue in the intensity maps.  

sin
2

c r
 

  
 
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Once the distance between this pixel line and the centre of the sector star was 

determined, the spatial resolution was evaluated as the thickness of one bar at that 

distance using the Equation 5.2. With this configuration, the spatial resolution was 

estimated to be approximately 100 µm, corresponding to an angular resolution of 

approximately 60 µrad, for the target placed over a range between 0.2 and 8 attenuation 

lengths from the transceiver.  
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Figure 5.41.  The images show 150 × 150 pixel intensity maps of the 

sector star reference target at the four attenuation lengths of (a) 0.2, (b) 

1.2, (c) 5.7 and (d) 8.   Below each of these intensity maps is a plot of the 

number of counts per pixel for the indicated vertical line on the 

corresponding intensity map.  The position of the line was chosen such 

that the number of counts for the peak corresponding to the narrowest 

bar width was at least twice that of the adjacent trough i.e. the change 

between the peak and the trough was still clearly discernible. 
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The spatial resolution appeared not to be affected by these large changes in scattering 

level. It is likely that the limited field of view afforded by the transceiver unit allows 

exclusion of the forward scattered light which is ordinarily expected to degrade the 

image in scattering media [18, 19].  

In the most general case, three contributions to scattering occur in a turbid environment, 

and a schematic representation is shown in Figure 5.42.  The first component is multiple 

backscattered light, which is light that has not interacted with the target but it is 

scattered back to the receiver because of the turbidity of the medium.  The second 

contribution is the common volume backscatter, caused by the overlap of the outgoing 

light and the receiver field of view.  The third component is the forward scattered light, 

which is light slightly deviated while travelling from the source to the target, and on the 

way back to the receiver.  Forward scattered light causes the image to be blurred, 

reducing its resolution.  However, from the figure it can be seen that a narrow field of 

view limits the detection of forward scattered light, limiting the loss of resolution. 
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Figure 5.42.  Schematic representation of scattered light.  From [20].  

The system described in this Thesis has coaxial transmit and receive channels, meaning 

that multiple backscatter and common volume backscatter components coincide.  The 

gated detection scheme prevents most of these events being detected, therefore they do 

not contribute to the overall count rate of the system.  However, the common volume 

between transmitted light and light scattered by the target is minimised, thanks to the 

transmitted light being focused on the target and the narrow field of view of the system, 

reducing even more the backscatter component.  In addition, the narrow field of view 

limits the detection of forward scattered light, resulting in no degradation of the image 

even in highly scattering environments. 

This illustrates a clear advantage of scanning systems of this type which inherently 

spatially filter out the forward scattered return signal, mainly detecting light scattered by 
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the target into the system and excluding most of the light scattered by the transmission 

medium.  This allowed high resolution imaging even at stand-off distances of several 

attenuation lengths. 

5.14 Depth resolution 

Several scans of a pillar target were performed in different environments in order to 

investigate the depth resolution of the system.  The pillar target is a custom-designed 

target, which was used to investigate the depth resolution of the system.  The design 

was performed by Dr. Aongus McCarthy and other members of the group, and a CAD 

model is shown in Figure 5.43.  The target consists of a progression of 5 pillars on a 

radial line, each having the same height but different diameters, as specified in the 

figure.  There are 6 radial lines of pillars, whose height follows the geometrical 

progression shown in red in Figure 5.43.  The same configuration was adopted for the 

set of holes placed in a specular position in the target.  The target was 3D printed and 

cleaned to remove all the supporting material for the printer.  Then it was treated with a 

plastic primer and painted with a white spray paint for cars, which has a good resistance 

to water.  

 

Figure 5.43.  CAD model of the pillar target. 

The experimental setup presented in section 0 was chosen for this study, since the 

overall instrumental response of this configuration was greatly affected by the response 

of the laser source, which can be dependent on the input current settings.  Therefore, a 
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low average optical power was used in order to not increase the pulse width duration, as 

discussed in section 0.  However, a low average optical power meant also a low return 

from the target.  The combination of these issues put a limit to the depth resolution that 

could be achieved with this configuration, since the uncertainty  in the depth 

estimation depends on the number of integrated counts N and the timing jitter of the 

system σ by means of  [15] 

    Equation 5.4 

Three examples are reported in Figure 5.44, showing 130 × 130 pixel depth maps 

obtained in three environments, when a 2 ps bin width was selected for the timing 

histogram, meaning a minimum depth resolution of approximately 300 μm can be 

resolved. In Figure 5.44a), the target was placed at a stand-off distance of approximately 

1.7 metres in unfiltered tap water, equivalent to 0.8 attenuation lengths.  An average 

optical power of 24 nW was used with 10 ms acquisition time per pixel. In this case, a 

depth up to 500 μm can be resolved, which was the smallest target detail that could be 

resolved using this pillar target and the bin width selected.  The scan of the pillar target 

was performed in water with 0.01% of Maalox, equivalent to a stand-off distance of 

6 attenuation lengths, increasing the acquisition time per pixel to 100 ms (Figure 5.44b).  

The average optical power was 84 μW, meaning that the instrumental response of the 

system presented only one peak in the histogram.  This configuration meant that the 

depth resolution was preserved at 500 μm, although it came at the cost of a longer 

acquisition time.  The same scan was performed in water with 0.012% of Maalox, 

equivalent to a stand-off distance of 8 attenuation lengths (Figure 5.44c), showing how 

the depth resolution is degraded by the attenuation of the environment.  A depth up to 

2 mm is clearly discernible from the depth map, while the 1 mm high pillars are barely 

visible. 



N


 
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Figure 5.44.  130 × 130 pixel depth maps of the pillar target obtained in 

unfiltered tap water, equivalent to (a) 0.8 attenuation lengths, using an 

acquisition time per pixel of 10 ms and an average optical power of 

24 nW.  The scan was repeated using 100 ms acquisition time per pixel 

and 84 µW (b) in water with 0.01% of Maalox, equivalent to 

6 attenuation lengths, (c) and in water with 0.012% of Maalox, 

equivalent to 8 attenuation lengths.  

These examples established a higher limit to the depth resolution achievable, which is 

strictly related to the instrumental response of the system, the attenuation of the 

environment, and the parameters chosen for the scan, therefore, a different configuration 

may improve the achievable depth resolution.  

For completeness, the depth resolution of the system was investigated in water with 

0.016% of Maalox, equivalent to a target stand-off distance of 9 attenuation lengths.  In 

this case, a higher average optical power was needed in order to obtain a return from the 

target high enough to resolve some of the pillars.  Hence, the system described in 

section 5.10 was used for this study, and a 130 × 130 pixel scan was performed using 

100 ms acquisition time per pixel and an average optical power of approximately 

860 µW.  The results are reported in Figure 5.45, where the effect of scattering is clearly 

visible, causing the return to be insufficient to estimate the depth with the cross-

correlation approach for many of the pixels.  Because of the sparse photon return, only 

the 4 mm high pillars were resolved in this case, while the 2 mm high pillars are barely 

visible. 
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Figure 5.45.  130 × 130 pixel depth maps of the pillar target obtained in 

water with 0.016% of Maalox, equivalent to 9 attenuation lengths 

between system and target, using an acquisition time per pixel of 100 ms 

and an average optical power of 860 µW. 

5.15 Conclusions 

The investigations reported in this chapter show the potential for depth imaging systems 

using time-correlated single-photon counting to obtain depth profiles of targets in 

different underwater environments, in low and high levels of scattering.  Lab-based 

measurements were performed over distances of less than two metres, and several depth 

profiles were acquired at stand-off distances of up to 9 attenuation lengths.  To the best 

of the author’s knowledge, this is the longest stand-off distance achieved underwater 

with a monostatic optical system.  

In all cases, one operational wavelength was selected for each environment, in order to 

minimize the attenuation of light due to absorption and scattering.  The use of a 

supercontinuum laser source allowed the tuning of the operational wavelength to the 

environment where the scan was performed.  

Several configurations were studied in order to optimise the performance of the system 

and investigate its limitations.  Preliminary measurements were performed using a thick 

junction SPAD detector in a free-running mode, meaning that back-reflections from the 

transceiver unit were detected.  This limited the average optical power that could be 

used to the sub-microwatt region.  If high optical powers are used when the detector is 

in free-running mode, the back reflection can saturate the single-photon detector and 
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prevent detection of the returns from the target.  However, these preliminary 

measurements showed promise from the point of view of measuring depth profiles of 

targets in highly attenuating environments.  Therefore, several modifications were 

implemented to improve the performance of the system.  A gated detection scheme was 

used in order to avoid the detection of the back-reflections from the transceiver unit and 

allow higher average optical power.  Gated detectors offer the opportunity to 

temporarily deactivate the detector during the expected arrival time for photons from the 

back-reflections so that higher optical powers may be used.  In order to implement this 

configuration, the thick junction single-photon detector was replaced with a thin 

junction SPAD detector, offering a better temporal response even if this came at the cost 

of a slightly lower detection efficiency.  This configuration allowed significantly higher 

average optical powers to be used, providing a better SNR and faster data acquisition.  

Several scans were performed placing the target at stand-off distances up to 6 

attenuation lengths, and high resolution scans were achieved in several scattering 

conditions, but at the cost of long overall acquisition times.  

More modifications were made to the system to further improve its performance.  

Firstly, the average optical power was optimised acting on the polarising orientation 

lock ring of the photonic crystal fibre coupling the AOTF to the transceiver unit, 

allowing to increase the power up to approximately 800 µW.  Secondly, the data were 

acquired in T3 mode with the HydraHarp TCSPC module, which meant less 

complicated electronics and less data storage memory to use, allowing a greater number 

of pixels to be recorded.  In addition, the optical configuration in the transceiver unit 

was improved including relay lenses with higher performance.  These improvements 

allowed scans of the plastic pipe target to be taken at stand-off distances up to 9 

attenuation lengths.  In all cases the overall acquisition time was in the range of 

minutes, which is too long a duration for most applications in the field.  In general, 

appropriate combinations of pixel format, acquisition time per pixel, and average optical 

power, can be used to minimise the overall acquisition time of the scans. However, the 

analysis was performed with the pixel-wise cross-correlation approach, without any 

attempt to perform spatial correlations.  Image processing using spatial correlations can 

help in reconstructing the image with far fewer photons, allowing much reduced 

acquisition times, as will be discussed in Chapter 6. 
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In most of the cases, average optical powers in the sub-milliwatt range were used.  In 

addition, higher power levels were investigated and scans were performed using an 

average optical power of approximately 2.6 mW.  This allowed high resolution scans of 

the plastic pipe to be taken at 8 attenuation lengths, showing detailed features of the 

target.  At 9 attenuation lengths, depth scans were possible but the depth resolution was 

not preserved due to the high level of scattering which reduced the SNR.  For 

completeness, the scans at 8 and 9 attenuation lengths were performed also using an 

average optical power up to only 200 µW.  This allowed the depth profiling of the 

plastic pipe target to be estimated using the pixel-wise cross-correlation approach, at up 

to 9 attenuation lengths, although in this last case the intensity map does not provide 

enough information to discern the target.  However, these results clearly illustrate that 

the TCSPC technique allows scans with low optical power levels in highly scattering 

environments. 

Scans were performed also placing the target at 10 attenuation lengths.  However, 

because of the high background and the strong light attenuation, the cross-correlation 

approach did not recover the shape of the target.  The main limitation seemed due to a 

background component introduced by the detector and dependent on the count rate, 

which could be related to afterpulsing [17].  This effect in conjunction with the high 

level of scattering, detected secondary back-reflections which contributed to the overall 

count rate, and the highly attenuated return from the target, reduced drastically the SNR, 

meaning that the plastic pipe target could not be imaged at a stand-off distance of 

10 attenuation lengths.  However, it would be interesting to investigate the case of the 

target placed at 10 attenuation lengths with no secondary back-reflections detected.  

Future work will investigate longer range depth images and new transceiver designs 

which are both likely to reduce the back-reflection issue.  In addition, it has to be noted 

that the number of attenuation lengths between system and target was increased acting 

only on the scattering properties of the medium, adding Maalox to unfiltered tap water.  

This means increasing the scattering albedo of the medium, defined as the ratio between 

the amount of scattering and overall attenuation [21].  As a consequence, the medium 

glows when high average optical powers and high concentrations of Maalox are used, 

resulting in a high background level.  The scattering albedo of natural sea water is lower 

than the environments considered in this Thesis.  Therefore, it is worth investigating the 

case of scans performed at 10 attenuation lengths in an environment characterised by a 

low scattering albedo.  This experiment can be performed using the system described in 
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section 5.11, adding an appropriate dye to unfiltered tap water and Maalox, in order to 

better simulate open-sea water conditions.  In this case, the lower expected background 

may permit increased SNR at a stand-off distance of 10 or more attenuation lengths.  

However, in a real underwater environment, ambient light should also be considered as 

another component which increases the background level. In this case, an appropriate 

combination of optical filters can be included into the transceiver unit, in order to 

minimise this ambient background. 

Estimations of spatial and depth resolution were performed, and the results show that in 

unfiltered tap water and medium level of scattering the system allowed estimations of 

the depth of details up to 500 µm.  It is worth noting that because of the timing bin 

width selected in the TCSPC module corresponded to a depth of approximately 300 µm.  

The target used for this study was formed by a geometrical progression of pillars, and 

no pillars with height between 500 µm and 250 µm were included.  It is likely that a 

different geometrical progression in the target may allow the resolution of a pillar of 

less than 500 µm, under the same conditions.  However, increasing the level of 

scattering of the medium, the achievable depth resolution decreased to few millimetres, 

mainly due to the low return from the target.  It is important to say that this study was 

performed with the configuration characterised by the lower average optical power 

investigated in this Thesis.  Therefore, the worst case considered in this chapter was 

investigated, establishing a lower limit for the achievable depth resolution.  At the same 

time, studies of spatial resolution showed that an angular resolution of approximately 

60 µrad can be achieved in water samples with a high scattering level.  There appeared 

to be only a little degradation in spatial resolution as a result of increased scattering, 

most likely due to the limited field of view afforded by the scanning system, effectively 

excluding the forward scattered return signal, detecting the light scattered by the target 

and excluding most of the light scattered by the transmission medium.  

With appropriate reconfiguration, the transceiver unit can operate with a detector array 

[14], instead of the individual SPAD detector.  This approach may improve the overall 

acquisition time, as the image of the target can be obtained with a pixel format equal to 

the array dimensions or by using structured illumination of the target.  However, this 

entails illuminating a wider area of the target, meaning the use of a higher average 

optical power.  In addition, the field of view in this case would be much wider than the 

case considered in this Thesis, hence it is likely that the forward and backscattered 
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radiation will degrade contrast and spatial resolution.  Therefore, such a configuration 

may have the advantage of fast acquisition times but at the cost of shorter achievable 

ranges.  
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Chapter 6 

Image reconstruction and reflectivity restoration using spatial 

correlations 

6.1. Introduction 

Several algorithms based on spatial correlations were developed in order to investigate a 

number of approaches for three-dimensional image reconstruction aimed both to reduce 

the overall acquisition time of a scan, and improve the results obtained under highly 

scattering conditions.  This chapter will show three different methods which allow for 

the reconstruction of depth and intensity images by means of exploiting spatial 

correlations between neighbouring pixels. Section 6.2 describes a model which 

performed spatial correlations over the depth and intensity maps formed using the 

pixel-wise cross-correlation approach.  Section 6.3 will describe two other approaches 

that utilise spatial correlations to analyse similar data. 

6.2. Image reconstruction with Discrete Cosine Transform method 

The results presented in Chapter 5 show the potential for depth imaging using the 

TCSPC technique and time-of-flight approach to obtain depth profiles of targets at 

stand-off distances equivalent to up to 9 attenuation lengths.  Additionally, it was 

demonstrated that short overall acquisition times can be obtained by varying the average 

optical power and pixel format.  However, in highly attenuating environments, longer 

acquisition times are typically required in order to obtain a good reconstruction of the 

image of a target with the pixel-wise cross-correlation approach, and long acquisition 

times may be difficult to implement in real underwater environments.  In this case, 

additional analysis may help to restore the degraded image and reconstruct the depth 

and intensity images.  

An algorithm was developed in collaboration with Rachael Tobin and Dr. Abderrahim 

Halimi from the Single-Photon Group, in order to investigate the effects of shorter 

measurement acquisition times on image quality.  This algorithm was based on the 

sparseness of the Discrete Cosine Transform (DCT) domain.   
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In general, the DCT based approach is able to reconstruct an array f of length N as 

follows [1]: 
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With the coefficients w(k) being 

  Equation 6.2 

Equation 6.1 and 6.2 can be implemented in Matlab, by use of a built-in function in the 

software.  Typically, very few DCT coefficients are needed to reconstruct the original 

sequence.  For example, Figure 6.1 shows an arbitrary array f in blue, representing a 

triangular function.  The array was constructed as a function of the variable a, which 

varies in the range 1 – 200 with a unitary step.  The curve in orange in Figure 6.1 

represents the reconstruction with the DCT based approach of the array f.  In this 

example only three coefficients were used to reconstruct the simulated array.  Despite 

this triangular function is a very difficult problem for the reconstruction, as it is 

characterised by sharp edges, the DCT based approach allows to restore the triangular 

function.  Similarly, most of the depth and intensity images shown in this Thesis present 

several sharp edges, and the DCT based approach may help in the reconstruction of the 

image. 
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Figure 6.1.  Example of array reconstruction with the DCT approach.  

The function in blue is a simulated array representing a triangular 

function of the variable a.  The array in orange is the DCT function of 

the array.  

When the DCT based method described by Equation 6.1 and 6.2 is applied to a matrix, 

each column of the matrix is treated as an independent array.  Alternatively, the DCT 

based method can be applied in two dimensions, meaning that the same approach is 

followed for each column and then for each row of the matrix.  For the two-dimensional 

case, a built-in function is also available in Matlab and was used in the script.  In the 

results reported in this section, the DCT function is calculated in two dimensions on the 

depth and intensity maps.  

The main structure of the algorithm is presented in Figure 6.2, while Figure 6.3 shows 

an example of processed images generated at the three main steps of the algorithm.  In 

this example, the plastic pipe target was placed at a stand-off distance of 8 attenuation 

lengths.  A 200 × 125 pixel scan was obtained using an average optical power of 

approximately 640 µW, and an acquisition time per pixel of 50 ms.  In order to 

investigate shorter acquisition times and test the algorithm presented in this 

section, an acquisition time per pixel of 5 ms was extracted from the original scan.  

Firstly, the depth was estimated with the pixel-wise cross-correlation approach (Figure 

6.3a), as explained in section 5.5.  Then, a median filter was applied on the depth map, 
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employing a 3 × 3 neighbourhood filter (Figure 6.3b).  The median filter replaced the 

value of each pixel with the median value of 3 × 3 neighbouring pixels, thus including 

the original value in the calculation [2].  This allowed the exclusion of some of the noise 

in the image, and corrected spurious pixels without introducing a significant reduction 

in spatial resolution. 

 
Figure 6.2.  Diagram of the operations performed by the algorithm to 

reconstruct the image. 

 
Figure 6.3.  A depth map of a 200 × 125 pixel scan of the plastic pipe 

target, performed in water with 0.012% of Maalox, equivalent to a 

stand-off distance of 8 attenuation lengths.  An extracted 5 ms 

acquisition time per pixel was used, with an average optical power of 

640 μW at the operational wavelength λ = 690 nm.  The figure shows the 

depth map obtained with (a) the pixel-wise cross-correlation approach; 

then (b) median filtered over 8 neighbouring pixels and (c) after 

applying the DCT based model followed once again by the median filter. 

The depth data obtained with the cross-correlation approach and corrected with the 

median filter are then restricted to a user-defined depth range.  This is because as the 

acquisition time is reduced, an increasing number of histograms will contain such a 
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small number of events that only a few bins have a single event, while the bins 

corresponding to the target position are empty.  An example is shown in Figure 6.4, 

which illustrates a histogram at a short acquisition time of 0.5 ms when the target is 

placed at a stand-off distance of 8 attenuation lengths.  The figure shows in red the 

timing window where the return from the target is expected, which is empty.  In this 

example, only a few bins have a single event, but they are outside the timing window of 

interest.  In this case, the software performs the cross-correlation which, by default, will 

assign the depth value to the first non-empty bin.  In the case for data shown in Figure 

6.4, this will provide a depth value well outside of the expected range of interest and an 

over-estimation of the intensity. 

 

Figure 6.4.  Example of histogram at the short acquisition time of 0.5 ms 

when the target is placed at a stand-off distance of 8 attenuation lengths.  

The dashed blue lines show the electrical gating window of the detector, 

and the dashed red lines show the time window where the return from the 

target is expected.  The example shows that for short acquisition times 

some of the histograms may contain a low number of events, such that 

only a few bins have a single event and the bins corresponding to the 

target position are empty.  This will lead to a cross-correlation peak 

positioned at the arrival time of the first photon event, causing both an 

erroneous depth and, possibly, an incorrect value for intensity. 
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It is worth noting that this range gating is different from the software gating explained 

in section 5.10, where the histogram was gated before calculating the cross-correlation.  

The next step of the algorithm was calculating the DCT of the median filtered depth 

map keeping only two coefficients.  Once the depth is reconstructed using the DCT 

based model, the aforementioned median filter is performed again in order to further 

smooth the image (Figure 6.3c). 

Figure 6.5 shows the results of the algorithm on the intensity map.  In particular, 

Figure 6.5a) shows the intensity map obtained by summing the events over a range of 

30 bins centred on the highest value of the cross-correlation. By analysing the resulting 

reconstructed depth profile, pixels within a user-defined depth range are used to select 

the corresponding pixels in the intensity map on which to perform the same algorithm.  

Then the steps described previously are followed: the 3 × 3 neighbourhood median filter 

is performed on the intensity map (Figure 6.5b), the result is used to apply the DCT 

based model, and the median filter is applied once again (Figure 6.5c). 

 
Figure 6.5.  Intensity map of a 200 × 125 pixel scan of the plastic pipe 

target, performed in water with 0.012% of Maalox, equivalent to a 

stand-off distance of 8 attenuation lengths.  An extracted 5 ms 

acquisition time per pixel was used, and an average optical power of 

640 μW at the operational wavelength λ = 690 nm.  The figure shows 

three different steps of the algorithm: (a) the intensity map obtained by 

summing the number of counts over 30 bins range centred on the highest 

value of the cross-correlation; (b) the intensity map obtained by 

selecting the pixels with the appropriate depth range and then median 

filtered over 8 neighbouring pixels; (c) the intensity map obtained by 

applying the DCT based model and a further application of the median 

filter. 
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From the results, it can be seen that the depth is reconstructed well, preserving 

millimetre sized features of the target.  However, only the shape of the target can be 

obtained from the intensity map, mainly because of the low SNR in this case.  It is 

important to note that this method permitted a reduction in the overall acquisition time 

from approximately 20 minutes to 2 minutes, showing how spatial correlations can be 

used to improve the results of scans with shorter acquisition times. 

In order to further reduce the overall acquisition time, the same algorithm was applied 

to a 240 × 240 pixel scan of a section of the plastic pipe target placed at a stand-off 

distance of 8 attenuation lengths.  The scan was performed using a higher value of 

average optical power of 2.6 mW, and an acquisition time per pixel of 30 ms.  A per-

pixel acquisition time of 0.5 ms was then extracted from the original scan data, meaning 

an overall acquisition time of less than 1 minute.  The results on the depth and the 

intensity are reported in Figure 6.6 and Figure 6.7, respectively. 

 
Figure 6.6.  Depth map of a 240 × 240 pixel scan of the plastic pipe 

target, performed in water with 0.012% of Maalox, equivalent to a 

stand-off distance of 8 attenuation lengths.  An extracted 0.5 ms 

acquisition time per pixel was used, with an average optical power of 

2.6 mW.  The figure shows (a) the depth map obtained using the pixel-

wise cross-correlation approach, then (b) median filtered over 8 

neighbouring pixels, and (c) after applying the DCT based model and 

again the median filter. 
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Figure 6.7.  Intensity map of a 240 × 240 pixel scan of the plastic pipe 

target, performed in water with 0.012% of Maalox, equivalent to a 

stand-off distance of 8 attenuation lengths.  An extracted 0.5 ms 

acquisition time per pixel was used, with an average optical power of 

2.6 mW.  The figure shows three different steps of the algorithm: (a) the 

intensity map obtained by summing the number of counts over a 30 bin 

range centred on the highest value of the pixel-wise cross-correlation; 

(b) the intensity map obtained by selecting the pixels with the 

appropriate depth range and then median filtered over 8 neighbouring 

pixels; (c) the intensity map obtained by applying the DCT based model 

and again the median filter. 

The results show that using a higher average optical power allows the reconstruction of 

both depth and intensity, maintaining most of the details of the target whilst 

significantly reducing the overall acquisition time.  To examine this further, a shorter 

acquisition time of 0.1 ms per pixel was extracted from the same scan data of Figure 

6.6.  The results obtained with the DCT based algorithm are shown in Figure 6.8 for the 

depth and in Figure 6.9 for the intensity. Due to the low level of returns, the pixel-wise 

cross-correlation approach is not able to estimate the depth for some of the pixels.  This 

lack of information does not permit detailed reconstruction of the image with the DCT 

based method described in this section. However, the shape of the target can be 

recognised in both the depth and intensity maps reconstructed from the DCT based 

approach, whilst the pixel-wise cross-correlation approach is significantly less 

successful in reconstructing the intensity map, in particular.  
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Figure 6.8.  Depth map of a 240 × 240 pixel scan of the plastic pipe 

target, performed in water with 0.012% of Maalox, equivalent to a 

stand-off distance of 8 attenuation lengths.  An extracted 0.1 ms 

acquisition time per pixel was used, with an average optical power of 

2.6 mW.  The figure shows (a) the depth map obtained using the pixel-

wise cross-correlation approach, (b) then median filtered over 8 

neighbouring pixels, and (c) after applying the DCT based model and 

again the median filter. 

 
Figure 6.9.  Intensity map of a 240 × 240 pixel scan of the plastic pipe 

target, performed in water with 0.012% of Maalox, equivalent to a 

stand-off distance of 8 attenuation lengths.  An extracted 0.1 ms 

acquisition time per pixel was used, with an average optical power of 

2.6 mW.  The figure shows three different steps of the algorithm: (a) the 

intensity map obtained by summing the number of counts over a 30 bin 

range centred on the highest value of the cross-correlation; (b) the 

intensity map obtained by selecting the pixels with the appropriate depth 

range and then median filtered over 8 neighbouring pixels; (c) the 

intensity map obtained by applying the DCT based model and again the 

median filter. 
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A figure of merit describing a comparison between a reconstructed image and a 

reference image is the reconstruction-signal-to-noise-ratio (RSNR), defined as [3] 

 Equation 6.3 

 where m is the reference image,  is the reconstructed image, and  is the norm 

given by , where  is the transpose of m.  In the case of the proposed DCT 

based model, the RSNR was evaluated for several extracted acquisition times in order to 

perform a quantitative comparison between the reconstructed depth images at different 

acquisition times and a reference depth image.  The scan considered for the comparison 

was the same used to obtain the results shown in Figure 6.6 and Figure 6.8.  Due to the 

modifications applied to the depth map over several steps of the algorithm, it was only 

possible to compare the DCT depth images with a reference image in the same format.  

Therefore, the model was applied to the depth map with the longest acquisition time 

(t = 30 ms acquisition time per pixel) and the resulting DCT depth image was used as 

reference in Equation 6.3.  

Figure 6.10 shows the RSNR evaluated for a range of acquisition times, varying from 

0.01 to 1 ms acquisition time per pixel.  As expected, the graph illustrates that the 

RSNR lowers as the acquisition time is reduced, in particular for acquisition times per 

pixel shorter than 0.05 ms.  

2

10 2
10log

ˆ

m
RSNR

m m

 
 
  

m̂
2

m

Tm m Tm



171 

 

 

Figure 6.10.  RSNR versus acquisition time comparing the DCT depth 

images at short acquisition time per pixel with the DCT depth obtained 

at 30 ms acquisition time per pixel.  

Table 6.1 summarises the image quality as a function of acquisition time.  Table 6.1 

shows the DCT depth images as a function of acquisition time per pixel, the frame time, 

RSNR, and average detected photon events per pixel.  From Table 6.1, it is important to 

note that the use of the DCT based model for image reconstruction allows the reduction 

of the overall acquisition time from approximately 30 minutes to few seconds, for 

example a 0.1 ms acquisition time per pixel means an overall acquisition time of 

approximately 6 seconds.  In order to further reduce the time needed to perform the 

scan, a different pixel format can be selected.  For example, a pixel format of 

120 × 120 with an acquisition time per pixel of 0.1 ms leads to an overall acquisition 

time of 1.4 seconds, sufficiently short to allow implementation in a number of real 

underwater application scenarios. 
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Table 6.1.  The first column of the table shows the acquisition time per 

pixel. A 30 ms per pixel acquisition time was used to perform the scan of 

the plastic pipe target placed at a stand-off distance of 8 attenuation 

lengths, with an average optical power of 2.6 mW.  The scans at shorter 

acquisition times were extracted by software from the scan with longest 

acquisition time (30 ms). The second column shows the overall 

acquisition time for each scan. The third column shows the 

reconstruction signal to noise ratio, obtained comparing the DCT depth 

map at each acquisition time with the DCT depth map obtained at 30 ms 

acquisition time per pixel (Figure 6.10).  The fourth column shows the 

average number of photon events per pixel used to obtain the DCT depth 

map images shown in the last column. 
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Table 6.1 shows also the average number of photon events per pixel needed to obtain 

the DCT depth images in the last column.  As stated above, the DCT was calculated 

from a starting point of depth data obtained with the cross-correlation approach and then 

restricted to a user-defined depth range to eliminate some of the depth results created by 

spurious scatters.  In order to estimate the average number of events per pixel for each 

image, the same depth range was selected also in the DCT depth map.  This allowed the 

removal of depth results due to scattering events that occur in pixels corresponding to 

optical field positions not occupied by the plastic pipe target.  In the case of the results 

shown in Table 6.1, the depth range used was 4 cm.  The use of this depth range 

allowed the selection of pixels with depth in the range of interest and in the area 

corresponding to the plastic pipe.  As an example, the selection process is shown in 

Figure 6.11 for the case of 0.1 ms acquisition time, extracted from the scan discussed in 

Table 6.1 (performed using 2.6 mW average optical power, 240 × 240 pixel format, at a 

stand-off distance of 8 attenuation lengths).  The same user-defined depth range is 

selected in the depth map obtained with the cross-correlation approach (Figure 6.11a) 

and the DCT depth map (Figure 6.11b).  Figure 6.11c) shows in yellow the pixel 

selected to be included in the calculation of the average number of photon events per 

pixel. 

 

Figure 6.11.  Example of pixel selection process.  The acquisition time 

per pixel of the example is 0.1 ms, the same scan discussed in Figure 6.8.  

The same user-defined depth range is selected on (a) the depth map 

obtained with the cross-correlation approach to eliminate some of the 

depths created by spurious scatters, and (b) the DCT depth map to select 

the pixels corresponding to the target area.  The pixel selected to be 

included in the calculation of the average number of photon events per 

pixel are shown in yellow in figure c). 
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The pixels that contain the required depth information are then selected in the intensity 

map, and are summed in terms of the number of pixel events in each cross-correlation 

(as before, summing the events over a 30 bins range centred in the highest value of the 

cross-correlation).  The sum of all these events divided by the number of selected pixels 

gave an estimation of the average number of events per pixel.  However, this sum still 

included photons reflected from the target as well as back-scattered and multiple 

scattered photons.  The overall effect is that the recorded number of events did not scale 

linearly with acquisition time.   

It is interesting to note that at 0.5 ms acquisition time per pixel only 2.79 average events 

per pixel are needed to obtain the corresponding DCT depth image, meaning that only 2 

events per pixel are sufficient to maintain millimetre details of the target.  At 0.1 ms 

acquisition time per pixel, the corresponding DCT image was obtained with only 0.86 

average events per pixel, although fewer of the millimetre details of the target can be 

resolved. 

The same algorithm was applied to depth and intensity maps with short extracted 

acquisition time per pixel of scans performed with the target placed at 9 attenuation 

lengths.  In this case, the high level of scattering meant that noisy pixels contribute to 

the reconstruction of the image, making the algorithm less successful.  

Two other methods were developed in order to improve the images. One of the models 

is based on a Markov chain Monte Carlo approach and the other on a Coordinate 

Descent Algorithm, and are discussed in the next section. 

6.3. Reflectivity and depth profile restoration from sparse single-photon 

underwater data 

Highly attenuating environments or shorter acquisition times cause a reduction in the 

number of photon events recorded per pixel, making target depth and reflectivity 

estimation an increasingly difficult task.  In this case, advanced signal processing 

techniques can help improve the estimated images for single-photon sparse data.  

Dr. Abderrahim Halimi developed two algorithms to recover the reflectivity and depth 

of the target, as the level of scattering is increased.  The algorithms are based on a 
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hierarchical Bayesian model, which is a statistical model divided into multiple sub-

levels.  Each sub-level introduces an information via a prior distribution, where 

observed parameters can be related to one another to determine higher levels.  All the 

sub-levels are then used to determine the joint posterior distribution through the Bayes’ 

formula [2].  Both algorithms correlated neighbouring pixels of depth and reflectivity 

images obtained with the pixel wise cross correlation approach, assuming that the depth 

and the reflectance vary slightly between two consecutive pixels.  This condition is 

implemented in both algorithms introducing two auxiliary variables, one for the depth 

and the other for the reflectivity.  One algorithm used a Markov Chain Monte Carlo 

(MCMC) method [4] to generate a distribution which approximates the posterior 

distribution that includes appropriate priors, such as the knowledge of the attenuation 

coefficient, the target distance, and the correlation between adjacent pixels.  This 

approach was fully automatic but required a long computational time, since the entire 

posterior distribution was generated for each pixel.  Therefore, a second algorithm was 

developed to deal with this problem. In this case, the algorithm was based on a 

Coordinate Descent Algorithm (CDA) [5], meaning that for each pixel only one value 

of the posterior distribution is generated.  Then, the same priors were used in order to 

optimise the depth and reflectivity information in each pixel and correlate neighbouring 

pixels. This approach greatly reduced the computational times, but it required manual 

intervention for the optimisation.  The details of both algorithms are reported in a jointly 

authored paper [6]. 

The author helped design and solely performed the experiments to validate the 

algorithms, while the analysis was performed by Dr. Abderrahim Halimi.  Therefore, 

the next two sections will describe the experiments and will show some of the results 

obtained with the new algorithms. 

6.3.1. Reflectivity restoration 

Several scans were performed in order to establish the performance of the algorithms in 

restoring the reflectivity of the target in highly scattering environments.  The Spectralon 

targets with 10% and 99% reflectance were placed at a distance of approximately 5 cm 

apart in unfiltered tap water, with the 10% reflectance Spectralon target closer to the 

system, as shown in Figure 6.12.  Due to the different travelling distances in water, the 

return from the 99% reflectance Spectralon target was attenuated more than the return 

from the 10% reflectance Spectralon target.  This means that, increasing the attenuation 
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of the environment, the return from the 99% reflectance Spectralon target decreased 

faster than the return from the other target.  Therefore, several scans of the two 

Spectralon targets were performed for different concentrations of Maalox in unfiltered 

tap water, until the same level of returns was obtained from both targets.  In addition, a 

tank with dimensions of 40 × 25 × 25 cm3 was used in order to minimise the attenuation 

between the first Spectralon target and the system, as an attenuation coefficient of 

approximately α = 15 was needed in order to obtain comparable returns from both 

targets.  The tank and the targets are shown in the photograph in Figure 6.12.  The tank 

was placed at a distance of 1.57 metres from the transceiver unit, as shown 

schematically in Figure 6.13.  The transceiver unit and the detection and acquisition 

hardware used for this investigation were mainly the same as described in section 5.10.  

The only difference was in the objective lens, as in this case an objective lens of 50 mm 

focal length was chosen in order to obtain a uniformly illuminated field of regard (field 

seen in a full scan of the given image). 

 

Figure 6.12.  Photograph of the two Spectralon targets in a small tank 

filled with unfiltered tap water. 
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Figure 6.13.  Schematic of the transceiver unit and glass tank.  

The scans were performed over an area of 50 × 50 mm2, which included half area of 

each Spectralon target.  The pixel format was 150 × 150, with an acquisition time of 

10 ms per pixel, and 670 nW average optical power.  The operational wavelength was λ 

= 690 nm in all cases, despite the level of scattering of the environment.  This is because 

the same operational parameters were needed to validate the algorithms during this 

initial stage.  A list of the main system parameters used for this experiment is reported 

in Table 6.2. 
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Parameter Note 

Targets Spectralon 10% and Spectralon 99% placed 5 cm apart 

Environment Water with varying concentrations of Maalox 

Target Stand-off Distance ~1.66 metres 

Laser System 

 NKT Photonics supercontinuum laser source 

(SuperK EXTREME EXW-12) 

 Source fibre-coupled to AOTF 

Illumination Wavelengths λ = 690 nm  

Laser Repetition Rate 19.5 MHz (Clock for the TCSPC module and the PPG) 

Average Optical Power 

Range 
670 nW 

Pixel format 150 × 150 

Scan area  50 mm × 50 mm 

Acquisition Time Per-Pixel 10 ms 

Data Acquisition Hardware 

HydraHarp 400 by PicoQuant 

 Synchronization rate of ~19.5 MHz 

 Internal sync divider: 8 

 Acquisition mode: T3 mode 

Binning Size 2 ps timing bin width 

Detector 

Silicon Single Photon Avalanche Diode (SPAD)  

 PDM series by Micro Photon Devices (fibre 

receptacle detector) 

 Used in gated mode   

Temporal Response of System ≈ 60 ps at λ = 690 nm 

Objective Lens 

Canon EF 50mm f/1.8 II 

 Focal length: 50 mm 

 F-number: f/4 

Background level Dark conditions in laboratory (~60 cps – detector gated) 

Table 6.2.  Summary of the main system parameters used for the 

experiment described in this section. 

The attenuation of the propagation medium was varied by adding several concentrations 

of Maalox to unfiltered tap water, and the value of the attenuation coefficient α was 

measured before and after each scan.  Five values of the attenuation coefficient were 

investigated:  

 α
1
 = 0.6 (unfiltered tap water) 

 α
2
 = 5.2 (unfiltered tap water with 0.02% of Maalox) 

 α
3
 = 11.3 (unfiltered tap water with 0.05% of Maalox) 

 α
4
 = 14.8 (unfiltered tap water with 0.07% of Maalox) 
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 α
5
 = 17.3 (unfiltered tap water with 0.09% of Maalox) 

The data were analysed with the two developed algorithms and with the 

cross-correlation approach.  For example, Figure 6.14 shows the results for three values 

of the attenuation coefficient α. On the top of the figure, the reflectivity was evaluated 

with the cross-correlation approach.  It can be seen that as the level of scattering 

increases, the reflectivity of the 99% reflectance Spectralon target decreases faster than 

for the other 10% reflectance Spectralon panel, and for high level of scattering the two 

reflectivity levels are approximately the same.  The middle and the bottom of the figure 

show the results obtained with the CDA and MCMC algorithms, respectively.  Both 

models restore the correct value of reflectivity of the two Spectralon targets, by taking 

the attenuation properties of the propagation medium and the distance between the two 

targets into account.  However, this also means that the algorithms are strongly 

dependent on the measured value of the attenuation coefficient, making the reflectivity 

difficult to restore when highly scattering environments are considered.   

 

 

Figure 6.14.  Reflectivity images of 150 × 150 pixel format, 10 ms 

acquisition time per pixel, and average optical power of approximately 

670 nW.  The results were analysed with (top line) the cross-correlation 

approach, (middle line) the CDA algorithm, and (bottom line) the 

MCMC algorithm.  The results are shown for three values of attenuation 

coefficient.  From [6]. 
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The correction performed by the two algorithms is even more evident in Figure 6.15, 

where the average values for each column are shown for the two analytical approaches 

considered, as well with the cross-correlation approach.  From the graph, it can be seen 

how the cross-correlation approach fails to recover the correct values of reflectivity of 

the two targets, while the CDA and MCMC methods allow the restoration of the 

reflectivity of both targets. 

 

Figure 6.15.  Reflectivity lines (150 pixels), representing the average 

calculated over each column, for all the investigated values of the 

attenuation coefficient.  The graph shows the comparison between the 

results obtained with the cross-correlation approach, and the two 

proposed algorithms, CDA and MCMC.  From [6]. 

These results allowed validating the algorithms with the use of two flat targets with 

known nominal reflectance.  However, it is interesting to investigate the case of a 

generic target of unknown reflectivity.  This scenario, with further considerations on the 

depth of the target, is considered in the next section. 

6.3.2. Depth and reflectivity restoration 

The performance of the algorithms was evaluated by performing scans of the plastic 

pipe in unfiltered tap water with several concentrations of Maalox.  The plastic pipe 

target was placed in the 1.75 metres long tank, at a stand-off distance of 1.68 metres in 
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water.  The attenuation of the propagation medium was measured before and after each 

measurement, hence the stand-off distance in attenuation lengths was estimated for each 

scan.  The scans were performed with a pixel format of 100 × 100, 100 ms acquisition 

time per pixel, and the average optical power was adjusted depending on the level of 

scattering.  This means that reference scans were needed in order to compare the scans 

of the plastic pipe target performed at different power levels.  Therefore, the 99% 

reflectance Spectralon target was used to obtain these reference scans, selecting the 

same operational parameters used for the plastic pipe scan.  

In addition, the objective lens of 200 mm focal length was used in order to detect the 

signal from the target up to several attenuation lengths.  However, this came at the cost 

of a brighter area in the centre of the intensity map, due to the limited field of regard of 

the system.  Since spatial correlations were performed to restore the reflectivity of the 

target, a uniformly illuminated area was requested in order to validate the algorithms.  

Therefore, the scanned area was reduced to 20 × 20 mm2, and only a small detailed 

portion of the plastic pipe target was scanned, as shown in Figure 6.16.  

 

Figure 6.16.  Photograph of the plastic pipe target used for the 

experiments.  The portion of the target scanned is highlighted by the red 

square. 

The experimental setup used for these measurements is the same as described in 

section 5.10, and the list of the main parameters used is reported in Table 6.3. 
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Parameter Note 

Target Plastic pipe  

Environment 
 Unfiltered tap water 

 Unfiltered tap water with Maalox 

Target Stand-off Distance ~ 1.68 metres in water 

Laser System 

 NKT Photonics supercontinuum laser source 

(SuperK EXTREME EXW-12) 

 Source fibre-coupled to AOTF 

Illumination Wavelengths 690 nm  

Laser Repetition Rate 19.5 MHz (Clock for the TCSPC module and the PPG) 

Average Optical Power 

Range 
0.028 μW to 800 μW 

Illumination Beam 

Diameter at Target 
~ 200 μm 

Pixel format 100 × 100 

Acquisition Time Per-

Pixel 
100 ms 

Scan area 20 mm × 20 mm 

Data Acquisition 

Hardware 

HydraHarp 400 by PicoQuant 

 Synchronization rate of ~19.5 MHz 

 Internal sync divider: 8 

 Acquisition mode: T3 mode 

Binning Size 2 ps timing bin width 

Detector 

Silicon Single Photon Avalanche Diode (SPAD)  

 PDM series by Micro Photon Devices (fibre receptacle 

detector) 

 Used in gated mode   

Temporal Response of 

System 
̴ 60 ps at λ = 690 nm 

Objective Lens 

Canon EF 200mm f/2.8L II USM 

 Focal length: 200 mm 

 F-number: f/2.8 

Background level Lab under dark conditions (~ 60 cps – detector gated) 

Table 6.3.  Summary of the main system parameters used for the 

experiments described in this section. 

The depth of the target was initially estimated with the pixel-wise cross-correlation 

approach, and the results are shown in the top line of Figure 6.17.  The results show that 

the image quality degrades for highly scattering environments, where a number of 
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pixels have insufficient data to provide a depth result. At a stand-off distance equivalent 

to 9 attenuation lengths, the target is barely visible due to the high level of background. 

Then, the analysis was performed using the two proposed algorithms, and the results are 

shown in Figure 6.17.  The middle line of the figure reports the results obtained with the 

CDA algorithm, while the bottom line shows the results obtained with the MCMC 

algorithm.  In both cases, the algorithms were able to remove the noise when the target 

is placed at 8 attenuation lengths, greatly improving the result of the scan.  However, at 

the highest scattering level, the CDA algorithm over-smoothes the target, making it 

difficult to recognise the target, although some details are successfully recovered.  The 

MCMC algorithm maintains the correct contour of the target, but it came at the cost of 

more noise in the image when compared to the CDA result. 

 

Figure 6.17.  Depth of the target estimated with the pixel-wise 

cross-correlation approach (top line), the CDA algorithm (middle line), 

and the MCMC algorithm (bottom line). 

Figure 6.18 shows the RSNR comparing the depth maps in Figure 6.17 with the depth 

map obtained with the MCMC algorithm in clear water.  As expected, the RSNR 

decreases as the scattering level increases.  However, when the cross-correlation 

approach is used, the RSNR is significantly less at high attenuation than the RSNR for 

the CDA and MCMC approaches.  
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Figure 6.18.  RSNR versus attenuation lengths comparing the depth 

images shown in Figure 6.17 with the depth map obtained in unfiltered 

tap water with the corresponding algorithm. 

Figure 6.19 shows the reflectivity of the plastic pipe target estimated with the pixel-wise 

cross-correlation approach (top line), the CDA algorithm (middle line), and the MCMC 

algorithm (bottom line).  The figure shows how the cross-correlation approach fails in 

providing the correct reflectivity of the target, making it not possible to discern the 

target within the scanned area when the scattering agent is added to unfiltered tap water.  

However, the proposed algorithms allow for the restoration of the reflectivity of the 

plastic pipe up to distances of approximately 7 attenuation lengths.  When the target is 

at a stand-off distance equivalent to 8 attenuation lengths, the background level strongly 

reduces the SNR, thus limiting the performance of the algorithms.  As the scattering 

level further increases, both algorithms are unable to restore the reflectivity of the 

target.  It is important to also note that the image processing algorithms are strongly 

dependent on the measurement of the attenuation coefficient α, which is difficult to 

achieve in highly scattering environments. This, in conjunction with the low SNR, 

means that the algorithms overestimate the reflectivity at 8 attenuation lengths, and are 

unable to recover the reflectivity of the target at the stand-off distance equivalent to 

9 attenuation lengths. 
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Figure 6.19.  Reflectivity of the target estimated with the pixel wise cross 

correlation approach (top line), the CDA algorithm (middle line), and 

the MCMC algorithm (bottom line). 

These results showed that the depth and reflectivity of the target can be successfully 

restored up to distances equivalent to more than 8 attenuation lengths.  However, this 

was at the cost of a long acquisition time per pixel, and a study on the performance of 

the algorithms in photon-starved conditions is needed in order to establish the 

limitations of the models. Dr. Abderrahim Halimi performed this investigation under 

similar conditions [6], showing that the algorithms have an acceptable performance 

(meaning a reconstruction signal-to-noise-ratio above a limit selected by the user) when 

at least 30% of the pixels are not empty.  Ideally, this means that the acquisition time 

can be reduced to few microseconds per pixel when the target is placed in clear water.  

As the attenuation of the propagation medium is increased, longer acquisition times per 

pixel should be considered accordingly. 

6.4. Conclusions 

Three algorithms were developed in order to improve the results obtained at stand-off 

distances equivalent to several attenuation lengths, and investigate a number of 

approaches which aim to reduce the overall acquisition time of a scan. 

The first algorithm is based on the sparseness of the Discrete Cosine Transformation 

(DCT) coefficients.  In general, the DCT based method is often able to reconstruct a 
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sequence with the use of only few coefficients. In this chapter, the DCT based method 

was applied on depth and intensity images obtained with short acquisition times per 

pixel and processed using the cross-correlation approach.  The DCT based model was 

able to successfully reconstruct the images, allowing the use of short acquisition times 

per pixel when the target was placed at a stand-off distance equivalent to 8 attenuation 

lengths.  With this technique, the overall acquisition time in highly scattering 

environments was reduced from almost 30 minutes to approximately few seconds, using 

an average optical power of 2.6 mW and a 240 × 240 pixel format.  A smaller pixel 

format can be selected in order to further reduce the overall acquisition time, providing 

a significant contribution to the practicality of this approach.  Alternatively, a different 

scan pattern can be chosen instead of a raster scan.  For example, a set of pixels can be 

chosen for the system to scan, using a randomly generated pixel-mask created in 

software.  Subsequently, the DCT based model can be used to reconstruct the depth and 

intensity maps.  This technique, in conjunction with a low pixel format and a short 

acquisition time per pixel, can drastically reduce the overall acquisition time for scans in 

clear or in low scattering levels of water.  The same scanning approach can also be used 

if the target is placed in a highly scattering environment.  However, in this case it is 

possible that the cross-correlation approach is not able to evaluate the depth for several 

pixels.  This means that the minimum number of pixels included in the mask will be 

strongly limited by the presence of empty pixels resulting from the low SNR.  

Therefore, it is necessary to investigate the percentage of non-empty pixels needed for 

the model to reconstruct the image.  This investigation is also needed in order to 

evaluate the performance of the model depending on the number of pixels in the mask 

used, acquisition time per pixel, average optical power, and attenuation of the 

propagation medium.  

When the target was placed at 9 attenuation lengths, the DCT based model was no 

longer able to reconstruct the images due to the high level of scattering in the water.  

This greatly reduced the SNR and caused the cross-correlation approach to be 

performed over the wrong peak in the histogram.  In this case, the model included these 

noisy events in the reconstruction, causing the target to not be discernible in both the 

depth and intensity maps. 

In order to investigate other analysis techniques, Dr. Abderrahim Halimi developed two 

algorithms based on a Bayesian approach.  The first algorithm used a Markov Chain 



187 

 

Monte Carlo (MCMC) approach to generate samples distributed according to the 

posterior distribution.  The method assumes prior knowledge about the attenuation of 

the environment and spatial correlation between neighbouring pixels.  The algorithm 

was able to properly restore the depth of the plastic pipe target up to a stand-off distance 

equivalent to 8 attenuation lengths.  When the target was placed at a stand-off distance 

equivalent to 9 attenuation lengths, the algorithm successfully preserved the contours of 

the target, although retaining some noise in the image.  

As the algorithm simulated the entire posterior distribution, the computational times 

were of the order of approximately 500 seconds, using MATLAB R2015a on a 

computer with Intel(R) Core(TM) i7- 4790 CPU@3.60GHz and 32GB RAM.  

Therefore, another algorithm was developed in order to reduce the computational time.  

This second algorithm was based on a Coordinate Descent Algorithm (CDA), which 

generated only one value of the posterior distribution, including the same priors as the 

MCMC algorithm.  In this case, the depth was well simulated for stand-off distances of 

up to 8 attenuation lengths, while at 9 attenuation lengths the algorithm over-smoothed 

the image.  However, the computational times were reduced to approximately 

20 seconds, successfully fulfilling the task. 

Both algorithms were used to restore the reflectance of the scanned target.  A 

preliminary test was performed processing the results obtained by scanning two 

Spectralon targets in highly scattering environments.  The results showed that both 

algorithms restored the reflectance of the two targets, as long as the attenuation of the 

environment was known.  The same analysis was performed with scans of the plastic 

pipe target, showing that both algorithms were able to restore the reflectivity of the 

target at stand-off distances equivalent up to 7 attenuation lengths.  In highly attenuating 

environments, the estimation of the attenuation coefficient was a challenging task due to 

the high level of scattering.  As the performance of the algorithms was strongly affected 

by the estimation of the attenuation coefficient, the target reflectivity was difficult to 

evaluate at longer attenuation lengths.  This resulted in not achieving an image of the 

target at 9 attenuation lengths with the proposed methods. 

It will be interesting to investigate the prospects of a new, alternative algorithm, which 

ignores spurious returns in the analysis.  This should allow for discrimination between 



188 

 

the target and scattering events, thus reducing the effect of scattering and improving the 

image. 
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Chapter 7 

LiDAR equation based model 

7.1. Introduction 

As seen in Chapter 5, the performance of the system described in this Thesis depends on 

several factors, including average optical power, attenuation of optical components, and 

attenuation of the environment, which all affect the number of events detected.  It is 

often useful to be able to consider the expected performance of an experimental system 

and compare the achieved results with the projected outcomes.  This chapter presents a 

theoretical model that considers fundamental characteristics of the system when 

addressing a single pixel in order to provide an evaluation of the performance of the 

experimental scanning system.  The simulations performed to evaluate the experimental 

system will be presented, as well as a comparison with experimental data. 

7.2. Theoretical modelling 

A model based on a photon-counting version of the LiDAR range equation [1] was 

developed to evaluate the system’s time-of-flight ranging performance in water.  

The most general form of the LiDAR range equation can be written as [1] 

        P R KG R R T R  Equation 7.1 

where P is the power received from a distance R, which is dependent on the 

performance of the LiDAR system K, the range dependent geometrical factor G(R), the 

backscatter coefficient β(R), and the transmission term T(R).  Therefore, several 

parameters that contribute to the number of counts in the peak were included in the 

developed model.  Intrinsic parameters consider the attenuation of each optical element, 

detector response, and operational parameters.  Extrinsic parameters take in account the 

environmental attenuation, the stand-off distance of the target, and its optical properties.  

The following sections will consider how this general form can be adapted to apply to 

the system presented in this Thesis.  



190 

 

The model evaluates the number of photons in the bin with the highest count in the 

return peak from the target.  The number of counts is strongly influenced by each of 

these parameters, hence any modification to the scanning system needs to be included in 

the model.  The results presented in this chapter were obtained by modelling the system 

described in sections 5.10 and 5.11.  However, it is important to note that the model 

gives an evaluation of the system performance for an optimised single pixel, and not for 

the entire scan – which may contain several sub-optimal pixels – therefore it is not 

possible to assume a full image will perform in a linearly scaled manner proportional to 

the number of pixels. 

7.2.1. Average optical power and wavelength 

The number of counts is linearly dependent on the average optical power used P
Out

. 

Given the wavelength of the incident light, the average photon emission rate can be 

estimated from  

OutP
r

hc



     Equation 7.2 

where h is Planck’s constant and c is the speed of light in vacuo. 

7.2.2. Acquisition time 

The acquisition time per-pixel, t
Dwell

, is the time spent by the system staring at each 

pixel to record the measurement.  When a scan is performed, a good approximation for 

the overall acquisition time t
Scan

 is the acquisition time per-pixel multiplied by the 

number of pixels N.  This is an approximation because it does not take in account the 

time the system needs to move the mirrors from one pixel to the next one, which is of 

the order of t
M

 ~ 150 μs using the current galvo-mirror configuration [2].  Therefore, in 

general the overall acquisition time for a scan can be expressed as 

  Scan Dwell Mt N t t   Equation 7.3 
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7.2.3. Target reflectance 

The incoming light can be absorbed, specularly reflected, transmitted and scattered by 

the target.  The target reflectance ρ quantifies the percentage of light that is scattered on 

reflection from the target [3]. 

7.2.4. Geometric factor 

The system collects just a fraction of the light scattered by the target, so a geometric 

factor needs to be included in the equation.  The intensity I
C
 collected by an objective 

lens of area A is the ratio  

24

C Lens

S

I A

I R
     Equation 7.4 

of the intensity I
S
 scattered in the solid angle 4π steradians by a target at a stand-off 

distance R [1].  The model is calibrated using experimental returns from the Spectralon 

diffuse reflecting target, described in section 5.8.1.  Almost all the incoming light is 

scattered on reflection, with no light transmitted.  Hence only half the overall solid 

angle possible has to be considered and, consequently, the factor of 4 in the 

denominator is reduced to 2.  In the experimental setup used for the results presented in 

this thesis, the light travels a distance d in air, from the objective lens to the first end of 

the tank.  Then it travels a distance r in water, from the first end of the tank to the target.  

Because of the change in the refractive index of the two different media, the distance to 

consider in the geometric factor is [4] 

R d nr       Equation 7.5 

where n is the refractive index of water.  Hence the geometric factor to include in the 

photon-counting version of the LiDAR range equation is  

 
2

2

C Lens

S

I A

I d nr



              Equation 7.6 
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7.2.5. Environment attenuation 

As discussed in Chapter 4, light is strongly attenuated in water by absorption and 

scattering.  It is assumed that the medium is homogeneous, although in a field trial 

situation this may not be the case.  In accordance with Equation 4.2, the attenuation of 

water C
W

 can be included in the model through the exponential term 

2 r

WC e       Equation 7.7 

where 2r is the round-trip distance that the light travels in water, and α is the attenuation 

coefficient. 

7.2.6. Internal attenuation 

The internal system attenuation coefficient C
Int

 considers the losses due to the optical 

elements, couplings and possible misalignments of the system. The attenuation 

coefficient was determined as the ratio between the average optical power after and 

before each optical component.  
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Figure 7.1.  Plan view of the transceiver unit.  The path in red indicates 

the transmit channel, and the path in orange the receive channel.  The 

laser source and the detector were fibre-coupled to the transceiver unit 

via fibre collimation packages (FCT and FCR, respectively).  The two 

channels are overlapped by the polarising beam splitter (PBS), and the 

common channel is shown by the blue path.  The common channel 

comprises the two galvanometer mirrors (GM1 and GM2), three relay 

lenses (RL1-RL3), and the camera objective lens (OBJ). 

To measure the attenuation coefficient of the transmit channel, the supercontinuum 

system was fibre-coupled to the collimation package FCT shown in Figure 7.1, and 

power readings were performed before and after each optical element along this channel 

(red and blue path).  To determine the attenuation due to the objective lens, the light 

was focused on a target at a stand-off distance of approximately 2 metres, and the 

attenuation was calculated as the ratio between the optical power at the target and the 

power just before the objective lens. Then, the supercontinuum system was 

fibre-coupled to the collimation package of the receive channel, FCR (Figure 7.1).  In 

this case, the attenuation was determined for the path in blue and the path in orange, as 

shown in Figure 7.1. 
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Table 7.1 reports typical attenuation values due to the optical elements in the transceiver 

unit for the wavelengths considered in this Thesis. An additional attenuation is 

considered for the polarising beam splitter in the receive channel, since the polarisation 

of the light returning via the receive channel is likely to be unpolarised.  Hence, an 

average attenuation of 3 dB was added into the model. 

Wavelength (nm) 
Transmit Channel 
Attenuation (dB) 

Receive Channel 
Attenuation (dB) 

525 1.9 2.2 + 3 

531 1.9 2.3 + 3 

565 2.2 2.4 + 3 

645 2.3 2.5 + 3 

670 2.3 2.5 + 3 

690 2.2 2.4 + 3 

Table 7.1.  Attenuation of transmit and receive channels, including the 

attenuation of the optical components in the common channel. 

7.2.7. Temporal response coefficient 

The temporal response coefficient C
Det

 takes in account the instrumental response of the 

system.  This coefficient was determined from single pixel measurements performed on 

the Spectralon target.  The return peak from the target was studied and the temporal 

response coefficient was determined as the ratio between the number of counts in the 

highest bin in the peak and the total number of photons in the peak.  

7.2.8. Detector efficiency 

The detector efficiency η has to be included in the model since it introduces additional 

attenuation to the light before being detected.  Details about the detection efficiency of 

the detector were already provided in Chapter 3 and Chapter 5, therefore only the graph 

of the detection efficiency of the thin junction Si-SPAD by Micro Photon Devices 

versus the wavelength is shown here.  
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Figure 7.2.  Photon detection efficiency of the Si-SPAD by Micro Photon 

Devices versus the wavelength.  From [5]. 

7.2.9. Equation 

The parameters described in the previous subsections provided the information needed 

to build the photon-counting equivalent of the LiDAR range equation, as in the form of 

Equation 7.1.  The intrinsic parameters of the LiDAR system (K) include 

 The average photon emission rate OutP
r

hc



  

 The acquisition time t
Dwell

 

 The internal attenuation C
Int

 

 The detector efficiency η and the temporal response of the detector C
Det

 

The geometrical factor G(R) is described by Equation 7.6, as 
2

( )
2

LensA
G R

R




 .  While the 

transmission term is 2( ) rT R e  . 

  



196 

 

Considering all these parameters, the photon-counting equivalent of the LiDAR range 

equation can be written as 

2

22

rOut Lens
p Dwell Int Det

P A
n t e C C

hc R

 




    Equation 7.8 

where np is the number of photons in the bin with the highest count in the return peak, 

as shown in red in Figure 7.3. 

 

Figure 7.3.  Example of histogram showing in red the number of photons 

in the highest bin in the peak, np.  An arbitrary zero was chosen for the 

displayed time-scale. 

  



197 

 

7.2.10.  Background noise 

The background noise level was measured for every optical configuration and 

propagation medium selected.  Therefore, several histograms with different integration 

times were recorded with the detector in free running mode and the laser switched off.  

Then, the model evaluated the average number of background counts per bin n
b
 as [6]  

Reb Dwell p Binn t Bf t      Equation 7.9 

where B is the total number of background counts per second, f
Rep

 the laser repetition 

rate, t
Bin

 the bin size. 

7.2.11. Signal to noise ratio 

The number of photons in the highest bin in peak and the average number of 

background counts per bin were used to estimate the signal-to-noise ratio (SNR) as [7] 

SNR
p

p b

n

n n



     Equation 7.10 

7.2.12. Minimum SNR value 

By specifying the parameters used in the experiment and the main characteristics of the 

system, the model calculates the SNR for several stand-off distances.  Every SNR value 

is compared to a minimum required SNR (SNRmin), in order to evaluate the achievable 

performance of the system underwater.  The SNRmin was obtained studying histograms 

of pixels with a very low return from the target, and a threshold of SNRmin=1.4 was 

determined empirically using this simple pixel-wise processing approach.  Other signal 

and image processing approaches could yield a lower effective SNRmin value, but this 

value gives an estimate for the cross-correlation approach used to obtain the depth 

profiles reported in this Thesis. 

7.3. Simulations 

Several simulations were carried out with this model.  In particular, different average 

optical power levels were considered in order to evaluate the maximum achievable 

distance for different environments.  The wavelength was varied in accordance with the 
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environment considered, in order that the optimum wavelength for transmission was 

selected in each case, as reported in Table 7.2. It is important to note that the 

simulations for low and medium scattering environments were performed with the 

system described in section 5.10, while the system described in section 5.11 was used 

for the simulations performed in highly scattering environments. The difference 

between the two system configurations relied on the use of different relay lenses.  When 

highly scattering environments were investigated (refer to section 5.11), the relay lenses 

were chosen with a higher transmittance (refer to section 5.10).  In addition, the 

alignment of the transceiver unit was performed at the wavelength λ = 690 nm, thus the 

optimum wavelength experimentally determined for highly scattering environments.  

 
A

Lens
 π0.0352 

ρ 99% 

Environment Wavelength α (m-1) C
Int (dB) η (%) 

C
Det  (MPD -

Fibre-receptacle) 

C
Det

 (MPD - 

Pigtailed) 

Unfiltered tap 

water 
525 nm 0.14 5.19 48.30 - 0.10 

Water with 

0.003% Maalox 
585 nm 1.44 5.40 45.97 - 0.11 

Water with 0.01% 

Maalox 
690 nm 3.55 5.42 29.34 0.02 0.12 

Water with 

0.0126% Maalox 
690 nm 4.59 4.87 29.34 0.02 - 

Water with 

0.016% Maalox 
690 nm 5.57 4.87 29.34 0.02 - 

Table 7.2.  Summary of fixed parameters used for the simulations.  It is 

worth noting that two different optical configurations were considered 

here. 

Figure 7.4 shows the achievable distance versus the power in unfiltered tap water for 

four different dwell times, 0.5 ms, 1 ms, 10 ms, and 100 ms.  While Figure 7.5 shows 

the simulation results for water with 0.003% and water with 0.01% of Maalox.  In this 

case, the achievable distance versus the power is simulated for two dwell times, 

10 ms and 100 ms, for both environments. 
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Figure 7.4.  The graph shows the results obtained from the LiDAR 

equation simulations.  The maximum achievable range is evaluated for 

different average optical powers in unfiltered tap water at 0.5 ms, 1 ms, 

10 ms, and 100 ms acquisition times, and it is considered as the point 

when the SNR = 1.4.  

 

Figure 7.5.  Calculated maximum achievable range versus the average 

optical power for water with 0.003% and 0.01% Maalox at two different 

acquisition times, 10ms and 100ms. 



200 

 

Because of the exponential attenuation of light in water, increasing the average power 

above 80 mW corresponds to only a relatively small increase in the maximum 

achievable scanning range.  This behaviour can be observed in Figures 7.7 and 7.8 for 

all the water samples considered, and it is evident that the increment in the achievable 

scanning range decreases as the attenuation length decreases.  The simulation results 

also show that a significant improvement in the achievable range can be obtained by 

increasing the acquisition time per pixel, as expected.  The same considerations can be 

made when the maximum achievable range versus the power is simulated for water with 

0.0126% of Maalox (as shown in Figure 7.6) and water with 0.016% of Maalox (as 

shown in Figure 7.7).  

 

Figure 7.6.  Calculated maximum achievable range is evaluated for 

different average optical powers in water with 0.0126% at 0.5 ms, 1 ms, 

10 ms, and 100 ms acquisition times. 
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Figure 7.7.  Calculated maximum achievable range is evaluated for 

different average optical powers in water with 0.016% at 0.5 ms, 1 ms, 

10 ms, and 100 ms acquisition times. 

Because the average optical power level used in the experiments reported in this Thesis 

was limited mostly to the sub-milliwatt regime, the simulations were carried out again 

in the optical power range from 0 to 1000 μW. The results are reported in 

Figures 7.8 and 7.9. 
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Figure 7.8.  The calculated maximum achievable range is evaluated for 

different low levels average optical powers in clear water at 0.5 ms, 

1 ms, 10 ms, and 100 ms acquisition times. 

 

Figure 7.9.  Calculated maximum achievable range evaluated for 

different low levels average optical powers in (a) clear water with 0.01% 

and (b) 0.0126% of Maalox at 1 ms, 10 ms, and 100 ms acquisition 

times. 

7.4. Comparison with experimental results 

The trend of the model was in close correlation with experimental results observed in 

the laboratory conditions described in this Thesis; i.e. using a range of different 

scattering environments, and short ranges limited by the dimensions of the tank.  

Figure 7.10 reports the comparison between the number of counts in the highest bin in 
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the peak predicted by the model and the number of counts obtained in the experiments 

for different acquisition times.  Single pixel measurements were performed on the 

Spectralon target of 99% nominal reflectance placed at 1.7 m stand-off distance, in 

unfiltered tap water, using an average optical power of 0.25 μW at the wavelength 

 = 690 nm, and in dark lab conditions (approximately 60 counts per second, in gated 

mode).  A camera objective lens of 200 mm focal length was used to focus the 

transmitted light on the target, and the focus was adjusted before starting the experiment 

in order to maintain the same focus position for every measurement.  

 

Figure 7.10.  Comparison between model predictions (red dots) of the 

counts in the highest bin in the peak and experimental results (black 

squares) for different acquisition times.  A camera objective lens of 

200 mm focal lens was used for these measurements.  The target was the 

test reference Spectralon target of 99% of reflectance, placed at a stand-

off distance of approximately 1.7 m.  For each measurement, an 

acquisition time of 100 s, the wavelength  = 690 nm, and 0.25 μW of 

average optical power were used. 

Another two sets of measurements were performed using a camera objective lens of 

100 mm focal length mounted on the transceiver unit, in order to compare the model 

predictions with the experimental results for several concentrations of Maalox and 
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different stand-off distances.  Figure 7.11 reports the first set of measurements and the 

model predictions for different concentrations of Maalox.  Single pixel measurements 

were performed on the Spectralon target of 99% nominal reflectance placed at 1.7 m 

stand-off distance, using 100 s acquisition time, an average optical power of 60 μW at 

the wavelength  = 690 nm, and in dark lab conditions.  As before, the focus was the 

same for each measurement. 

 

Figure 7.11.  Comparison between model predictions (red dots) of the 

counts in the highest bin in the peak and experimental results (black 

squares) for different concentration of Maalox.  A camera objective lens 

of 100 mm focal lens was used for these measurements.  The target was 

the test reference Spectralon target of 99% reflectance, placed at a 

stand-off distance of approximately 1.7 m.  For each measurement, an 

acquisition time of 100 s and 60 μW of average optical power at the 

wavelength  = 690 nm were used. 

Figure 7.12 reports the second set of measurements and the model predictions for 

different target stand-off distances.  Single pixel measurements were performed on the 

Spectralon target of 99% nominal reflectance in water with 0.0126% of Maalox, using 

100 s acquisition time, an average optical power of 60 μW at the optimum wavelength 

 = 690 nm, and in dark lab conditions.  In this case, the focus was adjusted before each 
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measurement in order to optimise the return from the target at the different stand-off 

distances. 

 

Figure 7.12.  Comparison between the counts in the highest bin in the 

peak for the experimental measurements (black squares) and the model 

predictions (red dots) for different stand-off distances.  A camera 

objective lens of 100 mm focal lens was used for these measurements.  

The target was the test reference Spectralon target of 99% reflectance, 

placed in water and 0.0126% of Maalox.  For each measurement, the 

optimum wavelength  = 690 nm, an acquisition time of 100 s, and 

60 μW of average optical power were used.  

The graphs in Figure 7.10 and Figure 7.11 show that the information about the 

collection aperture of the system is sufficiently included in the model.  In addition, 

Figure 7.10 and Figure 7.11 show that the experimental and simulation results differ by 

approximately 1 dB.  This difference suggests that one of the attenuation coefficients 

considered in Equation 7.8 was underestimated, leading the model to predict a higher 

number of counts in the highest bin in peak. It is not possible to know exactly which 

coefficient was underestimated and it may indeed be a compound error composed of 

several underestimations, and further investigations should be performed. The 

difference of 1 dB is constant over the graphs shown in Figure 7.10 and Figure 7.11, 

where the focus of the objective lens was adjusted only once before the set of 
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measurements.  An additional error is introduced when the focus is varied for each 

measurement, as shown in Figure 7.12 where the focus was adjusted in accordance to 

the target stand-off distances.  In this case, the difference between experimental results 

and model predictions is not constant over the graph. 

In order to adapt the model to commonly used target materials, single pixel 

measurements were performed with different targets and normalized to the return from 

the Spectralon target of 99% reflectance.  Figure 7.13 reports the maximum achievable 

range versus the power leaving the system.  In particular, the graph shows the results of 

simulations done in unfiltered tap water, at the optimum wavelength  = 525 nm, with 

an acquisition time of 10 ms and SNRmin = 1.4.  The highest return with respect to the 

Spectralon target is obtained for a brushed transparent plastic board target, while the 

lowest return is obtained for a matt black aluminium board.  Despite the low signature 

nature of this target, the maximum achievable range suggested by the model is around 

40 metres in clear water using 100 mW of average optical power. 
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Figure 7.13.  Simulations of the maximum achievable range versus the 

average power when different targets are considered.  In particular, the 

graph shows the results for a brushed transparent plastic board, an 

example of a rock, and a matt black aluminium board.  The case of the 

Spectralon target is shown for comparison.  All simulations were 

performed using clear water conditions, SNRmin = 1.4, and 10 ms 

acquisition time. 

In order to investigate how the results vary considering a higher value of SNRmin, a 

comparison was performed between the case where SNRmin = 2 and the case where 

SNRmin = 1.4 for the Spectralon target, as shown in Figure 7.14.  In this case, the 

maximum achievable range obtained by the simulations with SNRmin = 2 is only a few 

metres less than the case with SNRmin = 1.4, in particular the difference is just 1 metre at 

low optical power and 3 metres at higher power. 
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Figure 7.14.  Comparison between the maximum achievable range 

versus average power for two different values of SNRmin, SNRmin = 1.4 

and SNRmin = 2 for the Spectralon target in unfiltered tap water.  For 

these simulations an acquisition time of 10 ms was chosen. 

7.5. Conclusions 

The model presented is based on the photon-counting version of the LiDAR equation. 

Several parameters were included in the model in order to evaluate the time-of-flight 

ranging performance of the system, including intrinsic and extrinsic parameters.  

Intrinsic parameters consider the attenuation of each optical element, detector response, 

and operational parameters.  Extrinsic parameters take in account the environmental 

attenuation, the stand-off distance of the target, and its optical properties.  Then, the 

photon-counting LiDAR equation evaluates the number of photons in the highest bin in 

the peak, which is used to calculate the signal-to-noise ratio (SNR) at several distances.  

Every SNR value is compared to a minimum required SNR, in order to evaluate the 

achievable performance of the system underwater.  It is important to note that the 

evaluation is performed only for an optimised single pixel and not for the entire scan – 

which may contain several sub-optimal pixels.  As seen in Chapter 6, additional signal 

processing can be performed in order to reconstruct the image, when the pixel-wise 

cross correlation approach is not able to recover the depth and intensity of the target.  

This means that a few sub-optimal pixels can be sufficient to discern the target also in 

photon-starved conditions. 
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The simulations carried out show how the maximum achievable scanning range depends 

on several factors, including average optical power, acquisition time, target reflectivity 

and minimum SNR value.  The results suggest that when the average optical power is in 

the 10’s mW high-speed depth images at distances of 30-60 metres in unfiltered tap 

water may be performed, even if the targets have a relatively low reflectance.  In 

addition, an evaluation of the maximum range achievable with the system described in 

the Thesis suggests that stand-off distances equivalent to ten attenuation lengths can be 

achieved under optimum conditions.  In Chapter 5, it was demonstrated that depth and 

intensity information of the white plastic pipe target can be obtained at stand-off 

distances of 9 attenuation lengths.  However, it is important to say that the plastic pipe 

target has a lower reflectance with respect to the Spectralon target, which was used for 

these simulations.  Therefore, more investigations including the reflectivity of different 

targets are required in order to validate the predictions of the LiDAR based model. 
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Chapter 8 

Multispectral single-photon depth imaging 
 

8.1. Introduction 

This chapter will show how the system described in Chapter 5 can be used to obtain 

depth and spectral information at a number of different wavelengths. This allows for the 

estimation of depth, together with reflectivity-based images, providing dimensions and 

spectral information about each surface of the target.  The work described in this 

chapter reports the experiments performed for a wider project, which is ongoing in 

collaboration with the Institute of Sensors, Signals and Systems (ISSS) at Heriot – Watt 

University.  Particular attention will be given to the experimental results in order to 

assess the potential and the limitations of the system when multispectral measurements 

are performed, and a description of the experimental approach is given in section 8.2.  

At the same time, the experimental results obtained in free-space and image processing 

results will be presented in sections 8.3.1 and 8.3.2, in order to show how advanced 

image processing methods can be used to improve the recovery of depth and colour 

classification information extracted from experimental data.  Section 8.4 will show 

preliminary experimental results obtained in unfiltered tap water, showing the potential 

of this approach for identification of foreign objects in underwater scenes.  

8.2. Multispectral imaging based on TCSPC technique 

The use of the TCSPC technique with multiple wavelengths has previously been 

investigated [1, 2], raising great interest on multispectral single-photon data in the 

signal and image processing community [2-4].  In the work presented in [1, 2], a 

wavelength routing system allowed use of up to six wavelengths simultaneously, with 

one single-photon detector for each wavelength.  Therefore, the systems had the 

advantage of recording multiple wavelengths simultaneously.  However, the number of 

wavelengths that could be measured simultaneously was limited by the design of the 

optical system and optomechanics of the wavelength routing systems.  In the 

experiments described in this Chapter, the aim was providing single-photon time-of-

flight data with at least 16 different wavelengths for the validation of advanced signal 

processing algorithms for multispectral single-photon data analysis, and a different 

approach was required to perform the measurements.  Consequently, a scan for each 
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wavelength was performed with the system in sequence, meaning that the overall scan 

time for all wavelengths was necessarily long. However, these measurements were used 

to determine the number of wavelengths required for the analysis to be successful.   

In collaboration with Heriot-Watt image processing specialists, Dr. Yoann Altmann, 

Prof. Andy Wallace, and Puneet S. Chhabra, several experiments were outlined for 

implementation in free-space and in unfiltered tap water, using different targets in both 

cases.  The same system was used for all the measurements reported in this chapter, 

therefore the scanning transceiver was reconfigured to be used in either environment. 

The widest wavelength range investigated was 500 nm – 820 nm, hence the optical 

components were chosen with appropriate coatings that covered this wavelength range, 

and at the same time minimised back-reflections in the scanning system.  The alignment 

of the transceiver unit was performed at the weighted wavelength λ = 620 nm.  In 

addition, several preliminary studies were performed in order to address specific 

requirements of the algorithms.  Firstly, the spectral lines of the pulsed laser system had 

to be chosen in order to limit the overlap between two consecutive spectral lines.  This 

required particular attention in the alignment of the AOTF, in order to minimise the 

FWHM for each wavelength.  A spectral analysis performed with the spectrometer USB 

Series HR2B805 (by Ocean Optics, USA) revealed a maximum FWHM of 

approximately 8 nm (refer to section 5.3), which gave an estimation of the minimum 

step that could be used effectively.  In addition, the wavelength range used was limited 

by the operational wavelength range of the detector and by the optical components of 

the system.  Based on these considerations, the wavelength range 500 nm – 820 nm was 

chosen for the experiments performed in free space, and the wavelength was varied with 

a step-size of 10 nm, meaning a total of 33 wavelengths for each target. 

Secondly, because of the narrow field of view of the system and the limited space 

available in the tank, special care had to be taken to ensure that the field of regard (the 

field seen in a full scan of the given image) was evenly illuminated.  This effect was 

clearly visible in the results reported in Chapter 5, where the limited field of view of the 

system was an advantage, as it reduced the backscattered and forward scattered light 

detected. However, for the measurements reported in this Chapter it was important that 

the area scanned was as uniformly illuminated as possible, since the analysis relied 
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heavily on the intensity information.  Therefore, an objective lens with a shorter focal 

length of 100 mm (Canon EF100mm f/2.8L IS USM) was selected in order to increase 

the field of regard of the system.  A small number of scans were performed on a 

checker-board target, a black and white printed test reference target made of a 

geometrical progression of squares with initial side of 16 mm.  The photograph of the 

checker-board target is shown in Figure 8.1, and the red line shows the area scanned 

when (a) a 200 mm focal length objective lens and (b) a 100 mm focal length objective 

lens was used to perform the scan.  Below each photograph is the intensity map of 200 

× 200 pixel format, with an acquisition time per pixel of 10 ms, and average optical 

power of approximately 16 nW.  The results show the improvement of the field of view 

with the 100 mm focal length objective lens, and a uniformly illuminated area of 

approximately 32 × 32 mm2 (Figure 8.1b).  However, since the area to be scanned in the 

experiments was approximately 50 × 50 mm2, reference scans at each wavelength were 

performed using the Spectralon target with 10% reflectance, allowing a correction of the 

non-uniformly illuminated field by software when needed.  Hence, each experiment 

required the scans of the target and the Spectralon panel at each wavelength, with the 

same operational parameters. 

It is worth noting that the intensity maps shown in Figure 8.1 highlight the presence of 

non-vertical lines in the image from the checker-board target. This is caused both by the 

non-ideal rotation point of the galvo-mirrors, and the optical axis of the beam incident 

on the y-mirror being out of the plane of rotation, leading to issues in the vertical 

direction, in particular.  Previous results described in this Thesis were taken over a 

smaller field of regard than the measurements shown in Figure 8.1.   
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Figure 8.1.  Photograph of the test reference target used to investigate 

the field of view of system.  The area highlighted in red on the upper row 

represents the area scanned when the measurement was performed with 

(a) a 200 mm focal length objective lens and (b) with a 100 mm focal 

length objective lens.  Below each of the photographs is the 

corresponding intensity map. 

In addition, the position of the targets needed to be fixed for each set of scans in order to 

ensure that the observed intensity variation was dependent only on the wavelength, and 

not on a different target position or orientation.  Therefore, for each experiment, the 

scans of the target were performed at each selected wavelength in the spectral range of 

interest, and then scans of the Spectralon target were obtained as reference.  This 

required that the focus position was maintained for all the scans, hence the focus was 

adjusted before each experiment using the wavelength λ = 620 nm, which was the 

wavelength use for the alignment of the system.  However, preliminary measurements 

also revealed a chromatic focal shift introduced by the system, leading to a variation in 

the intensity map for the other wavelengths.  This effect is shown in Figure 8.2, where 
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intensity maps of the 10% reflectance Spectralon target are reported for six 

wavelengths.  The area scanned was 50 × 50 mm2, the same as the area of the targets 

used in the experiments.  The effect of the focal shift could be corrected by software at 

all the wavelengths, however the aperture of the objective lens was reduced in order to 

improve the depth of field of the system and limiting this effect at least for the longer 

wavelengths (Figure 8.3). 

 
Figure 8.2.  Intensity maps of the 10% reflectance Spectralon target for 

six different wavelengths, with a pixel format of 200 × 200, 10 ms 

acquisition time per pixel, and average optical power of approximately 

200 nW.  In this case the aperture of the objective lens was f/2.8. 
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Figure 8.3.  Intensity maps of the Spectralon 10% reflectance target for 

six different wavelengths, with a pixel format of 200 × 200, 10 ms 

acquisition time per pixel, and average optical power of approximately 

500 nW.  In this case the aperture of the objective lens was f/8. 

It is worth mentioning that the case of an objective lens with 50 mm focal length was 

also considered.  However, preliminary tests showed that the chromatic focal shift was 

significantly greater than the case of the 100 mm focal length objective lens, resulting in 

a poor spatial resolution. 

8.3.  Multispectral experiments in free-space 

A set of experiments were performed in air, in order to validate classification and 

spectral unmixing algorithms.  The main system parameters used for the experiments 

are summarised in Table 8.1, and they were maintained for all the scans performed in 

sections 8.3.1 and 8.3.2.  For each experiment, the average optical power was adjusted 

in order to be approximately the same for every wavelength.  For each target, a scan was 

performed at the wavelength λ = 620 nm with a greater pixel format and an acquisition 

time per pixel of 30 ms.  This allowed for the accurate determination of the depth of the 

target with respect to the Spectralon panel, and placed more attention to the spectral 

signatures of the target. 
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Parameter Note 

Targets 
 Polymer clays of different colours 

 Spectralon 10% (50 mm × 50 mm) 

Environment Free space 

Target Stand-off Distance ~1.85 metres 

Laser System 

 NKT Photonics supercontinuum laser source 

(SuperK EXTREME EXW-12) 

 Source fibre-coupled to AOTF 

Illumination Wavelengths 
33 wavelengths with a step of 10 nm in the range  

500 nm - 820 nm  

Laser Repetition Rate 19.5 MHz (Clock for the TCSPC module and the PPG) 

Average Optical Power 

Range 
220 nW – 480 nW (at the target) 

Illumination Beam Diameter 

at Target 
~ 300 μm 

Pixel format 
 200 × 200 for multiwavelength scans 

 400 × 400 for the ground truth 

Scan area  50 mm × 50 mm 

Acquisition Time Per-Pixel 
 10 ms for multiwavelength scans 

 30 ms for the ground truth 

Data Acquisition Hardware 

HydraHarp 400 by PicoQuant 

 Synchronization rate of ~19.5 MHz 

 Internal sync divider: 8 

 Acquisition mode: T3 mode 

Binning Size 2 ps timing bin width 

Detector 

Silicon Single Photon Avalanche Diode (SPAD)  

 PDM series by Micro Photon Devices (fibre 

receptacle detector) 

 Used in gated mode   

Temporal Response of System 

 ≈ 100 ps at λ = 500 nm 

 ≈ 70 ps at λ = 620 nm 

 ≈ 60 ps at λ = 750 nm 

 ≈ 50 ps at λ = 820 nm 

Objective Lens 

Canon EF 100mm f/2.8L II USM 

 Focal length: 100 mm 

 F-number: f/8 

Background level Lab in dark conditions (~60 cps – detector gated) 

Table 8.1.  Summary of the main system parameters used for the 

experiments in free space. 



217 

 

8.3.1. Joint spectral clustering and range estimation for 3D scene 

reconstruction using multispectral LiDAR waveforms 

Dr. Yoann Altmann, from ISSS (Heriot-Watt University), developed an algorithm for 

3D scene analysis of multispectral data.  The algorithm is based on a hierarchical 

Bayesian model [5], whose posterior distribution clusters the scanned area into classes 

sharing similar mean spectral signatures. The details of the model are reported in [6]. 

The prior distributions of the model included positivity constraints for the spectrum 

recovered in each pixel, and a high probability that neighbouring pixels belong to the 

same class, which basically correlated neighbouring pixels. 

The number of classes associated with the number of different mean spectral responses 

can be chosen by the user, and the results presented in this section were obtained using 

30 classes.  In order to validate the model, multispectral scans were obtained using the 

target shown in Figure 8.4a).  The target was made of polymer clays of different shades 

of green and brown, glued onto two leaves fixed on a hardboard painted with green 

acrylic colour.  In this case, the scans were performed using an average optical power of 

approximately 220 nW.  Figure 8.4b) reports the 3D depth profile obtained with the 

cross-correlation approach, at the wavelength λ = 620 nm.  

 
Figure 8.4.  (a) Photograph of the target made of clays of different 

shades of green, plus brown, mounted on two tree leaves fixed on a 

hardboard painted with green acrylic colour.  (b) 3D depth profile of the 

target, performed using 400 × 400 pixels, 30 ms acquisition time per 

pixel, and an average optical power of 220 nW. 
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Figure 8.5 shows the intensity maps obtained with the cross-correlation approach, for 

six wavelengths λ
1
 = 500 nm, λ

2
 = 550 nm, λ

3
 = 620 nm, λ

4
 = 700 nm, λ

5
 = 750 nm, and 

λ
6
 = 820 nm.  From the experimental results, it can be observed how the intensity map 

of the scanned area changes with the wavelength, allowing the spectral signature of each 

element of the target to be extracted. 

 
Figure 8.5.  Intensity maps of 200 × 200 pixel format, at six different 

wavelengths, with 10 ms acquisition time per pixel, and average optical 

power of approximately 220 nW. 

This intensity variation allowed the model to discriminate surfaces which are spectrally 

different, and to identify the material in a given region of the scanned area.  For 

example, Figure 8.6a) shows the estimated spectral classification obtained when 30 

classes are used during the analysis. The joint depth/spectral classification is shown in 

the 3D profile in Figure 8.6b), where only the main 14 classes are shown for clarity.  In 

addition, the estimated spectral signatures of the classes associated with green clays and 

green leaves can be seen in Figure 8.7, showing how the reflectivity of the main target 

components changes with the wavelength.  All classes are identified with the same 

colours in both Figure 8.6 and Figure 8.7. 

The results show that clays and leaves are clearly spectrally resolved, with sharp 

separations between clays and leaves.  It is evident that one class for each colour of the 
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clay objects is sufficient for the classification of the clays.  However, more classes are 

needed for the leaves, because of the inhomogeneity of the front and back of the leaves.  

 
Figure 8.6.  (a) Estimated spectral classification and (b) 3D distribution 

of the main spectral classes identified by the algorithm when 30 classes 

are used in the analysis.  Both from [6]. 

 
Figure 8.7.  Estimated spectral signatures of the spectral classes 

associated with different green clays and the green leaves.  From [6]. 

Decreasing the number of classes means that some classes merge, while increasing the 

number of classes can lead to the association of a single spectral class to isolated pixels 

that present anomalies.  Furthermore, it is interesting to note that this model allows us to 

identify not only spectral variations due to materials and colours, but also due to the 

orientation of the surface.  This can be observed on the edge of the clays, where more 

spectral classes are associated to the same object.  In order to further investigate this 
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aspect, a new target was built with clays of several colours and different shapes, using 

more rounded edges and spherical shapes.  However, several sharp-edged clay shapes 

were included for comparison.  The clay shapes were glued to a hardboard backplane, 

and painted with a green acrylic paint different to that previously used in Figure 8.4a).  

The photograph of this target is shown in Figure 8.8a), while Figure 8.8b) shows the 3D 

depth profile obtained using the cross-correlation approach, at a wavelength 

λ = 620 nm.  Figure 8.9 shows the intensity maps obtained with the cross-correlation 

approach for six wavelengths: λ
1
 = 500 nm, λ

2
 = 550 nm, λ

3
 = 620 nm, λ

4
 = 700 nm, 

λ
5
 = 750 nm, and λ

6
 = 820 nm.  The average optical power used in this experiment was 

approximately 220 nW.  The experimental results show again how the intensity map of 

the scanned area changes with the wavelength, providing information about the colour 

and the material of the target.  On the intensity map shown in Figure 8.9, the brush 

strokes from painting are evident on the hardboard at the longer wavelength 

measurements.   

 

Figure 8.8.  (a)  Photograph of the target made of clays of different 

colours, glued on a backboard painted with green acrylic colour.  (b) 3D 

depth profile of the target, performed using 400 × 400 pixels, 30 ms 

acquisition time per pixel, and an average optical power of 220 nW. 
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Figure 8.9.  Intensity maps of 200 × 200 pixel format, at six different 

wavelengths, with 10 ms acquisition time per pixel, and average optical 

power of approximately 220 nW. 

It is worth saying that the target was designed to include only clay objects, meaning that 

the target comprised only  spectrally homogeneous objects. This allowed to modify the 

algorithm such as pixels in the same class are assumed to have the same spectral 

response [7], and not the same mean spectral response as considered in Figure 8.6.  

The modified model was applied associating 30 classes with different colours, and the 

estimated spectral classification is shown in Figure 8.10a).  In this case, more classes 

were associated with the curved clays because of the round edges, providing a tool to 

obtain more information about the shape of the target.  In Figure 8.10b), the distribution 

of the main spectral classes is shown jointly with the depth estimation, where the effect 

of the round edges is clearly visible. 
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Figure 8.10. (a) Estimated spectral classification and (b) 3D distribution 

of the main spectral classes identified by the algorithm when 30 classes 

are used in the analysis.  From [7]. 

It is interesting to note also the presence of several classes associated to the acrylic paint 

of the hardboard.  Although a single colour was used to paint the hardboard, at least 

three classes can be found associated to it, as shown in Figure 8.11.  From the graph it is 

evident that the classes merge in a single one for wavelengths shorter than λ = 700 nm, 

while for longer wavelengths the pattern left due to the brush strokes during painting 

leads to the splitting into more classes. 
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Figure 8.11.  Estimated spectral signatures of the spectral classes 

associated with different green clays and the green paint.  From [7]. 

8.3.2. Range estimation and material quantification from multispectral 

LiDAR waveforms 

The previous section showed that spectral classification is a useful tool to investigate 

the properties of the target.  However, more information can be obtained if the material 

abundances are identified.  With this aim, Dr. Yoann Altmann developed a model in 

order to build a spectral unmixing algorithm for 3D scene analysis.  In each pixel, the 

model decomposes the spectra of the target elements in a linear combination of known 

base materials, which are selected manually by the user.  In a similar fashion to the 

spectral classification algorithm, spatial correlations are included considering a smooth 

variation in the spectral response between neighbouring pixels.  Details about the model 

and algorithm can be found in [8]. 

The model was validated with multispectral scans performed using a target made of 

clays of different colours, glued on a black cardboard.  Four base colours were used to 

build the clay objects, and the corresponding proportions for each clay are listed in 

Table 8.2, while Figure 8.12a) shows the photograph of the target.  Figure 8.12b) 
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reports the 3D depth profile obtained with the cross-correlation approach, at the 

wavelength λ = 620 nm and average optical power of 480 nW.  

 

Table 8.2.  Main colours and proportions used to build the clays for the 

target.  In each case only two colours were mixed, with the proportions 

shown in the top row.  The first and last columns show the two colours 

that are mixed.  In all a set of 14 colour mixtures were used in this 

measurement, and they are identified with Roman numerals in the 

photograph shown in Figure 8.12a).  

 

Figure 8.12.  (a) Photograph of the target made of clays of fourteen 

different colours of known abundances, glued on a black cardboard.  (b) 

3D depth profile of the target, performed using 400 × 400 pixels, 30 ms 

acquisition time per pixel, and an average optical power of 480 nW.  

Each clay shape is identified with Roman numerals, and shown in Table 

8.2 with the abundances used. 
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The intensity maps at six wavelengths obtained with the cross-correlation approach for 

this target are shown in Figure 8.13, where the different returns at each wavelength can 

be observed. 

 

Figure 8.13.  Intensity maps of 200 × 200 pixel format, at six different 

wavelengths, with 10 ms acquisition time per pixel, and average optical 

power of approximately 480 nW. 

The estimated spectral signatures of the cardboard and the four base colours used to 

build the clays are shown in Figure 8.14a).  From the graph, it can be seen that the 

signatures of the cardboard, the green and blue base colours are similar, making the 

spectral unmixing problem particularly difficult. However, the abundances estimated by 

the algorithm for each clay are in good agreement with the reference estimations, as 

shown in Figure 8.14b) and Figure 8.14c).  Figure 8.14b) shows the reference images 

obtained assigning manually the colour proportions for each pixel, while Figure 8.14c) 

shows the reflectance map obtained with the proposed algorithm.  

Significant differences can be observed between the blue clay and the cardboard 

estimations, despite their similar spectral signatures.  This suggests that this method can 

be used to discriminate between similar colours, and between different materials of the 

same colour.  This is the aim of the next experiment, for which the analysis was 

performed with a similar algorithm. 
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Figure 8.14.  a) Spectral signature of the cardboard and the four base 

colours used to build the target components, as determined from 

experimental results.  b) Reference abundances obtained associating the 

known base proportions for each pixel.  c) Abundances estimated by the 

model using the spectra shown in a).  Each column shows the reference 

and estimated images when only one base spectral response is used in 

the decomposition.  From [8]. 
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For the next experiment, the target comprised clays with different shades of green, as 

shown in Figure 8.15a).  It is worth noting that in this case, each shade of green was not 

created by mixing of base colours, meaning that the abundances of base colours were 

not known.  In addition, two leaves were added to include organic material. One of the 

leaves was reversed, as shown on the top left of the target, while the other leaf, showing 

the front, is visible on the lower right of the target.  Figure 8.15b) shows the depth 

profile of the target obtained with the cross-correlation approach, at the wavelength 

λ = 620 nm, and average optical power of 480 nW.  While Figure 8.16 reports the 

various intensity maps obtained with the cross-correlation approach, at six wavelengths. 

 

Figure 8.15.  (a) Photograph of the target made of clays of different 

shades of green, plus brown, mounted on two tree leaves fixed on a black 

cardboard.  (b) 3D depth profile of the target performed using 400 × 400 

pixels, 30 ms acquisition time per pixel, and an average optical power of 

480 nW. 
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Figure 8.16.  Intensity maps of 200 × 200 pixel format, at six different 

wavelengths, with 10 ms acquisition time per pixel, and average optical 

power of approximately 480 nW. 

Similarly to the previous target, the model estimates the abundances of each clay and 

the two sides of the leaves.  The model was slightly modified in order to optimise the 

computational time, and the details of the algorithm can be found in [9].  Figure 8.17 

shows the estimated abundance maps for each element of the target.  Although the green 

shades are quite similar, the spectral signatures of the leaves are significantly different 

from the spectral signatures of the clays, as shown in Figure 8.18.   
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Figure 8.17.  Abundance maps estimated by the algorithm for each 

element of the target.  Each map corresponds to the graphs shown in 

Figure 8.18.  From [9]. 
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Figure 8.18.  Spectral signature of each element of the target.  Each 

graph corresponds to the maps shown in Figure 8.17.  From [9]. 

The results presented in this section showed the potential of multispectral single-photon 

measurements in conjunction with advanced signal processing.  In particular, the 

developed models allowed the classification of each element of the targets on the basis 

of their colour and material composition.  

The same type of analysis can be performed underwater, opening the way to target 

recognition in either free-space or underwater.  However, in an underwater environment 

several things should be considered, as will be explained in the following section.  

8.4. Underwater target discrimination using multi-spectral LiDAR waveforms 

Multi-spectral measurements were also performed underwater, and preliminary results 

showed promise for target recognition and underwater human-made target 

discrimination.  This section will report some experimental results, which show how 

single-photon sensitivity can be used, in conjunction with advanced signal processing, 
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to identify objects partially buried in sand or concrete, or reveal target camouflaged by 

stones or algae. 

Even if the measurement procedure is the same as described in the previous sections, 

some considerations must be included due to the attenuation of the environment.  As 

discussed in Chapter 4, the attenuation of light in water has a minimum in the green 

region of the visible spectrum, and strongly increases for wavelengths longer than 

λ = 700 nm, making the detection of light difficult at longer wavelengths.  In addition, 

the detection efficiency of the thin junction SPAD used for these experiments has a 

peak at 48% at the wavelength λ = 550 nm, and decreases below 30% at λ = 700 nm, 

and further decreases for longer wavelengths.  Therefore, the combination of attenuation 

of water and the detector efficiency meant that it was not possible to detect the return 

from the target at wavelengths longer than λ = 740 nm.  This led to a selection of a 

smaller operational wavelength range, and 16 wavelengths were selected with a step of 

15 nm from λ = 500 nm to λ = 725 nm.  

An average optical power of 330 nW was used in all the experiments presented in this 

section, while the pixel format was varied depending on the target composition and 

dimensions.  The acquisition time was 10 ms per-pixel for the multispectral scans, and it 

was increased to 30 ms to determine the depth at the wavelength λ = 620 nm. 

The main system parameters used for the experiments are summarised in Table 8.3. 
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Parameter Note 

Targets 

 Plastic blocks and metallic spheres partially buried in 

sand, concrete or stones 

 Floating targets hidden by seaweed 

Environment Unfiltered tap water 

Target Stand-off Distance ~1.33 metres in water 

Laser System 

 NKT Photonics supercontinuum laser source 

(SuperK EXTREME EXW-12) 

 Source fibre-coupled to AOTF 

Illumination Wavelengths 
16 wavelengths with a step of 15 nm in the range  

500 nm -725 nm  

Laser Repetition Rate 19.5 MHz (Clock for the TCSPC module and the PPG) 

Average Optical Power 

Range 
~ 330 nW (before the objective lens) 

Illumination Beam 

Diameter at Target 
~ 300 μm 

Pixel format 

Scan area =  

50 mm × 50 mm 

 • 200 × 200 for multi-wavelength scans 

• 400 × 400 for ground truth 

Scan area =  

75 mm × 75 mm 

 • 300 × 300 for multi-wavelength scans 

• 500 × 500 for ground truth 

Acquisition Time Per-

Pixel 

 10 ms for multiwavelength scans 

 30 ms for the ground truth 

Data Acquisition 

Hardware 

HydraHarp 400 by PicoQuant 

 Synchronization rate of ~19.5 MHz 

 Internal sync divider: 8 

 Acquisition mode: T3 mode 

Binning Size 2 ps timing bin width 

Detector 

Silicon Single Photon Avalanche Diode (SPAD)  

 PDM series by Micro Photon Devices (fibre receptacle 

detector) 

 Used in gated mode   

Temporal Response of 

System 

 ≈ 100 ps at λ = 500 nm 

 ≈ 70 ps at λ = 620 nm 

 ≈ 60 ps at λ = 725 nm 

Objective Lens 

Canon EF 100mm f/2.8L II USM 

 Focal length: 100 mm 

 F-number: f/8 

Background level Lab in dark conditions (~60 cps – detector gated) 

Table 8.3.  Summary of the main system parameters used for the 

experiments in unfiltered tap water. 
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Several targets were scanned in unfiltered tap water, at a stand-off distance in water of 

1.33 metres.  For example, Figure 8.19 shows the photograph of four targets and the 3D 

profiles obtained with the pixel-wise cross-correlation approach.  In Figure 8.19a) and 

Figure 8.19b), the targets were made of metallic spheres painted with textured charcoal 

spray painting, and partially buried in sand and concrete, respectively.  In Figure 8.19a), 

a piece of plastic of approximately 1 cm was added to the target, in order to include also 

a non-metallic element.  In Figure 8.19c) and Figure 8.19d), the targets were made of 

sand and concrete, respectively, in order to study the case of scans with the same 

background as Figure 8.19a) and Figure 8.19b) but without metallic objects.  For each 

target, Figure 8.19 shows also the 3D depth profile of 400 × 400 pixel format, and 

30 ms acquisition time per pixel, obtained with the cross-correlation approach. 

 

Figure 8.19.  Each figure shows the photograph of the target on the left 

and the 3D depth profile on the right.  The 3D depth profiles of the 

targets were obtained with 400 × 400 pixel format, 30 ms acquisition 

time per pixel, and an average optical power of 330 nW, at the 

wavelength λ = 620 nm. The analysis was performed with the pixel-wise 

cross-correlation approach. 

From the 3D depth profiles, it can be seen that the objects included in the target are 

clearly resolved. However, solely from the 3D depth profile it is difficult to classify 

them as metallic objects.  More information can be obtained from the spectral response.  

For example, Figure 8.20 shows the intensity maps for the target a) obtained with the 

cross-correlation approach, and only the results at five wavelengths are displayed, 

λ
1
 = 500 nm, λ

2
 = 560 nm, and λ

3
 = 620 nm, λ

4
 = 680 nm, λ

5
 = 725 nm, with a pixel 
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format of 200 × 200, and 10 ms acquisition time per pixel.  From the intensity maps, the 

plastic objects can be discriminated, while the rusted spheres have a return similar to the 

return from the sand at each wavelength, making it difficult to distinguish them.  

However, the shape is well defined, and combining depth and intensity information it is 

possible to recognise them as spherical objects. 

An algorithm was developed by Puneet Chhabra and Prof Andy Wallace at Heriot-Watt 

University, which is based on a semi-supervised learning approach [10].  The algorithm 

builds the point cloud of the area scanned, resulting in a 3D plot combining depth and 

spectral information, and an example is shown in Figure 8.21.  The main contribution of 

the algorithm is that it is able to discriminate the experimental target signatures, in order 

to automatically identify both material and geometrical characteristic of the different 

objects in the scanned area [11].  

 

 

Figure 8.20.  Intensity maps obtained with the cross-correlation 

approach for five wavelengths, λ
1
 = 500 nm, λ

2
 = 560 nm, and 

λ
3
 = 620 nm, λ

4
 = 680 nm, λ

5
 = 725 nm.  The pixel format was 

200 × 200, with 10 ms acquisition time per pixel, and an average optical 

power of 330 nW. 
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Figure 8.21.  Point cloud plot of the target, combining depth and 

spectral information.  From [11]. 

Work is ongoing on the analysis with the same algorithm of the scans performed with 

the other targets shown in Figure 8.19. However, these preliminary results show 

promise for the multispectral single-photon measurements for underwater mine 

discrimination.  The main limitation here seems due to the overall acquisition time for 

each set of measurements.  In all the measurements reported in this chapter, a high pixel 

format and a long acquisition time per-pixel were chosen in order to validate the several 

algorithms developed.  Therefore, a lower pixel format and shorter acquisition time per 

scan will greatly improve the overall acquisition time for each set.  In addition, the 

depth can be estimated from one of the scans performed for the multi-wavelength 

measurements, avoiding the scan with a greater pixel format and longer acquisition time 

per pixel. 

Two other cases were considered to validate the model described in [11] and to develop 

new analysis algorithms.  Figure 8.22 shows the results of multispectral scans 

performed using a target made of spherical metallic objects camouflaged in a rocky 

environment.  In this case, the scanned area was approximately 7.5 × 7.5 cm2, and the 

pixel format was increased accordingly.  Figure 8.22a) shows the photograph of the 

target, while Figure 8.22b) shows the 3D depth profile obtained performing a scan of 

500 × 500 pixel format and 30 ms acquisition time per-pixel.  Figure 8.22 c) shows the 

intensity maps obtained performing scans of 300 × 300 pixel format and 10 ms 
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acquisition time per-pixel, and the cross-correlation approach was used to estimate the 

depth and the number of counts per pixel. 

 

Figure 8.22.  a) Photograph of the target made of clays of different 

colours of known abundances, glued on a black cardboard.  b) 3D depth 

profile of the target, performed using 500 × 500 pixels, 30 ms 

acquisition time per pixel, and an average optical power of 330 nW.  c) 

Intensity maps obtained with the cross-correlation approach, using a 

300 × 300 pixel format, and an acquisition time per-pixel of 10 ms.  

Three wavelengths are displayed, λ
1
 = 500 nm, λ

2
 = 620 nm, and 

λ
3
 = 725 nm. 

The results suggest that the case of rusted metallic objects surrounded by stones could 

be easier for mine discrimination, as the stones seem having a spectral signature that 

differs greatly from the spectral signature of the metallic objects.  In addition, it is worth 

noting that showing only three wavelengths allows the highlighting of differences in 

each component of the target.  This suggests another method to further reduce the 

acquisition time for a set of scans, as reducing the number of wavelengths implies a 

reduced overall acquisition time for a set of measurements.  However, this comes at the 

cost of a reduced amount of spectral information, and a study on the minimum number 
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of wavelengths needed to discriminate different objects is the main priority in order to 

reduce the overall acquisition time for a set of scans.  

Another experiment was performed using a target built with the aim of simulating 

floating mines hidden by marine vegetation.  The floating mines were simulated with 

metallic spheres painted with textured spray colour, and a piece of white plastic was 

added to include a non-metallic material.  Five different aquatic plants were used to hide 

the floating targets, and a photograph of the entire target is shown in Figure 8.23.  The 

scan was performed over an area of 7.5 × 7.5 cm2, and it is highlighted in red in Figure 

8.23.  In addition, the figure shows where the floating targets were located.  

Figure 8.24 reports the intensity maps at five different wavelengths obtained with the 

pixel-wise cross-correlation approach.  In this case, the targets can be easily 

discriminated from the environment, mainly because the algae absorb visible 

wavelengths for the photosynthesis process.  While for wavelengths longer than 

λ = 700 nm, the light is no longer involved in the photosynthesis process, hence it is not 

absorbed by the algae [12].  This allows us to discriminate the vegetation and the other 

objects included in the scene.  

 
Figure 8.23.  Photograph of underwater target simulating floating mines 

hidden by marine vegetation.  The area in red shows the scanned area 

(7.5 cm × 7.5 cm), and highlights the hidden targets, three metallic 

rusted spheres and a small piece of white plastic. 
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Figure 8.24.  Intensity maps of 300 × 300 pixel format, 10 ms acquisition 

time per pixel, and average optical power of approximately 330 nW.  The 

analysis was performed with the pixel-wise cross-correlation approach, 

and the results at five different wavelengths are reported. 

Also in this case, there is no need to use all the 16 wavelengths selected to discriminate 

the floating targets.  Figure 8.24 shows how few of the wavelengths selected provide 

enough information to discriminate the floating targets from vegetation, greatly 

reducing the overall acquisition time for a set of scans and making a clear contribution 

to the future practical implementation of this approach. 

In addition, work is ongoing on another algorithm to investigate the possibility to 

identify targets in the scanned scenario and remove the surrounding environment from 

the image.  This would allow, in conjunction with a reconstruction algorithm, to build 

an entire image of the partially hidden targets.  However, such a model will require 

further investigation on the minimum number of wavelengths to use, different 

acquisition times, and different camouflages and target materials.  
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8.5. Conclusions  

The preliminary results presented in this chapter show the potential of multispectral 

single-photon depth imaging in target discrimination and recognition, in free-space and 

underwater environments.  

Several laboratory-based measurements were performed in free-space, using 33 

wavelengths incremented by 10 nm, and average optical power in the range 220 nW to 

480 nW, using a 200 × 200 pixel format, and 10 ms acquisition time per pixel.  Joint 

depth estimation and spectral information were obtained for 3D scene reconstruction, 

validating several algorithms developed by Dr. Yoann Altmann, Puneet S. Chhabra, and 

Prof. Andy Wallace at Heriot-Watt University.  Different targets were constructed to 

perform the experiments. 

A set of experiments were designed to investigate classification due to colour and shape 

of each component of the targets in free-space, based on the spectral signature estimated 

in the investigated wavelength range.  Once identified the spectral signature of each 

component of the targets, the scanned area was clustered into classes, resulting in a 3D 

representation in conjunction with the defined classes.  This model allows for the 

identification of not only spectral variations due to materials and colours, but also due to 

the orientation of the surface, providing a useful tool to discriminate the shape of the 

targets. 

Other experiments were performed in order to validate a model developed to investigate 

quantification of colour abundances in targets.  With this aim, a target was constructed 

with clays of different colours, obtained as known combinations of four base colours. 

The spectral unmixing algorithm decomposes the spectra of the target elements in a 

linear combination of the base materials in each pixel.  This allowed us to quantify 

abundances of materials whether or not the amount of base materials was known. 

These results obtained in free-space showed promise in target discrimination, and more 

experiments were performed in unfiltered tap water.  The same experimental setup was 

used to perform multispectral measurements underwater, and a few limitations were 

highlighted.  Because of the strong attenuation of light in water and the low detection 

efficiency at longer wavelengths, return from the target disappeared for wavelengths 
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longer than λ = 740 nm.  Hence, a smaller operational wavelength range was chosen for 

the experiments performed in unfiltered tap water, and 16 wavelengths were selected 

with a step of 15 nm from λ = 500 nm to λ = 725 nm.   

Several targets were built in order to simulate man-made targets, partially buried in sand 

or concrete.  Targets made only of sand or concrete were built in order to compare the 

cases with and without mines.  Work is ongoing on the development of appropriate 

algorithms that discriminate mines underwater when multispectral single-photon data 

are available.  The first model was developed to discriminate metallic objects partially 

buried in sand.  Preliminary results showed that the algorithm is able to identify both 

material and geometrical characteristic of the different objects in the scanned area, 

providing a strong contribution to the underwater mine recognition research. 

More targets with metallic objects were constructed in order to simulate mines 

camouflaged by stones, and floating mines covered by algae.  Multispectral 

measurements were performed using these two targets in unfiltered tap water.  The 

results were analysed only with the cross-correlation approach, showing how the mines 

can be discriminated from the natural components in the target without performing any 

spatial correlation.  This strongly suggests that multispectral single-photon 

measurements have the potential of being a useful technique in underwater mine 

discrimination. 

However, the main limitation of the approach described in this chapter was the long 

overall acquisition time which can be reduced for future applications as the algorithms 

are further developed.  Firstly, it is worth noting that the scan performed with a longer 

acquisition time to estimate the depth is not necessary, it was an additional step 

performed in order to simplify the analysis and obtain a precise depth estimation.  In 

general, the depth can be estimated from one of the scans performed with a shorter 

acquisition time per pixel.  Alternatively, depth profiles can be obtained performing an 

average between the depth at each wavelength, providing an improved depth estimation. 

In addition, the preliminary results showed that a fewer number of wavelengths can be 

selected, drastically driving down the overall acquisition time.  An investigation of the 

minimum number of wavelengths required by the algorithms will be part of future 

work, and the experimental setup and measurement procedure can be modified 
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consequently.  For example, a wavelength routing system allows the use of multiple 

wavelengths at the same time [1, 2].  However, this is at the cost of using as many 

detectors as the number of wavelengths selected.  Future work will examine the use of 

multiple wavelengths simultaneously in such single-photon depth imaging systems. If 

only four wavelengths are selected for the multispectral measurements, the same 

experimental setup used to obtain the results of this chapter can be used in conjunction 

with a wavelength routing system as described in [2].  In this case, the overall 

acquisition time would decrease from several hours to a few minutes.  Additionally, a 

smaller pixel format and a lower acquisition time per pixel can further reduce the 

overall acquisition time. 

If more wavelengths are required, a different approach should be considered.  For 

example, the system used for the experiments described in this chapter can be used in 

conjunction with an interface unit programmed to control the software of the AOTF 

[13].  With appropriate modification to the software, the system would be able to 

automatically switch from one wavelength to the next, removing the time spent by the 

user for launching a new scan.  This would contribute to a reduction of a few hours of 

the overall acquisition time, and, to further decrease it, the pixel format and the 

acquisition time per pixel must be reduced as much as possible. However, such 

experiment would require an appropriate filtering technique in the design of the system, 

in order to filter out ambient background light which may prevent the detection of the 

signal from the target.  

Therefore, for a future practicality of this approach, a minimum number of operational 

wavelengths must be determined, and the pixel format and acquisition time per pixel 

must be reduced in order to minimise the overall acquisition time of a set of 

wavelengths. 
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Chapter 9 

Conclusions 
 

9.1.  Summary of conclusions 

This Thesis presented work on the characterisation of a single-photon depth profiling 

system for imaging in highly scattering underwater environments.  The system used the 

time of flight approach and the time-correlated single-photon counting technique 

(TCSPC).  The system comprised a monostatic scanning transceiver fibre-coupled with 

a pulsed laser source and a silicon single-photon avalanche diode (Si-SPAD) used for 

detection of the returned optical signal.  Laboratory-based measurements were 

performed over distances of less than two metres, achieving depth profiles at 9 

attenuation lengths between the transceiver and target.  

A brief review of the various systems developed to image man-made objects underwater 

was presented in Chapter 2.  The main techniques used to obtain 2D and 3D images of 

objects underwater were described in order to explain how to limit the effects of back 

and forward scattered light when imaging in underwater environments.  These 

techniques are based on temporal discrimination, spatial discrimination, or modulation 

discrimination.  Most of the techniques shown demonstrated imaging at less than 4-5 

attenuation lengths.  However, a combination of these techniques allows imaging at a 

greater number of attenuation lengths.   For example, pulsed-gated laser line scan as 

described in [1] allowed for 2D imaging at stand-off distances of up to approximately 

7 - 7.5 attenuation lengths, but this came at the cost of using very high average laser 

power levels, of approximately 1.3 W. However, at 7.5 attenuation lengths the images 

showed poor contrast and spatial resolution, although it is worth noting that there was 

no attempt of post-processing the images, which may improve the results.  At high 

scattering conditions, contrast and spatial resolution are significantly degraded due to 

the strong effects of scattering, and the target cannot be discerned.  It is important to 

note that all the systems described use average optical powers in the range from few 

milli-watts to several Watts, mostly well in excess of eye-safety thresholds.  The work 

presented in this thesis uses laser light levels at eye-safe conditions.  
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The work performed during this PhD project aimed to use the high sensitivity and 

precise temporal resolution of the TCSPC technique to provide high spatial and depth 

resolution imaging at stand-off distances equivalent to several optical attenuation 

lengths.  To the best of the author’s knowledge, the work described in this Thesis 

represents the first application of the TCSPC technique for underwater depth imaging 

and allowed for imaging in highly scattering underwater environments, achieving stand-

off distances of up to 9 attenuation lengths using average optical powers in the 

sub-milliwatt range. 

In order to provide a description of the technique used and the system, a review of the 

TCSPC technique is given in Chapter 3 explaining how picosecond optical transients 

can be measured in photon-starved regimes. Additionally, an overview of the main 

single-photon detectors was reported with particular attention to their key figures of 

merit, advantages, and limiting factors.  Specific attention was given to silicon single-

photon detectors, which were the detectors used in all the experiments reported in this 

Thesis.  Si-SPADs are the best candidates for underwater imaging.  At room 

temperature they offer high detection efficiencies in the visible wavelength range, which 

corresponds to a low attenuation for clear water and scattering environments.  In 

addition, they offer low dark count rate, near room temperature operation and reliable 

long-term performance.  Two different technologies of silicon detectors were used 

during this PhD project, a thick junction Si-SPAD manufactured by Perkin Elmer, and 

two thin junction Si-SPADs manufactured by Micro Photon Devices.  The Perkin Elmer 

SPCM-AQR series thick junction offered a photon detection efficiency of 

approximately 65% at the wavelength λ = 700 nm, with a maximum dark count rate of 

500 cps, as specified by the manufacturer.  However, despite the high detection 

efficiency, the overall instrumental temporal response observed during the experiments 

was of the order of 530 ps.  In order to improve the temporal response of the system, 

two thin junctions by MPD were tested during this project.  Use of MPD thin junction 

SPADs in this system exhibited a jitter in the range 60 – 120 ps, but this came at the 

cost of a lower detection efficiency than the thick junction SPADs.  The two thin 

junction SPADs had a photon detection efficiency of up to 49% at λ = 550 nm, as stated 

by the manufacturer.  In addition, the thin junctions MPD detectors include in the 

modules the appropriate circuitry to be electrically gated.  Gated detectors offer the 

opportunity to control the deactivation of the detector at pre-determined time intervals 
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in order to exclude unwanted optical signals such as back-reflections in the system or 

backscattering events which may occur in highly scattering environments. 

In order to examine the physical properties of the propagation media selected, Chapter 4 

described the experiments performed to obtain transmittance and attenuation spectra of 

the water samples subsequently used for the depth profiles measurements. These 

preliminary measurements allowed for the selection of an operational wavelength in the 

range 525 – 690 nm, depending on the level of scattering. At the same time, 

investigations of the settling times of the scattering agent used showed that this limited 

the maximum overall acquisition time for scans performed in different scattering 

conditions. 

A full description of the system used to obtain the results reported in this Thesis was 

given in Chapter 5, as well with the alignment procedure followed before each 

experiment.  Several configurations were studied in order to optimise the performance 

of the system and investigate its limitations.  Preliminary measurements were performed 

using a thick junction SPAD detector in a free-running mode, meaning that back-

reflections from the transceiver unit were detected, limiting the average optical power to 

the sub-microwatt region in order to not saturate the detector.  As these preliminary 

measurements showed promise for measuring depth profiles of targets at stand-off 

distances equivalent to up to approximately 6 attenuation lengths, several modifications 

were performed to improve the performance of the system.  A gated detection scheme 

was used in order to avoid detection of the back-reflections from the transceiver unit 

and allow for an increased average optical power.  This configuration was implemented 

by replacing the thick junction SPAD with a thin junction SPAD detector, which 

offered a better temporal response even if this came at the cost of a slightly lower 

detection efficiency.  This configuration allowed significantly higher average optical 

powers to be used (up to approximately 120 μW), providing a better signal-to-noise 

ratio (SNR) and faster data acquisition. In order to further improve the performance of 

the system, more modifications were performed including higher performance of the 

optical elements in the transceiver unit, and optimisation of the average optical power 

up to approximately 800 μW.  Additionally, an improved data acquisition mode was 

implemented, resulting in less complicated electronics and less data storage memory 

usage, subsequently allowing for a greater number of pixels to be recorded.  These 
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improvements allowed for scans of a plastic pipe target at stand-off distances up to 9 

attenuation lengths to be obtained. 

In addition, higher power levels were investigated and scans were performed using an 

average optical power of approximately 2.6 mW.  This was accomplished with the use 

of the supercontinuum source in conjunction with optical filters instead of the AOTF.  

The use of the optical filters allowed for the selection of a 25 nm wide wavelength range 

centred at λ = 690 nm.  In this case, high resolution scans of the plastic pipe at 8 

attenuation lengths were achieved, showing all the features of the target in great detail.  

At 9 attenuation lengths, depth scans were possible but the depth and spatial resolutions 

were not preserved due to the high level of scattering which reduced the SNR. 

Depth and spatial resolution were investigated, and the results showed that the smallest 

depth that could be resolved was approximately 300 µm when the target was placed at 

stand-off distances in the range 1 to 6 attenuation lengths. The achievable depth 

resolution decreased to a few millimetres as the level of scattering of the medium was 

increased so that the target was at a stand-off distance of 8 or 9 attenuation lengths.  It is 

important to say that this study was performed with the configuration characterised by 

the lower average optical power investigated in this Thesis.  Hence, these results 

established a lower limit for the achievable depth resolution which is strictly related to 

the instrumental response of the system, the attenuation of the environment, and the 

parameters chosen for the scan.  Therefore, a higher average optical power may improve 

the achievable depth resolution.  Studies on the spatial resolution showed that an 

angular resolution of approximately 60 µrad can be achieved in highly scattering 

underwater environments.  Due to the limited field of view afforded by the transceiver 

unit, only a little degradation was observed in spatial resolution as the level of scattering 

was increased and the target was at a stand-off distance equivalent to 8 attenuation 

lengths. 

Scans of the plastic pipe target were also performed at a stand-off distances equivalent 

to 10 attenuation lengths. However, a background component was introduced by the 

detector which was dependent on the count rate and could be related to afterpulsing [2].  

This effect in conjunction with the high level of scattering, detected secondary 

back-reflections which contributed to the overall count rate, and the highly attenuated 
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return from the target, made imaging the target at 10 attenuation lengths not possible 

with the current system configuration. 

All the depth profiles reported in Chapter 5 were formed using the pixel-wise cross 

correlation approach with no attempt to correlate neighbouring pixels.  The problem of 

image reconstruction through use of spatial correlations was discussed in Chapter 6, 

which showed three different methods for the reconstruction of depth, intensity and 

reflectivity images.  The first method was based on the sparseness of the Discrete 

Cosine Transform (DCT) domain [3], which allowed for the reconstruction of the depth 

and intensity images obtained with the cross-correlation approach.  This method was 

used to investigate the implications of short overall acquisition times for scans in highly 

scattering environments.  Different short acquisition times per pixel were extracted from 

an experimental scan of the target placed at 8 attenuation lengths, using 30 ms 

acquisition time per pixel, a 2.6 mW average optical power and a 240 × 240 pixel 

format.  In this case, it was demonstrated that the DCT based approach allowed for a 

reduction in the overall acquisition time from approximately 30 minutes to only a few 

seconds, sufficiently short to allow implementation in a number of real underwater 

application scenarios.  The same investigation was performed with the target placed at 

9 attenuation lengths, but the high level of scattering meant that pixels containing only 

noise contribute to the reconstruction of the image, making the algorithm less 

successful.  In order to investigate this higher attenuation level, Dr. Abderrahim Halimi 

developed two algorithms, the first based on Markov Chain Monte Carlo (MCMC) 

approach [4], and the second based on a Coordinate Descent Algorithm (CDA) [4]. The 

MCMC model generated an entire distribution that approximate the posterior 

distribution including appropriate priors, which comprised information about the 

attenuation of the environment and spatial correlation between neighbouring pixels.  

The algorithm was able to properly restore the depth of the plastic pipe target up to a 

stand-off distance equivalent to 8 attenuation lengths.  When the target was placed at a 

stand-off distance equivalent to 9 attenuation lengths, the algorithm successfully 

preserved the contours of the target, although retaining some noise in the image.  

Although this approach was fully automatic, it required long processing times, of the 

order of approximately 500 seconds, when implemented using MATLAB R2015a on a 

computer with Intel(R) Core(TM) i7- 4790 CPU@3.60GHz and 32GB RAM.  The 

CDA algorithm dealt with this problem, as it optimised the images generating only one 

point of the posterior distribution at each pixel.  This approach allowed for a reduction 
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in the processing times to approximately 20 seconds, although the algorithm 

over-smoothed the depth image of the target at 9 attenuation lengths.  In addition, both 

algorithms were able to restore the reflectivity of the target at stand-off distances 

equivalent to up to 7 attenuation lengths.  At longer distances, the target reflectivity was 

difficult to evaluate because the performance of both algorithms was strongly affected 

by the estimation of the attenuation coefficient.  This caused an overestimation of the 

target reflectance at 8 attenuation lengths, and a reflectance image at 9 attenuation 

lengths was not achieved. 

A model based on the LiDAR equation [5] was developed in order to evaluate the 

system’s time-of-flight ranging performance in water.  The model evaluated the number 

of photon events in the highest bin in the histogram peak when addressing a single 

pixel, including in the evaluation several parameters such as average optical power, 

attenuation of the optical elements, detector photon efficiency and temporal response, 

wavelength, target reflectance, and attenuation of the environment.  Several simulations 

were carried out in order to establish the maximum achievable scanning range.  The 

results suggested that stand-off distances equivalent to 10 attenuation lengths can be 

achieved under optimum conditions, including average optical power in the 10s of mW 

and a high reflectivity target.  

The potential of the system was investigated also for multispectral depth imaging.  

Several laboratory-based measurements were performed in free-space and in unfiltered 

tap water in order to validate bespoke algorithms for target classification and 

recognition.  Several laboratory-based measurements were performed in free-space, 

using 33 wavelengths in the range 500 – 820 nm. Dr. Yoann Altmann developed two 

algorithms based on the MCMC approach [6-9].  One algorithm investigated target 

classification due to colour and shape of each component of the targets in free-space, 

based on the spectral signature estimated in the investigated wavelength range.  The 

results demonstrated joint depth and spectral profiles, allowing for identification of 

spectral variations due to materials, colours, and orientation of the target surface. The 

second algorithm investigated quantification of colour abundances in targets, 

decomposing the spectra of the target elements in a linear combination of base materials 

in each pixel.  The results demonstrated that the algorithm allowed for the quantification 

of material abundances, showing promise in target discrimination.  Additional 

experiments were performed in unfiltered tap water, although due to the strong 
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attenuation of light in water a smaller operational wavelength range was chosen.  In 

particular, 16 wavelengths were selected in the range from λ = 500 nm to λ = 725 nm.  

Puneet Chhabra and Prof. Andy Wallace developed an algorithm which builds a point 

cloud of the area scanned, resulting in a 3D plot combining depth and spectral 

information [10].  The main contribution of the algorithm is that it is able to 

discriminate the experimental target signatures in order to automatically identify both 

material and geometrical characteristics of the different objects in the scanned area. 

9.2. Future work 

Longer range depth images will be investigated with a new submerged transceiver in a 

controlled environment, and then in a real underwater environment. Dr. Aongus 

McCarthy is currently developing this new system design, which consists of three main 

parts: the transceiver, the watertight tube housing, and the support frame.  The new 

optical design aims to overcome some of the limitations encountered during this PhD 

work, including minimising the detection of secondary back-reflections, a more 

uniformly illuminated field, and a wider optical field of regard.  This will be 

accomplished by incorporating in the new design a pair of off-axis parabolic mirrors, 

which will replace the pair of relay lenses used between the galvanometer mirrors in the 

existing unit.  The use of more reflecting optics will allow for less losses in the system, 

fewer back-reflections, easier alignment, and more straightforward change of 

operational wavelength.  

However, several investigations can be performed with the existing system as described 

in this Thesis.  In the results presented in the previous chapters, the target distance in 

attenuation lengths was increased acting only on the scattering properties of the 

medium, adding Maalox to unfiltered tap water.  This means increasing the scattering 

albedo of the medium [11], resulting in a high background level.  Therefore, future 

work will include investigating the case of targets placed at several attenuation lengths 

in a more absorbing medium.  This can be accomplished adding an appropriate dye to 

unfiltered tap water similar to the previous work of Cochenour et al. [11].  In this case, 

attenuation measurements should be performed in order to identify the operational 

wavelength for which the propagation of light is optimised. 
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Additionally, with appropriate reconfiguration, the transceiver unit can operate with a 

detector array instead of the individual SPAD detector.  Future work will include 

investigating the use of detector arrays for underwater imaging applications.  This 

approach may improve the overall acquisition time, as the image of the target can be 

obtained with a pixel format equal to the array dimensions or by using structured 

illumination.  However, this entails illuminating a wider area of the target, meaning that 

the use of a higher average optical power is necessary.  In addition, the field of view in 

this case would be much wider than the case considered in this Thesis, hence it is likely 

that the forward and backscattered light will degrade contrast and spatial resolution.  

Therefore, such a configuration may have the advantage of fast acquisition times but at 

the cost of shorter achievable ranges.  The use of Si CMOS SPAD detector arrays will 

be investigated to ascertain their ideal operating regime in underwater depth imaging 

scenarios.  

In order to reduce the acquisition times at 9 attenuation lengths, further studies will be 

performed with the DCT, MCMC, and CDA approaches.  Shorter acquisition times will 

be extracted from existing scans in order to investigate the effects of shorter 

measurement acquisition times on image quality in such a highly scattering 

environment.  In addition, work is ongoing on the investigation of future applications of 

multispectral depth imaging.  In particular, studies on the minimum number of 

wavelengths and short acquisition times will be performed in order to establish the 

limitations of the models. 
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