133 research outputs found

    多変量時系列データの変分オートエンコーダによるロバストな教示なし異常検知

    Get PDF
    九州工業大学博士学位論文 学位記番号:情工博甲第370号 学位授与年月日:令和4年9月26日1: Introduction|2: Background & Theory|3: Methodology|4: Experiments and Discussion|5: Conclusions九州工業大学令和4年

    Machine Learning in Manufacturing towards Industry 4.0: From ‘For Now’ to ‘Four-Know’

    Get PDF
    While attracting increasing research attention in science and technology, Machine Learning (ML) is playing a critical role in the digitalization of manufacturing operations towards Industry 4.0. Recently, ML has been applied in several fields of production engineering to solve a variety of tasks with different levels of complexity and performance. However, in spite of the enormous number of ML use cases, there is no guidance or standard for developing ML solutions from ideation to deployment. This paper aims to address this problem by proposing an ML application roadmap for the manufacturing industry based on the state-of-the-art published research on the topic. First, this paper presents two dimensions for formulating ML tasks, namely, ’Four-Know’ (Know-what, Know-why, Know-when, Know-how) and ’Four-Level’ (Product, Process, Machine, System). These are used to analyze ML development trends in manufacturing. Then, the paper provides an implementation pipeline starting from the very early stages of ML solution development and summarizes the available ML methods, including supervised learning methods, semi-supervised methods, unsupervised methods, and reinforcement methods, along with their typical applications. Finally, the paper discusses the current challenges during ML applications and provides an outline of possible directions for future developments

    Deep CNN-Based Automated Optical Inspection for Aerospace Components

    Get PDF
    ABSTRACT The defect detection problem is of outmost importance in high-tech industries such as aerospace manufacturing and is widely employed using automated industrial quality control systems. In the aerospace manufacturing industry, composite materials are extensively applied as structural components in civilian and military aircraft. To ensure the quality of the product and high reliability, manual inspection and traditional automatic optical inspection have been employed to identify the defects throughout production and maintenance. These inspection techniques have several limitations such as tedious, time- consuming, inconsistent, subjective, labor intensive, expensive, etc. To make the operation effective and efficient, modern automated optical inspection needs to be preferred. In this dissertation work, automatic defect detection techniques are tested on three levels using a novel aerospace composite materials image dataset (ACMID). First, classical machine learning models, namely, Support Vector Machine and Random Forest, are employed for both datasets. Second, deep CNN-based models, such as improved ResNet50 and MobileNetV2 architectures are trained on ACMID datasets. Third, an efficient defect detection technique that combines the features of deep learning and classical machine learning model is proposed for ACMID dataset. To assess the aerospace composite components, all the models are trained and tested on ACMID datasets with distinct sizes. In addition, this work investigates the scenario when defective and non-defective samples are scarce and imbalanced. To overcome the problems of imbalanced and scarce datasets, oversampling techniques and data augmentation using improved deep convolutional generative adversarial networks (DCGAN) are considered. Furthermore, the proposed models are also validated using one of the benchmark steel surface defects (SSD) dataset

    Machine Learning for Cyber Physical Systems

    Get PDF
    This open access proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains selected papers from the fifth international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Berlin, March 12-13, 2020. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments

    Laboratory Directed Research and Development Program FY 2008 Annual Report

    Full text link

    Building transformative framework for isolation and mitigation of quality defects in multi-station assembly systems using deep learning

    Get PDF
    The manufacturing industry is undergoing significant transformation towards electrification (e-mobility). This transformation has intensified critical development of new lightweight materials, structures and assembly processes supporting high volume and high variety production of Battery Electric Vehicles (BEVs). As new materials and processes get developed it is crucial to address quality defects detection, prediction, and prevention especially given that e-mobility products interlink quality and safety, for example, assembly of ‘live’ battery systems. These requirements necessitate the development of methodologies that ensure quality requirements of products are satisfied from Job 1. This means ensuring high right-first-time ratio during process design by reducing manual and ineffective trial-and-error process adjustments; and, then continuing this by maintaining near zero-defect manufacturing during production by reducing Mean-Time-to-Detection and Mean-Time-to-Resolution for critical quality defects. Current technologies for isolating and mitigating quality issues provide limited performance within complex manufacturing systems due to (i) limited modelling abilities and lack capabilities to leverage point cloud quality monitoring data provided by recent measurement technologies such as 3D scanners to isolate defects; (ii) extensive dependence on manual expertise to mitigate the isolated defects; and, (iii) lack of integration between data-driven and physics-based models resulting in limited industrial applicability, scalability and interpretability capabilities, hence constitute a significant barrier towards ensuring quality requirements throughout the product lifecycle. The study develops a transformative framework that goes beyond improving the accuracy and performance of current approaches and overcomes fundamental barriers for isolation and mitigation of product shape error quality defects in multi-station assembly systems (MAS). The proposed framework is based on three methodologies which explore MAS: (i) response to quality defects by isolating process parameters (root causes (RCs)) causing unaccepted shape error defects; (ii) correction of the isolated RCs by determining corrective actions (CA) policy to mitigate unaccepted shape error defects; and, (iii) training, scalability and interpretability of (i) and (ii) by establishing closed-loop in-process (CLIP) capability that integrates in-line point cloud data, deep learning approaches of (i) and (ii) and physics-based models to provide comprehensive data-driven defect identification and RC isolation (causality analysis). The developed methodologies include: (i) Object Shape Error Response (OSER) to isolate RCs within single- and multi-station assembly systems (OSER-MAS) by developing Bayesian 3D-convolutional neural network architectures that process point cloud data and are trained using physics-based models and have capabilities to relate complex product shape error patterns to RCs. It quantifies uncertainties and is applicable during the design phase when no quality monitoring data is available. (ii) Object Shape Error Correction (OSEC) to generate CAs that mitigate RCs and simultaneously account for cost and quality key performance indicators (KPIs), MAS reconfigurability, and stochasticity by developing a deep reinforcement learning framework that estimates effective and feasible CAs without manual expertise. (iii) Closed-Loop In-Process (CLIP) to enable industrial adoption of approaches (i) & (ii) by firstly enhancing the scalability by using (a) closed-loop training, and (b) continual/transfer learning. This is important as training deep learning models for a MAS is time-intensive and requires large amounts of labelled data; secondly providing interpretability and transparency for the estimated RCs that drive costly CAs using (c) 3D gradient-based class activation maps. The methods are implemented as independent kernels and then integrated within a transformative framework which is further verified, validated, and benchmarked using industrial-scale automotive sheet metal assembly case studies such as car door and cross-member. They demonstrate 29% better performance for RC isolation and 40% greater effectiveness for CAs than current statistical and engineering-based approaches

    Hydrogen evolution and transport in semiconductors

    Get PDF
    Silicon-on-insulator structures are used for the fabrication of integrated electronic circuits, photonic devices and structures, and micro-electro-mechanical systems. The most common fabrication method for SOI is a hydrogen-induced cleavage technique in which ion-implanted hydrogen is employed to initiate and propagate cracks in a plane parallel to the silicon surface. Considerable research effort has been devoted to understanding this cleavage technique in (100) silicon but several fundamental issues remain unclear, including the role of stress on hydrogen platelet alignment. In addition, there is keen interest in extending the technique to other silicon orientations (i.e. (110) and (111)) and semiconductor materials (e.g. Ge). The intrinsic behaviour of hydrogen ion-implanted into Ge and Si was examined by ion beam analysis, optical profilometry and microscopy, to establish the influence of lattice damage and hydrogen evolution. In particular, hydrogen-induced blistering and crater formation under thermal annealing from T=300-650 degrees Celsius was studied to determine the activation energies in Ge and Si in several crystalline orientations. Similar techniques were employed as the influence of extrinsic applied stresses upon hydrogen's evolution within Si was studied, by mechanical stress application onto Si(100). XTEM was used to study the defect evolution related to the hydrogen and ion-implantation damage under anneals applied to samples under stress, in addition to samples produced in different stress conditions. Blistering rate and areal density was seen to follow logistic sigmoidal functions in all materials. Constant activation energies were measured for all Si samples under selected implantation conditions, but multiple activation energies were found in each Ge sample when the conditions were varied. Si(100) & Si(111) both blistered readily for all temperatures, Si(110) required higher H fluence and Ge showed inconsistent behaviour at different implantation conditions. Blister crater depth and roughness may be closer linked to local H concentration rather than total implantation fluence. High level doping of Si does not significantly change the dynamics of H blister formation, with potentially exploitable benefits for SOI production. Stress induced by ion implantation in Si and Ge is tensile, relaxes somewhat with thermal annealing, in the order of <1 MPa. Both 50 and 375um Si wafers behave similarly when implanted with H. Tensile stress applied to H-implanted thick Si(100) influenced hydrogen defect alignment within the lattice, shifting complexes to [110] and [100] planes following annealing. In ULTRATHIN Si, application of tensile stress may relatively diminish and compressive stress enhance diffusion of H, although any applied stress during implantation is seen to decrease H concentration. Applied stresses above 400 MPa cause the height of hydrogen surface blisters to decrease and density to increase. Blisters formed during annealing are not permanently decorated with nor contain hydrogen, whether under applied stress or not. Orientations of detectable defects are not strongly affected by application of stress, however concentrations are seen to decrease at high stress. The location of the ion-cut inducing defect does not appear to correspond to long term measurements of H or implantation damage, and may be even shallower, but this cannot be unambiguously confirmed
    corecore