4,401 research outputs found

    Understanding the Security and Robustness of SIFT

    Get PDF
    Many content-based retrieval systems (CBIRS) describe images using the SIFT local features because they provide very robust recognition capabilities. While SIFT features proved to cope with a wide spectrum of general purpose image distortions, its security has not fully been assessed yet. Hsu \emph{et al.} in~\cite{hsu09:_secur_robus_sift} show that very specific anti-SIFT attacks can jeopardize the keypoint detection. These attacks can delude systems using SIFT targeting application such as image authentication and (pirated) copy detection. Having some expertise in CBIRS, we were extremely concerned by their analysis. This paper presents our own investigations on the impact of these anti-SIFT attacks on a real CBIRS indexing a large collection of images. The attacks are indeed not able to break the system. A detailed analysis explains this assessment

    Understanding the Security and Robustness of SIFT

    Get PDF
    Many content-based retrieval systems (CBIRS) describe images using the SIFT local features because they provide very robust recognition capabilities. While SIFT features proved to cope with a wide spectrum of general purpose image distortions, its security has not fully been assessed yet. Hsu \emph{et al.} in~\cite{hsu09:_secur_robus_sift} show that very specific anti-SIFT attacks can jeopardize the keypoint detection. These attacks can delude systems using SIFT targeting application such as image authentication and (pirated) copy detection. Having some expertise in CBIRS, we were extremely concerned by their analysis. This paper presents our own investigations on the impact of these anti-SIFT attacks on a real CBIRS indexing a large collection of images. The attacks are indeed not able to break the system. A detailed analysis explains this assessment

    Robust Object-Based Watermarking Using SURF Feature Matching and DFT Domain

    Get PDF
    In this paper we propose a robust object-based watermarking method, in which the watermark is embedded into the middle frequencies band of the Discrete Fourier Transform (DFT) magnitude of the selected object region, altogether with the Speeded Up Robust Feature (SURF) algorithm to allow the correct watermark detection, even if the watermarked image has been distorted. To recognize the selected object region after geometric distortions, during the embedding process the SURF features are estimated and stored in advance to be used during the detection process. In the detection stage, the SURF features of the distorted image are estimated and match them with the stored ones. From the matching result, SURF features are used to compute the Affine-transformation parameters and the object region is recovered. The quality of the watermarked image is measured using the Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) and the Visual Information Fidelity (VIF). The experimental results show the proposed method provides robustness against several geometric distortions, signal processing operations and combined distortions. The receiver operating characteristics (ROC) curves also show the desirable detection performance of the proposed method. The comparison with a previously reported methods based on different techniques is also provided

    Attacks against a Simplified Experimentally Feasible Semiquantum Key Distribution Protocol

    Full text link
    A semiquantum key distribution (SQKD) protocol makes it possible for a quantum party and a classical party to generate a secret shared key. However, many existing SQKD protocols are not experimentally feasible in a secure way using current technology. An experimentally feasible SQKD protocol, "classical Alice with a controllable mirror" (the "Mirror protocol"), has recently been presented and proved completely robust, but it is more complicated than other SQKD protocols. Here we prove a simpler variant of the Mirror protocol (the "simplified Mirror protocol") to be completely non-robust by presenting two possible attacks against it. Our results show that the complexity of the Mirror protocol is at least partly necessary for achieving robustness.Comment: 9 page

    Feature-Guided Black-Box Safety Testing of Deep Neural Networks

    Full text link
    Despite the improved accuracy of deep neural networks, the discovery of adversarial examples has raised serious safety concerns. Most existing approaches for crafting adversarial examples necessitate some knowledge (architecture, parameters, etc.) of the network at hand. In this paper, we focus on image classifiers and propose a feature-guided black-box approach to test the safety of deep neural networks that requires no such knowledge. Our algorithm employs object detection techniques such as SIFT (Scale Invariant Feature Transform) to extract features from an image. These features are converted into a mutable saliency distribution, where high probability is assigned to pixels that affect the composition of the image with respect to the human visual system. We formulate the crafting of adversarial examples as a two-player turn-based stochastic game, where the first player's objective is to minimise the distance to an adversarial example by manipulating the features, and the second player can be cooperative, adversarial, or random. We show that, theoretically, the two-player game can con- verge to the optimal strategy, and that the optimal strategy represents a globally minimal adversarial image. For Lipschitz networks, we also identify conditions that provide safety guarantees that no adversarial examples exist. Using Monte Carlo tree search we gradually explore the game state space to search for adversarial examples. Our experiments show that, despite the black-box setting, manipulations guided by a perception-based saliency distribution are competitive with state-of-the-art methods that rely on white-box saliency matrices or sophisticated optimization procedures. Finally, we show how our method can be used to evaluate robustness of neural networks in safety-critical applications such as traffic sign recognition in self-driving cars.Comment: 35 pages, 5 tables, 23 figure

    Place recognition: An Overview of Vision Perspective

    Full text link
    Place recognition is one of the most fundamental topics in computer vision and robotics communities, where the task is to accurately and efficiently recognize the location of a given query image. Despite years of wisdom accumulated in this field, place recognition still remains an open problem due to the various ways in which the appearance of real-world places may differ. This paper presents an overview of the place recognition literature. Since condition invariant and viewpoint invariant features are essential factors to long-term robust visual place recognition system, We start with traditional image description methodology developed in the past, which exploit techniques from image retrieval field. Recently, the rapid advances of related fields such as object detection and image classification have inspired a new technique to improve visual place recognition system, i.e., convolutional neural networks (CNNs). Thus we then introduce recent progress of visual place recognition system based on CNNs to automatically learn better image representations for places. Eventually, we close with discussions and future work of place recognition.Comment: Applied Sciences (2018
    • …
    corecore