1,838 research outputs found

    Edge IoT Driven Framework for Experimental Investigation and Computational Modeling of Integrated Food, Energy, and Water System

    Get PDF
    As the global population soars from today’s 7.3 billion to an estimated 10 billion by 2050, the demand for Food, Energy, and Water (FEW) resources is expected to more than double. Such a sharp increase in demand for FEW resources will undoubtedly be one of the biggest global challenges. The management of food, energy, water for smart, sustainable cities involves a multi-scale problem. The interactions of these three dynamic infrastructures require a robust mathematical framework for analysis. Two critical solutions for this challenge are focused on technology innovation on systems that integrate food-energy-water and computational models that can quantify the FEW nexus. Information Communication Technology (ICT) and the Internet of Things (IoT) technologies are innovations that will play critical roles in addressing the FEW nexus stress in an integrated way. The use of sensors and IoT devices will be essential in moving us to a path of more productivity and sustainability. Recent advancements in IoT, Wireless Sensor Networks (WSN), and ICT are one lever that can address some of the environmental, economic, and technical challenges and opportunities in this sector. This dissertation focuses on quantifying and modeling the nexus by proposing a Leontief input-output model unique to food-energy-water interacting systems. It investigates linkage and interdependency as demand for resource changes based on quantifiable data. The interdependence of FEW components was measured by their direct and indirect linkage magnitude for each interaction. This work contributes to the critical domain required to develop a unique integrated interdependency model of a FEW system shying away from the piece-meal approach. The physical prototype for the integrated FEW system is a smart urban farm that is optimized and built for the experimental portion of this dissertation. The prototype is equipped with an automated smart irrigation system that uses real-time data from wireless sensor networks to schedule irrigation. These wireless sensor nodes are allocated for monitoring soil moisture, temperature, solar radiation, humidity utilizing sensors embedded in the root area of the crops and around the testbed. The system consistently collected data from the three critical sources; energy, water, and food. From this physical model, the data collected was structured into three categories. Food data consists of: physical plant growth, yield productivity, and leaf measurement. Soil and environment parameters include; soil moisture and temperature, ambient temperature, solar radiation. Weather data consists of rainfall, wind direction, and speed. Energy data include voltage, current, watts from both generation and consumption end. Water data include flow rate. The system provides off-grid clean PV energy for all energy demands of farming purposes, such as irrigation and devices in the wireless sensor networks. Future reliability of the off-grid power system is addressed by investigating the state of charge, state of health, and aging mechanism of the backup battery units. The reliability assessment of the lead-acid battery is evaluated using Weibull parametric distribution analysis model to estimate the service life of the battery under different operating parameters and temperatures. Machine learning algorithms are implemented on sensor data acquired from the experimental and physical models to predict crop yield. Further correlation analysis and variable interaction effects on crop yield are investigated

    OpenFOAM implementation for the study of streamwise vortex-induced vibration-based energy harvester for sensor networks

    Get PDF
    The study of streamwise vortex induced vibration has reached a level of maturity that allows it to be harnessed to generate power. However, studies have primarily concentrated on the variables that measured through point-based instruments. This severely limits our understanding of the fluid forcing mechanism that results in the vibration of the elastically supported bluff body. We proposed the usage of computational fluid dynamics: the open source C++ libraries of OpenFOAM. To implement this successfully to the streamwise vortex-induced vibration problem, which involves near-wall fluid-structure interaction, we explored the method of dynamic mesh handling in OpenFOAM for six degrees of freedom motion of a rigid body fully submerged in fluid. Finally, we argued for the usage of arbitrarily coupled mesh interface to overcome the problem of severely distorted mesh in tight gaps between two walls. We run a short simulation to test this setup and found that the case runs uninterrupted, unlike its former counterpart that relies solely on cell displacement diffusion, suggesting the potential success of a further converged solution of the setup when running on a more powerful machine

    TCitySmartF: A comprehensive systematic framework for transforming cities into smart cities

    Get PDF
    A shared agreed-upon definition of "smart city" (SC) is not available and there is no "best formula" to follow in transforming each and every city into SC. In a broader inclusive definition, it can be described as an opportunistic concept that enhances harmony between the lives and the environment around those lives perpetually in a city by harnessing the smart technology enabling a comfortable and convenient living ecosystem paving the way towards smarter countries and the smarter planet. SCs are being implemented to combine governors, organisations, institutions, citizens, environment, and emerging technologies in a highly synergistic synchronised ecosystem in order to increase the quality of life (QoL) and enable a more sustainable future for urban life with increasing natural resource constraints. In this study, we analyse how to develop citizen- and resource-centric smarter cities based on the recent SC development initiatives with the successful use cases, future SC development plans, and many other particular SC development solutions. The main features of SC are presented in a framework fuelled by recent technological advancement, particular city requirements and dynamics. This framework - TCitySmartF 1) aims to aspire a platform that seamlessly forges engineering and technology solutions with social dynamics in a new philosophical city automation concept - socio-technical transitions, 2) incorporates many smart evolving components, best practices, and contemporary solutions into a coherent synergistic SC topology, 3) unfolds current and future opportunities in order to adopt smarter, safer and more sustainable urban environments, and 4) demonstrates a variety of insights and orchestrational directions for local governors and private sector about how to transform cities into smarter cities from the technological, social, economic and environmental point of view, particularly by both putting residents and urban dynamics at the forefront of the development with participatory planning and interaction for the robust community- and citizen-tailored services. The framework developed in this paper is aimed to be incorporated into the real-world SC development projects in Lancashire, UK

    Optimizing Onion Crop Management: A Smart Agriculture Framework with IoT Sensors and Cloud Technology

    Get PDF
    Smart agriculture, fueled by the integration of Internet of Things (IoT) and cloud technology, has revolutionized modern farming practices. In this study, we propose a step-by-step framework for optimizing onion crop management using IoT sensors and cloud-based solutions. By deploying various IoT sensors, including soil moisture, temperature, humidity, and aerial drones, essential data about the onion crops is collected and transmitted to a central data hub. Optional edge computing devices enable real-time data processing, minimizing latency and bandwidth usage.The collected data is aggregated and stored securely on a cloud platform, which facilitates advanced data analysis and insights. Utilizing machine learning algorithms, the cloud platform can provide valuable information about the onion's growth patterns, health status, and growth trajectory. Farmers can easily access this information through a user-friendly dashboard, accessible via web or mobile applications.Automated alerts and notifications enable timely intervention, notifying farmers about any deviations from optimal conditions, such as low moisture levels or pest infestations. The system's predictive capabilities allow for precision irrigation and nutrient management, optimizing resource usage and improving crop health.The accumulated historical data offers a wealth of information, enabling the identification of trends and the prediction of growth patterns for future planting seasons. Throughout this process, data security and privacy measures are prioritized, with encrypted data transmission and storage to protect farmers' sensitive information.The integration of IoT and cloud technology provides an efficient and effective solution for monitoring onion crop growth. The proposed framework offers farmers valuable insights, improves productivity, and promotes sustainable agricultural practices

    Privacy of IoT-Enabled Smart Home Systems

    Get PDF
    Digital ecosystems are going through a period of change due to the advancement in technologies such as Internet of Things (IoT) as well as proliferation of less expensive hardware sensors. Through this chapter, we present current emerging trends in IoT in different industry sectors as well as discuss the key privacy challenges impeding the growth of IoT to reach its potential in the smart home context. The majority of the existing literature on IoT smart home platforms focuses on functionalities provided by smarter connected devices; however, it does not address the concerns from a consumer’s viewpoint. Thus, the key questions are: What are the privacy concerns related to IoT, particularly from a “smart home device” consumer viewpoint? What are the existing remedial approaches for privacy management? This chapter proposes a framework to assist smart home user and IoT device manufacturer to make informed privacy management decisions. The findings of this research intend to help practitioners and researchers interested in the privacy of IoT-enabled smart systems

    Implementation of Middleware for Internet of Things in Asset Tracking Applications: In-lining Approach

    Get PDF
    ThesisInternet of Things (IoT) is a concept that involves giving objects a digital identity and limited artificial intelligence, which helps the objects to be interactive, process data, make decisions, communicate and react to events virtually with minimum human intervention. IoT is intensified by advancements in hardware and software engineering and promises to close the gap that exists between the physical and digital worlds. IoT is paving ways to address complex phenomena, through designing and implementation of intelligent systems that can monitor phenomena, perform real-time data interpretation, react to events, and swiftly communicate observations. The primary goal of IoT is ubiquitous computing using wireless sensors and communication protocols such as Bluetooth, Wireless Fidelity (Wi-Fi), ZigBee and General Packet Radio Service (GPRS). Insecurity, of assets and lives, is a problem around the world. One application area of IoT is tracking and monitoring; it could therefore be used to solve asset insecurity. A preliminary investigation revealed that security systems in place at Central University of Technology, Free State (CUT) are disjointed; they do not instantaneously and intelligently conscientize security personnel about security breaches using real time messages. As a result, many assets have been stolen, particularly laptops. The main objective of this research was to prove that a real-life application built over a generic IoT architecture that innovatively and intelligently integrates: (1) wireless sensors; (2) radio frequency identification (RFID) tags and readers; (3) fingerprint readers; and (4) mobile phones, can be used to dispel laptop theft. To achieve this, the researcher developed a system, using the heterogeneous devices mentioned above and a middleware that harnessed their unique capabilities to bring out the full potential of IoT in intelligently curbing laptop theft. The resulting system has the ability to: (1) monitor the presence of a laptop using RFID reader that pro-actively interrogates a passive tag attached to the laptop; (2) detect unauthorized removal of a laptop under monitoring; (3) instantly communicate security violations via cell phones; and (4) use Windows location sensors to track the position of a laptop using Googlemaps. The system also manages administrative tasks such as laptop registration, assignment and withdrawal which used to be handled manually. Experiments conducted using the resulting system prototype proved the hypothesis outlined for this research

    Cyber–Physical–Social Frameworks for Urban Big Data Systems: A Survey

    Get PDF
    The integration of things’ data on the Web and Web linking for things’ description and discovery is leading the way towards smart Cyber–Physical Systems (CPS). The data generated in CPS represents observations gathered by sensor devices about the ambient environment that can be manipulated by computational processes of the cyber world. Alongside this, the growing use of social networks offers near real-time citizen sensing capabilities as a complementary information source. The resulting Cyber–Physical–Social System (CPSS) can help to understand the real world and provide proactive services to users. The nature of CPSS data brings new requirements and challenges to different stages of data manipulation, including identification of data sources, processing and fusion of different types and scales of data. To gain an understanding of the existing methods and techniques which can be useful for a data-oriented CPSS implementation, this paper presents a survey of the existing research and commercial solutions. We define a conceptual framework for a data-oriented CPSS and detail the various solutions for building human–machine intelligence

    National Conference on COMPUTING 4.0 EMPOWERING THE NEXT GENERATION OF TECHNOLOGY (Era of Computing 4.0 and its impact on technology and intelligent systems)

    Get PDF
    As we enter the era of Computing 4.0, the landscape of technology and intelligent systems is rapidly evolving, with groundbreaking advancements in artificial intelligence, machine learning, data science, and beyond. The theme of this conference revolves around exploring and shaping the future of these intelligent systems that will revolutionize industries and transform the way we live, work, and interact with technology. Conference Topics Quantum Computing and Quantum Information Edge Computing and Fog Computing Artificial Intelligence and Machine Learning in Computing 4.0 Internet of Things (IOT) and Smart Cities Block chain and Distributed Ledger Technologies Cybersecurity and Privacy in the Computing 4.0 Era High-Performance Computing and Parallel Processing Augmented Reality (AR) and Virtual Reality (VR) Applications Cognitive Computing and Natural Language Processing Neuromorphic Computing and Brain-Inspired Architectures Autonomous Systems and Robotics Big Data Analytics and Data Science in Computing 4.0https://www.interscience.in/conf_proc_volumes/1088/thumbnail.jp
    • …
    corecore