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Abstract: The integration of things’ data on the Web and Web linking for things’ description and 

discovery is leading the way towards smart Cyber–Physical Systems (CPS). The data generated in 

CPS represents observations gathered by sensor devices about the ambient environment that can be 

manipulated by computational processes of the cyber world. Alongside this, the growing use of 

social networks offers near real-time citizen sensing capabilities as a complementary information 

source. The resulting Cyber–Physical–Social System (CPSS) can help to understand the real world 

and provide proactive services to users. The nature of CPSS data brings new requirements and 

challenges to different stages of data manipulation, including identification of data sources, 

processing and fusion of different types and scales of data. To gain an understanding of the existing 

methods and techniques which can be useful for a data-oriented CPSS implementation, this paper 

presents a survey of the existing research and commercial solutions. We define a conceptual 

framework for a data-oriented CPSS and detail the various solutions for building human–machine 

intelligence.  

Keywords: Cyber–Physical–Social Systems; survey; cross-space data fusion; social intelligence; 

urban awareness; Internet of Things 

 

1. Introduction 

The emerging computing paradigm of Cyber–Physical–Social Systems (CPSS) builds on the 

technology developments in Cyber–Physical Systems (CPS) and Cyber–Social Systems (CSS) [1–3]. 

As depicted in Figure 1, a variety of sensors and actuators monitor the behavior and phenomena in 

the physical world and the resultant data are moved to the cyber world, where they are analyzed to 

infer the state of the physical world and generate corresponding digital representations of the 

involved physical entities [4,5]. The digital representation is used to derive knowledge about the state 

of the physical world and to optimize and control it through actions implemented through actuators. 

The related research area that is concerned with the integration of physical processes and 

computation in order to merge the physical and cyber world is termed CPS [6]. The Internet of Things 

(IoT) paradigm, which seeks to interconnect computers to objects with self-configuring capabilities, 

plays an important role in the convergence of the physical and cyber worlds by ensuring secure and 

energy-efficient transfer of information (in both directions) between them [5]. The confluence of CPS 

with IoT has resulted in an impactful association of the physical world observations, sensed by the 

connected smart objects, with the computational processes of the cyber world. It has enabled 

modeling and reasoning of the physical phenomena, which coupled with efficient communication 

and data processing, can result in effective actuation [7]. 

The variety of devices that can monitor the physical environment, as depicted in Figure 1, 

encompass fixed sensor network installations (e.g., Wireless Sensor Networks (WSNs) for 
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environment monitoring [8–10], smart home installations [11] and sensor deployments for air quality 

monitoring [12]). The high installation cost of fixed sensor networks and insufficient spatial coverage 

has led to mobile sensing initiatives, primarily by city authorities [13], which involve sensors 

mounted on public transportation vehicles (e.g., for environment monitoring [14–16]).  

 

Figure 1. Cyber–Physical-–Social Systems (CPSS) (adapted from [17]). WSN：Wireless Sensor 

Networks 

The growing use of sensor-enabled smartphones and tighter interactions between them and their 

users means that such personal devices are becoming important tools to sense and inform about the 

ambient environment. Large numbers of such mobile smartphone users can then form a versatile 

sensing source, providing localized information, e.g., noise levels [18], traffic conditions [19], etc. This 

sensed information can then be aggregated and analyzed by the processes in the cyber world. 

Analogously, increasing numbers of people sharing information, in near real-time, about city-related 

events (e.g., traffic incidents [20,21] or earthquakes [22]) on online social networking platforms means 

that they can act as a complementary or corroborative information source of city dynamics [20]. The 

related technology paradigm, termed CSS, uses data on social behaviors and relationship analysis to 

provide relevant information services [1], for example, to discover neighborhoods and communities 

in a city or discovering the functions of different urban regions [23–27]. The technology paradigm 

that considers human and social dynamics as an integral part of CPS is termed CPSS [28]. CPSS are 

characterized by a deep interplay between sensors, actuators and smart objects that reside in the 

physical world; “richer technology-mediated social interactions” [29] and advanced reasoning 

applied to the collective intelligence.  

Smart cities are typical CPSS, being made possible by deployments of low-cost sensors, 

government initiatives on openly available city-centric data and citizens sharing and exchanging city-

related messages on social networks. The vast amounts of data obtained by the sensing of physical 

phenomena by distributed sensor networks and those contributed by city inhabitants through their 

sensor-enabled smartphones and on online social networks, can offer near real-time large-scale 

sensing for intelligence mining to facilitate responsive and intelligent services in urban settings [13]. 

Extracting knowledge out of the data, typically through big data analytics techniques, can help to 
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build a picture of urban dynamics, which can enable intelligent applications and services, and guide 

decision-making, both for city authorities and city inhabitants [21]. Implementations of CPSS 

applications are emerging in everyday life in smart urban systems, in domains as varied as command 

and control, smart environments, smart transportation, smart social production systems and so on 

[19,30–35]. Such applications rely on efficient monitoring of the urban physical infrastructure and 

ambient environment and combine the collected data through intelligent cyber processes to deliver 

improved services to citizens; for example, by adjusting traffic signal timings based on vehicle and 

cyclist arrival information [19,36], developing sustainable waste management systems [37] and 

recommending events/venues based on citizen preferences, proximity, road and environment 

(pollution levels) conditions [38,39]. The resulting urban big data system offers the potential of 

creating more sustainable and environment-friendly future cities [40]. 

While a number of CPSS implementations have focused on architectural views including fog 

[41] and cloud-based implementations [42] as well as multivariate data distribution platforms [43], a 

more data-centric view is needed to realize CPSSs for urban areas [40]. Such a data-centric perspective 

can help to create abstractions of the high-dimensional and high-volume data generated and 

exchanged by the heterogeneous devices, which can then be analyzed and fused through analytics 

and reasoning techniques to build city intelligence. As the sensed physical world data is largely 

dependent on its surrounding environment, external information (e.g., locations, time, events 

gleaned from mobile crowd sensing that may influence sensed data) needs to be taken into account 

to derive relevant knowledge.  

A number of recent studies have reviewed urban CPSS from different aspects, with some 

focusing on the development stages of CPSS and the applicability of different system-level design 

methods for CPSS design [1,44]. Shih et al. [45] review the middleware, computation model, data 

quality and run-time environments necessary for smart building and smart city implementations, 

while Salim et al. [46] survey approaches for engaging human interaction with urban computing 

technologies. A survey of mobile crowd sensing approaches [13] that is closely aligned to this paper, 

presents a taxonomy based on the data collection steps, processing architecture and resulting 

applications. In contrast to these surveys, this article collects works on urban CPSS implementations 

and organizes them from a data perspective. The reviewed works are those that include all the three 

aspects of cyber-physical-social, i.e., the data collected involves both the physical world and mobile 

crowd sensed (social) data that is manipulated through various data processing techniques to fuse 

them together for collective urban intelligence. Both research studies and commercial solutions are 

reviewed, with a focus on methods for cross-space data fusion and collaborative sensing techniques. 

Thus, this paper makes the following contributions to the field of CPSS: 

• A conceptual framework for urban CPSS from the data perspective, based on the recognition, in 

current state of the art [29,46,47], of the need for multitier computation and abstraction methods 

(along the lines of the data–information–knowledge–wisdom (DIKW) pyramid proposed in [29]) 

to meet the challenges of dealing with big data in urban CPSS. 

• An analysis of the state-of-the-art data analytics and cross-space data fusion methods for 

integrating sensor data with social intelligence. 

• Categorizations of techniques adopted by existing works relevant to the different layers of the 

identified conceptual framework. 

The remainder of this article is organized as follows: Section 2 presents the background on the 

development of CPSS and its relation to the related concepts of CPS, IoT and human-in-the-loop CPS. 

Section 3 compares the reviewed works along the identified dimensions and introduces the proposed 

CPSS conceptual framework, detailing the different layers that are necessary from a data-centric 

perspective. Sections 4 to 7 present the details of the processes and corresponding existing solutions 

for each of the different layers of the framework, including data collection, processing, fusion and 

resulting application areas, respectively. Challenges and promising research areas are discussed in 

Section 8, with conclusions drawn in Section 9. 

2. Background of Cyber–Physical–Social Systems 
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Figure 2 shows the development of the CPSS paradigm, depicting the relevant background 

concepts and technological disciplines on which it is based. Moving from the bottom to the top of the 

inverted triangle in the figure represents increased levels of abstraction and increasing data volume. 

 

Figure 2. Evolution of CPSS. 

Studies on CPS development [44,48] trace the beginning of its evolution to mechatronic systems 

[49], which combine the disciplines of mechanical, control and electrical engineering in industrial 

processes. Examples of mechatronic systems include drive train and vehicle vibration analysis study 

[50]. In terms of abstraction, at this level, the design processes are well-defined and support the 

translation of the designed procedures into the physical systems [44]. In embedded systems, the focus 

is on the computational system embedded within a physical system (where the execution of the code 

takes place), example being a thermostat.  

CPS frameworks, which are designated to be successors of embedded systems [34], integrate 

computing with communication technology, together with control methodology. CPS are typically 

concerned with the sensing and control of physical phenomena through networks of interconnected 

devices to achieve defined goals. The field, which started from an engineering perspective, deals with 

the control and monitoring of physical environments through a tightly coupled distributed system 

of sensors and actuators [7]. Such systems have been geared towards disseminating the data sensed 

by mobile CPS with minimal delay to provide real-time services [51]. Examples of CPS 

implementation include adaptive air ventilation systems [52] and the MediaCup [53], which detects 

the temperature of the contents and warns users if it is too hot. In terms of abstraction and the 

relationship between the physical and cyber parts, it is defined by function [44]. 

The concept of IoT is closely linked with that of CPS in recent studies, with disparate views on 

the similarities and distinctions between the two concepts. Some studies [46] assert that while CPS 

focus on bridging the physical and cyber worlds, IoT is concerned with the unique identification of 

heterogeneous devices and smart objects and their connectivity to the Internet. Some authors [4] state 

that while there are similarities between CPS and IoT, i.e., device cooperation to reach defined goals, 

IoT has a horizontal view comprised of hardware components interacting with each other, whereas 

CPS takes a vertical approach encompassing networked hardware, computational processes and 

control mechanisms. Other studies [45], while acknowledging the difference in system architectures 

of CPS and IoT, refer to them interchangeably. An increased level of abstraction in IoT is attributed 

to a large number of undefined factors, which are known only in terms of contribution to the system 

operation [44].  

In contrast to classical CPS, recent studies have recognized the importance and possibility of 

human-in-the-loop (HiTL) CPS which involve control loops with humans interacting as inherent 

actors in it. Such HiTL systems are mainly individual-centric in that the focus is to learn the human 
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state, including physical, emotional and physiological condition, through brain-computer systems, 

enabling adaptability to human needs. In such systems, “humans need to be instrumented and be an 

integral part of the system” [46], which is recognized as infeasible and undesirable in urban 

computing scenarios [46]. HiTL systems have applications in areas such as assisted living, brain–

computer systems and factory settings with a human in the control center. Studies surveying HiTL 

systems include a survey of the field by Nunes et al. [7], and by Lee et al. for medical CPS [54]. 

Finally, CPSS integrate the various data originating from the physical, cyber and social spaces 

through fusion techniques to provide human-understandable abstractions and inferences. CPSS 

implementations in urban settings are geared towards reacting to the physical world and deriving 

knowledge of its state. 

3. Data-Centric Cyber–Physical–Social Urban Big Data Systems  

There have been a number of recent initiatives on data-oriented CPSS architecture 

implementations. However, these have largely orientated towards a particular focus, for instance, the 

underlying technologies being used (e.g., semantic web-based mechanisms [38,55]), data abstraction 

requirements [56] or application [33,57]. 

To arrive at a conceptual framework for urban CPSS, we start from the well-documented layer 

diagram [4] of a CPS, as shown in Figure 3a. The elements of a CPS implementation are recognized 

to include the sensor and actuator networks that sense and interact with the physical world; control 

components that retrieve the sensor data, perform local processing and manage the actuators in 

accordance to specified goals; data analytics (software) components that are responsible for the 

storage, processing and filtering of data obtained from the control elements; computation elements 

that are used to adapt the CPS to internal or external changes through “switching between operation 

modes” [4]; and communication elements that encompass a variety of technologies to support 

connectivity in the system. 

 

Figure 3. From Cyber–Physical Systems (CPS) to a data-driven CPSS; (a) main elements of a CPS 

framework and (b) data-oriented CPSS functional elements. 

For a data-oriented perspective of a CPSS implementation in urban settings, the emphasis needs 

to be on the data sourcing, collection and analysis mechanisms in order to obtain city intelligence 

[29,40]. Thus, we recognize that the communication elements are not the focus in a CPSS framework 

conceptualization since they can be assumed to be taken into account by the public/private 



Appl. Sci. 2017, 7, 1017 6 of 27 

institutions deploying the sensor networks (e.g., wired or wireless networks for data transfer), part 

of the enabling technologies (3G, 4G or WiFi networks) in the case of mobile crowd-sensing by 

smartphone-accompanied citizens or implicitly present as is the case in crowd observations posted 

on online social networks. Since urban CPSS are not designed to be tightly bound control loop 

architectures, the control and computation elements are also not translated into a CPSS 

conceptualization. Furthermore, it has been recognized in the current state of the art that CPSS 

computing requires multitier computation based on the DIKW dimensions, supported by 

mechanisms that deliver increasing abstractions to make the data human-understandable [29]. Each 

level of such a multi-tiered framework consists of a series of horizontal and vertical operators, with 

the horizontal operators responsible for mapping the multimodal data to common concepts to 

support integration within each level; and the vertical operators in charge of the translations from 

raw data to higher-level knowledge. We thus identify the following requirements of a data-driven 

CPSS framework, derived from the layer architecture of [40]: 

• Collaborative sensing sources: since different sources may provide data about the same physical 

resource (i.e., location, phenomenon etc.) from different aspects due to their inherent 

capabilities, the resulting data must be combined to achieve collaborative sensing. Smartphone-

carrying citizens are valuable sensing resources due to their inherent mobility around different 

parts of a city, together with observations made by citizens on online social networks about 

specific city-relevant situations. Citizen-contributed data can be a cooperative source of relevant 

data to complement that obtained from physical sensor networks.  

• Data analysis: in addition to preliminary steps such as data cleaning, redundancy elimination 

etc., data analysis should consider the inherent correlation between the data from different 

spaces (i.e., online or physical world) through detection of patterns and thematic–

spatiotemporal context relevance [58]. Thematic–spatiotemporal context awareness consists of 

associating the physical world numerical sensing data with external influencing information 

(e.g., locations, time, events that may influence sensed data), since urban data is often highly 

localized.  

• Cross-space data fusion: with the multimodal data collected from heterogeneous data sources, 

advanced mining techniques are needed to fuse the data which may be in different scales of 

measurement [59], for instance, physical sensor data which is usually in interval or ratio scale 

(involving quantitative variables) and open datasets which correspond to nominal or ordinal 

scale (involving qualitative classifications). 

Following the identification of the requirements, the layers for the proposed conceptual 

framework can be identified to consist of four layers: data sources, data processing and analytics, 

data fusion, and applications, as shown in Figure 3b.  

Data sources: this layer involves heterogeneous data sources for gathering urban data, including 

data from both fixed and mobile sites as well as user-contributed data. The corresponding data 

collection mechanisms cover a wide range, including data upload and retrieval from sensor gateways 

through Representational State Transfer (RESTful) Application Programming Interface (API) [60] or 

Constrained Application Protocol (CoAP) [61], opportunistic data transmission from mobile sensors 

[15,62], such as those mounted on public transport vehicles. User-contributed data involves citizens 

explicitly uploading data from their sensor-rich mobile phones as well as urban data information 

extracted from online social networks.  

Data processing: this layer details the various machine learning-based or logic-based data 

processing methods that are employed in the state of the art to derive information from the physical 

sensor networks data or from user data, usually in isolation, before being merged.  

Data fusion: this layer consists of various statistical or logic-based methods to integrate the 

outputs from the data processing layer in order to achieve a cohesive view of urban awareness. 

Crucial to achieving this urban intelligence is the fusion of cross-space, heterogeneous and 

multimodal data. 

Applications: this layer consists of the different kinds of applications that are enabled by CPSS.  
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A Taxonomy and Conceptual Framework for CPSS Solutions 

Following the identification of the data-specific elements for an urban CPSS implementation and 

its constituent layers, Table 1 provides a summary of the surveyed works and commercial solutions, 

delineating the methods applied for each of the layer implementations. In addition to the data-

specific elements identified above, Table 1 also lists the system components encountered in the 

reviewed works (if specified in the related articles). 

To analyze the various disparate existing methods for data manipulation and the resulting 

applications in the CPSS domain as reviewed in this article, we outline the various functional blocks 

of a conceptual CPSS framework, as presented in Figure 4.  

 

Figure 4. A conceptual framework for CPSS. 

Figure 4 maps the identified CPSS elements from Figure 3b to the four layers of data sources, 

data processing, data fusion, and applications. The following sections of this article elaborate and 

categorize the various techniques and mechanisms employed for the different data-specific tasks. 
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Table 1. A Taxonomy of Urban CPSS Implementations. 

Reference System Components Data Sources Data Processing Data Fusion Applications 

Wi-City-Plus 

[38,39] 

Communication layer,  

monitoring layer,  

application layer,  

semantic layer 

Environment monitoring data, 

weather data, user health data,  

Static information (city 

ontologies),  

Participatory sensing for 

traffic conditions 

Fuzzy rules through SPARQL Protocol and 

RDF Query Language (SPARQL) 

Semantics-based 

mobility and logistics 

recommendation 

Decision support 

system for  

Event and path 

recommendation, 

Road incident alerts, 

Elderly care 

Komninos et al. [57] 

Social media cloud, Web-based 

Geographic Information System (GIS), 

Mobile/Web apps, Cloud-based service 

infrastructure 

Foursquare check-ins, Traffic 

volume measurements, 

Pollutant levels 

Diurnal cumulative average 
Cross-space data 

correlation 
Urban rhythm  

J. Jin et al. [18] 

Data collection, Data processing  

Data management  

Data interpretation 

Fixed and mobile sensing 

infrastructure, Participatory 

sensing 

Visualization of cloud stored data - Noise mapping 

Jara et al. [63] 

Data read, data cleaning, data selection 

and transformation, data integration, 

analysis and visualization 

Traffic data,  

Temperature measurements 
Data aggregation for global mean 

Traffic patterns 

correlated with 

temperature 

- 

Noulas et al. [64] - 
Foursquare check-ins, call data 

records 

Spatial clustering, supervised classification 

algorithm 

Foursquare venue label 

correlated with cell 

tower location 

Urban neighborhood 

activity 

characterization 

Air quality 

assessment from 

social media [32] 

- 
Air pollution data  

Tweets 

Association rules, clustering, classification of 

air pollution data  

Sentiment analysis from tweets 

Air Quality Index (AQI) 

of air pollution data are 

combined with public 

opinion estimation 

through sentiment 

analysis of tweets 

Public opinion 

estimation of Air 

Pollution 

Yang et al. [65]  

Air quality data  

Subjective air quality feeling  

Activity status data from 

wearable sensors  

Reported health symptoms 

Computing of average of data 
Regression analysis on 

different kinds of data 

Public health and 

personal health 

Kuznetsov et al. 

[31] 
 

Global Positioning System 

(GPS)-based air quality 

sensors deployed by different 

communities of people 

Air quality data are analysed by different 

communities. People in different communities 

can check the data and give feedback. 

By analyzing data in 

different communities, 

expressions in the 

communities are 

discussed. 

Public activism 

analysis 

Guo et al. [40] 
Resource management Cooperative 

sensing  
Sensing data 

Quality maintenance  

Redundancy elimination  
Cross-Space Data Fusion - 
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Data pre-processing  

Data analysis 

Conflict resolution  

Semantic representation 

GroRec [66] - 

Different aspects of data from 

social networks, including 

user behaviors, reviews, and 

ratings etc. 

Tensor model for spatiotemporal user 

behaviors, clustering for group discovery 

Tensor decomposition,  

Group behavior data 

fusion for group 

discovery  

Pearson correlation for 

friendships 

Group 

recommendation 

Kuang et al. [42] - 
User behavior, spatiotemporal 

context 

Tensor model for video clips, user 

relationships, RDF documents 
Tensor decomposition Smart home 

Wang et al. [67] - User and device context 
Tensor model for relationships between users 

and devices 
Tensor decomposition 

Enhanced living 

environment 

Candra et al. [68] 

CPSS monitoring framework  

Thing-based systems  

Software-based systems  

Human-based systems 

Human, Software, Things-

related data 
Quality of data evaluation - 

Quality aware data 

delivery 

Dynamic Social 

Structure of Things 

[69] 

User context and profile management, 

Semantic rule engine, Natural 

Language Processing (NLP) 

User profile, Object 

capabilities modelled as social 

objects 

Event retrieval, goal determination 

Dynamic social structure 

of Things model 

generated through 

semantic reasoning  

Object and service 

relevance 

Smart Airport 

Smirnov et al. [55] - - 
Ontology modeling of physical, cyber and 

human spaces of a CPSS 
- 

Self-organizing 

resource network 

Szabó et al. [70] 

Streaming and persistence  

Serialization and caching  

Mobile data processing framework  

User defined functions 

Participatory sensing data 
Anomaly detection  

Visualization 
- 

Live transit feed  

Smart campus 

Difallah et al. [71] 

Water sensors  

Stream-processing subsystem  

array database management system 

Real-time water sensing data 

Local Indicators  

of Spatial Association (LISA) for Anomaly 

detection 

- 

Water Distribution 

Networks 

monitoring 

Star-City [72] 
Data access  

Data transportation 

Weather conditions  

Bus data stream  

Social media feeds  

Planned events and 

roadworks  

Static city map 

Spatiotemporal data analysis by SWRL 

(http://www.w3.org/Submission/SWRL/) rules 
Semantic reasoning Traffic prediction 

CityPulse [56] 

Large scale data stream processing 

modules  

Adaptive decision support modules 

(near) real-time IoT data  

Social media data streams 

Event detection  

Semantic Modeling Reasoning 

Complementary 

interpretation 

Travel planner  

Parking monitoring 
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SmartSantander 

[14,73] 

IoT node tier  

IoT gateway tier  

Server tier 

Environmental sensing data  

Parking  

Agriculture sensing data  

Participatory sensing 

- - 

Environmental 

monitoring  

Parking 

management  

Participatory sensing  

etc. 

CleanSpacce [74] - 
Pollution  

Temperature 
Simple aggregations of pollution levels 

Sensor information from 

all the users is combined 

based on location to 

create a map of the city 

Personal journey 

optimization 

Sentilio/Barcelona 

[75] 

Apps  

Data Processing Agents  

Realtime Storage  

Security/Governance/Monitoring  

Catalog  

Providers 

Smart meters  

smart bins  

location sensors in public 

transport  

sensors in the asphalt to detect 

parking spaces  

air quality sensors  

irrigation and water levels 

Rules on sensor data (methods not disclosed) - 

Urban optimization, 

street lights, parking 

spaces, energy 

savings 

SmartThings [76] 

Application Management  

Event Stream Layer  

Connectivity Layer  

API Layer 

Lights and Switches  

Outlets  

Motion Sensor  

Moisture Sensor  

Door/window sensor  

Camera/door locks 

Rule engine conditions on sensors 

Sensor information can 

be combined in different 

ways to create rules.  

External systems can 

also be integrated 

directly. 

Smart Home control 

Nest [77] 
Service Layer (details not disclosed)  

API Layer 

Thermostat/Temperature 

Sensors  

Smoke/CO sensors  

Presence sensor  

Energy Peaks 

Machine learning from usage (method not 

disclosed)  

Rules on alerts 

Combines data in the 

household to learn about 

habits and configures 

the thermostat 

accordingly. 

Smart Home 

optimization, energy 

savings 

W. Guo et al. [19] 
Perception, communication, 

computing, control, application 

V2I data, parking system 

sensors (cameras, infrared 

sensors), mobile sensors  

Person trip intent derivation 
Trip intent to influence 

traffic control system 

Smart parking, 

adaptive traffic 

control 

Delmastro et al. [78] 
Client side app,  

Server side 

Qualitative environment data, 

traffic data posted by users, 

personal activity data 

- - 
Participatory sensing 

platform 

Anagnostopoulos 

et al. [36] 

Client side app,  

Server side 

Sensing data from smart 

phones (GPS, time, velocity 

and direction) 

Different sleep models for energy efficiency - 

Intelligent traffic 

light control for 

cyclists 
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Zhou et al. [33] 
Client side app,  

Server side 

Bus information streams,  

Passenger GPS traces, Points-

of-Interest (POI) data 

Density-based clustering,  

Different prediction models for passenger 

demand 

- 
Bus passenger 

demand prediction 

MetroSense [79] 

Server Tier,  

SAP (Sensor Access Point) Tier,  

Sensor Tier 

Static and mobile sensors 
Sensor data mining,  

Sensor data anomaly detection 
- 

People-centric Urban 

Sensing enabling 

Smirnov et al. [11]  
Physical level, planning level, strategic 

level 

Ontology modeling of sensors 

and actuators (vacuum, 

cleaning robot) 

Ontology matching - 
Smart home cleaning 

scenario 
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4. Data Sources 

The data sources in a typical CPSS that can provide (near) real-time sensing capabilities of the 

urban environment, cover a broad field since they encompass both fixed and mobile sensor networks 

installed by city authorities as well as human contributed data, both with explicit knowledge (e.g., 

by users uploading city-related data from their sensor enabled smartphones) as well as passively 

(e.g., citizens contributing observations to social networks, that can then be analyzed for information 

in a specific city situation [80]). Figure 5 depicts a taxonomy of the various involved data sources, 

with the following sub-sections describing them in detail.  

 

Figure 5. A taxonomy of CPSS data sources. 

Many CPSS frameworks also derive intelligence by using domain knowledge, such as that 

contained in open datasets available in online repositories or city mapping data: this aspect of data 

source is outside the scope of this paper as the information is application-specific and also relatively 

static. 

4.1. Physical Sensor Deployments 

A basic sensor network deployment approach in urban areas involves fixed installations, where 

the location configurations of the deployed sensors remain static. Without any change in the location, 

the sensed data generated by the sensors form a continuous time-series, whose resolutions depend 

on the sampling rate of the sensors. The London Air Quality Network (LAQN) 

(https://www.londonair.org.uk/LondonAir/Default.aspx) is one such real deployment which has 

multiple types of weather sensors and air pollution sensors in London. LAQN deploys sensors in 

four different types of locations, including roadside, suburban, urban background, and industrial. 

The sensed air pollution data mainly consists of Carbon Monoxide (CO), Nitrogen Dioxide (NO2), 

Ozone (O3), PM10 Particulates, PM2.5 Particulates, and Sulphur Dioxide (SO2). These data are normally 

sampled every 15 min by each sensing site. LAQN offers access to the real-time air pollution data 

through heat maps and historical data downloads in comma-separated values (CSV) format. The 

available data includes the following parameters: site ID, sensing species, measurement date and 

time, measured value, measurement units, and whether the value is provisional or ratified. It also 

enables APIs for data access in eXtensible Markup Language (XML) and JavaScript Object Notation 

(JSON) formats according to different sensing sites or sensing species. Due to the provenance of the 

sensed data and known static context, fixed sensing has been applied for numerous sensing 

applications, such as air quality sensing [32,65], weather conditions [72], water distribution data [71] 

and traffic data [56,72]. Different supporting frameworks are also proposed [18,40,56]. The fixed 
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sensors involved in the water distribution network system [71] include the water sensors, which 

monitor the flow and pressure, and water quality sensors. The fixed sensor installation in the noise 

mapping architecture in [18] is based on the SmartSantander IoT architecture and is a realization of 

a WSN for urban sensing, with sensors mounted on public properties such as on street and traffic 

lights and on building facades. Mobile extensions for this architecture include sensors mounted on 

vehicles. 

The SmartSantander (http://www.smartsantander.eu/) project aims at a large number of sensor 

deployments in four different places: Belgrade, Guildford, Lübeck and Santander. The Santander 

testbed is a notable one as it has deployed heterogeneous sensors at a city scale. The sensors cover 

multiple areas: (1) environmental monitoring that can provide data for temperature, CO, noise, light 

and car presence; (2) traffic monitoring that involves data for traffic volumes, road occupancy, vehicle 

speed or queue length; (3) availability of parking slots; and (4) agriculture monitoring that provides 

data for moisture, temperature and humidity, pluviometer, anemometer. These data are publicly 

accessible through the SmartSantander Map (http://maps.smartsantander.eu/) in JSON and HTML 

format. The data contains information fields such as sensor node id, location of the sensor node, 

encoded sensing value, update date and time and multiple sensing values. An example of a 

SmartSantander observation data point is shown in Figure 6.  

 

Figure 6. SmartSantander data example and access interface. 

In addition to deployments of fixed sensors, SmartSantander also has deployments consisting of 

sensors attached to public vehicles, which enable a mobile sensing scenario that provides sensing 

data with changing locations. Similar initiatives have been adopted in Madrid [81], where pollen 

sensors have been mounted on public transport buses. Mobile sensors mounted on buses have also 

been deployed in a city in China [15], that monitor both urban physical environment and road 

conditions. The corresponding data are stored in databases and retrieved in XML format, containing 

the following fields: bus ID, bus line, temperature, humidity, speed, latitude, longitude, tested data, 

tested time and illumination data. Mobile sensing gives an opportunity for large scale environmental 

monitoring with limited number of sensors, however, it also needs a proper approach for managing 

the fast changes in the locations of data and data sources [62]. 

Another example can be found in the city of Barcelona and its multiple Smart City initiatives 

[75]. The city started to deploy sensors across the city in 2012, focusing on the areas of public transit, 

street lighting and waste management. Smart meters, smart bins, location sensors in public transport, 

sensors in the asphalt to detect parking spaces, air quality sensors, irrigation and water levels in 

public fountains are some of the sensors that have been successfully deployed. The sensor network 

relies on Sentilo [82], an open source data acquisition and sharing platform based on Web 

technologies. 

Intelligent Transportation Systems (ITS) applications involve a number of fixed sensor 

installations such as those in parking places (cameras at entrances, ultrasonic or infrared detectors in 

each parking space), road-side units providing traffic signal timing information, road size and 

pavement state [19].  
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4.2. Mobile Crowd Sensing 

4.2.1. Participatory Sensing 

This type of data source involves smartphone-carrying citizens forming participatory sensor 

networks for local knowledge gathering. This type of sensing involves explicit participation by the 

involved users. Citizens can be as well transformed into valuable data sources derived from their 

daily activity and usage of resources, both in the city and in their own spaces. 

The concept of participatory sensing was first introduced in [83]. The authors define it as tasks 

that gather, analyze, and share local knowledge through personal mobile handsets with or without 

intentional actions by handset owners. The handset owners can provide data for sensing or trigger 

sensing actions. The concept of participatory sensing is further distinguished from opportunistic 

sensing in [84] by whether humans are involved in the generation of sensing data. The involvement 

of humans in the sensing process however, may lead to subjective sensing results, trust issues, errors 

and privacy issues. Experiments for participatory sensing include those by Kuznetsov et al. [31], 

where sensing devices were given to people in four communities. Air quality sensors were given to 

participants, who can deploy the sensors, monitor and share related data with others. As cyclists are 

one of the communities, the sensing data thus involves mobility as well. How people use the sensors 

is discussed according to the different communities. In another work, subjective feelings on air 

quality are obtained through a questionnaire presented in an app [65]. These subjective data are 

further linked with objective air quality sensing data. Szabó et al. [70] provide a framework for smart 

city applications based on participatory sensing. The framework is built using the publish-subscribe 

service of eXtensible Messaging and Presence Protocol (XMPP) based on three elements: producers, 

consumers, and service providers. These elements and techniques enable participatory sensing 

through designed apps. Users can report information through the apps installed in their mobile 

phones. Sensed data depend on how the app is designed. Sensing data comprising of position, 

temperature and other sensing measurements are collected in the XML format and sent to the XMPP 

server. 

In [39], Arduino boards installed in the cars of a selected user group were used to report on the 

speed and position of the cars on the road network. This was used to calculate the average car speed 

on the corresponding roads, in order to detect congested roads or traffic incidents. Participatory 

sensing involving mobile phones and handheld devices was used in [18] to complement the noise 

data from the fixed infrastructure and to provide a mechanism for citizens in the city of Melbourne 

to file noise complaints and give feedback on their perceptions of noise and urban sounds. 

Smart City initiatives, such as Sentilo from the city of Barcelona [82] are already opening their 

platform for citizens to share their own sensors, creating an extended network of real-time 

information about the city accessible by everyone. Commercial platforms oriented to the Smart Home 

market also provide users with means to share their own sensors, however, this is usually restricted 

to the context of the ecosystem created by the solution. SmartThings [76] and Nest [77], to name a 

few, support the integration of multiple sensors related to the home environment (thermostats, light 

control, door locks, window controllers, cameras, etc.). Alternatively, there are as well already 

commercial products that provide consumers with sensors they can use on their own, while at the 

same time contribute to create a shared aggregation of sensor data that benefit the community. This 

is the case for example of CleanSpace [74], currently operating in London, a portable battery-less 

pollution monitor that tracks the pollution level of the route followed by the user, but also shares that 

data to create a pollution map of the city. 

4.2.2. User-Contributed Data from Online Social Networks 

The immediacy of messages posted on social networks means that these can act as a rich and 

timely source of city-specific information. With research (eMarketers.com [85]) on social network 

usage revealing that 2.34 billion people, equating to approximately 68% of the global population with 

internet access, use social networks such as Twitter [86] and Foursquare [87], they are “being widely 

recognized as a complementary or corroborative information source for city events” [20,21]. The 
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information mined from these networks can be combined with data obtained from sensor networks 

or provide a semantic context to events extracted from such physical-world data. 

The Twitter micro-blogging platform allows its users to post messages, called tweets, of up to 

140 characters in length, thus constituting the textual component of social network data sources. 

Twitter supports both push (via a streaming API) and pull-based (via a RESTful API) methods for 

retrieval of tweets. The streaming API streams a sample of public tweets (estimated to be about 1% 

[88]). It can be filtered when requested, for example by location or containing a certain hashtag. The 

REST API is used for querying public user accounts or past data, with rate limit restrictions on the 

number of requests per hour. With its adoption in many countries (over 500 million users world-wide 

[20]), many research works have mined tweets as a source of reliable city information. The extracted 

tweets are in the following format: message text, user ID, tweet ID and published date. Popular uses 

of Twitter messages in urban CPSS applications have been to gather user perception of air pollution 

in a city [32], mine representative terms for traffic incidents [89] and to decipher trip intent [19]. As 

pointed out in [21], the restrictive message length of tweets and the informal nature of social 

networking means that messages do not follow grammar syntax, contain misspelled or noisy words 

and also lack context. 

The Foursquare social network comprises of users ‘checking-in’ to a venue, with the list of 

available venues dependent on the user’s location. The user location is determined either by using 

the mobile phone’s GPS sensors or specified by the application. Recently, (as of mid-2014), the social 

elements of the Foursquare network, which include the checking-in feature as well as the possibility 

of sharing it with friends, has been moved to an app called Swarm. The data available through the 

specified API includes the time, type, user details and venue details (name, location, category etc.). 

The modality and format of the available data (primarily numeric) enables its direct manipulation 

through statistical methods as well as integration with numerical time-series data obtained from 

physical sensors. 

The available access methods feature a REST API with restrictions on the number of requests 

per hour, dependent on the type of the request. Moreover, developers are not able to search for public 

check-ins, but can gain access to public check-ins if they know the corresponding check-in ID. Other 

data access methods include a User Push API and Venue Push API, which involves notifications to 

an application when a check-in occurs. However, data through this method is only made available to 

venue owners or authorized users. Surveyed works using Foursquare check-in data include [57], 

where data from the FourSquare API was sampled every 30 minutes, with venue locations arranged 

in a grid of “listening posts”. The obtained data included the time of the query, the current check-ins 

and total check-ins from which the authors derived the difference in users checking in since the last 

recorded check in.  

4.3. CPSS Elements as Abstract Concepts 

Due to the unstructured or semi-structured nature of data collected from the various CPSS 

elements and their inherent non-uniformity, some approaches have applied low-order tensors for 

representing and subsequently, processing, this disparate data in a uniform model. Tensors are a type 

of high-dimensional matrix. The various types of data are modeled as elements in a tensor space as 

per their initial formats. In [42], the authors introduce tensors for modeling the various data elements 

of a CPSS: unstructured data such as video clips, semi-structured data such as social relationships 

and structured data such as XML and GPS data. They propose an extensible order tensor model to 

represent the various data types, with a base part representing the general characteristics of CPSS 

data and an extended part capturing the special characters, e.g., XML attributes, video frames 

information. The base part comprises of time, location (latitude, longitude, altitude), user and cyber 

resource information. Social relationships are represented using a third-order tensor (corresponding 

to the two involved users and the relationship), four-order tensors are used for representing Resource 

Description Framework (RDF) or Web Ontology Language (OWL) triple data and physical world 

data such as GPS is modeled as a four-order tensor. In [67], high-order tensors are used to represent 

the relationships between users and their devices or objects in a smart home setting. Third-order 
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tensor models are also employed in [66] to define a ‘space–time user-behavior’ model, which 

represents the behavior of a user in a spatiotemporal plane. 

The suitability of human capability to perform tasks in a CPSS environment has been 

investigated in [68], where the concept of human ‘compute units’ and its utilization for a certain task 

within a time window has been formalized. A more formal representation has been presented in [80] 

with a ‘human service capability description’ model that represents a person’s identity, the tasks that 

the person can perform, the interfaces for interacting and the necessary qualifications. 

5. Data Processing 

This section presents the various data processing mechanisms as well as advanced analytics 

techniques applied to the collected data. It is assumed that the data has already undergone any 

required pre-processing, including removing noisy instances, redundancy filtering, missing value 

estimation or pre-sorting [90]. Data processing usually involves cross-space corroborative 

information, for instance, data in the same modalities, such as numerical data, e.g., GPS traces from 

vehicle mounted sensors and those obtained from citizens’ smartphones. For multimodal cross-space 

data that is also in different scales of measure, the physical world and social data are processed in 

isolation to derive relevant patterns and abstractions, which can then be subjected to data fusion 

methods to derive knowledge. An example instance is the case of numerical GPS trajectory data 

(physical world data) and complementary textual data from the Twitter platform. 

5.1. Rule Formulation and Management 

A number of the reviewed works that involve the generation of rules and management of 

defined tasks involve semantic web-based technologies. The Wi-City-Plus [38] smart city system 

employs rules expressed in fuzzy logic to determine the minimum average customer satisfaction for 

an event or service (using social network data). The rules are implemented using SPARQL Protocol 

and RDF Query Language (SPARQL) queries. An ontology-based CPSS framework is proposed in 

this work, with data from both public and private databases of city interest, and data from 

participatory sensing, mapped to a defined city ontology. The ontology model consists of two parts: 

the urban environment model that describes concepts related to user behavior, urban infrastructures 

and city services and a user model ontology that represents a user’s preferences and context. The 

environment monitoring data, in JSON format, is mapped to the RDF format according to the defined 

ontology. It is then available to be retrieved by SPARQL queries that can return values for instance, 

for temperature recorded by the closest weather station.  

Another ontology-based effort for a self-organizing resource network has been proposed in 

[11,55]. The authors represent the physical, cyber and human space of a CPSS through sets of 

resources. Physical devices and humans are modeled as agents, which have structural (tasks to be 

solved by the agent) and parametric (situation knowledge, characterized by context) knowledge and 

a profile (including preferences, provided services and the related functionality). Ontology matching 

is employed to match the capabilities of the modeled agents with application-specific tasks, for 

example, to determine the resources (both sensors and actuators) that are in the specific states for a 

smart home cleaning scenario [11]. 

Seldom do commercial systems use a specific semantic standard. Nest defines its own data 

models, and does not include any reference to standard ontologies. SmartThings started defining 

their own models too, but recently are moving towards utilizing Open Connectivity Foundation 

(OCF) [91], which aims at defining a standard model to represent devices and their capabilities 

tailored for the IoT. Other initiatives along these lines are the Web of Things Model [92], the purpose 

of which is to provide a standard semantic model to describe physical objects on the Web. 

5.2. Clustering and Classification of Data Streams  

Du et al. [32] provide an approach of assessing air quality from social media and structured air 

pollution data. The air pollution data are analyzed by different technologies: association rules, 
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clustering, and classification. Association rules are used to infer the impacts caused by the interplay 

of the different parameters. Clustering partitions the data into different groups based on the numeric 

attributes, while classification classifies datasets based on categorical attributes. Finally, the numeric 

and categorical attributes are mapped together. The results of these processing methods are used for 

sentiment analysis of tweets expressing public opinion on air quality.  

A supervised classification approach is employed in [64], where the call data records are mined 

for features that are then assigned to the most representative label of the activity type of the nearby 

venues. The cell towers attributed to the call data records are also clustered by using the Density-

based Spatial Clustering Algorithm (DBSCAN) [93] that clusters geographically proximate towers, 

based on the 2-dimensional geo-coordinate information. A clustering algorithm (k-nearest neighbors) 

is also used in [66] to identify groups from the user behavior modeled as an approximate tensor. 

A density-based clustering algorithm is used in [33] for determining the nearest parking space 

candidates for public buses. The algorithm defines a candidate selection method that detects the 

possible parking spots based on location parameters (GPS coordinates) and historical data consisting 

of points-of-interest (POI) vectors within a defined range. The identified parking points are used as 

passenger pick-up and drop-off locations. The k-Nearest Neighbors (kNN) algorithm [94] is used to 

discover groups in a tensor model in [66]. 

In terms of data streams processing, Sentilo provides a pub/sub infrastructure with agents that 

support alerts based on the sensor data. However, more mechanisms are needed in the infrastructure 

for the actual processing, with the specific use cases deciding on the choice of techniques, which are 

not disclosed currently for the analyzed applications. Likewise, the commercial systems analyzed in 

Section 4.2.1 do not expose details of the specific algorithms used in their data processing 

mechanisms. However, Nest claims to be using machine-learning algorithms to gather insights into 

usage of the devices, which helps to optimize the configuration of the Smart Home based on the 

users’ preferences. In the case of SmartThings, a rule engine based on the sensors/actuators present 

in the system provides the data processing aspect. 

5.3. Event Detection 

Event detection mechanisms in the surveyed works are targeted at both socio-cultural or traffic 

event extraction from physical and social data as well as anomalous events detected in data streams. 

In most cases, sensing data follows a normal pattern, which is not of much concern 

computationally as no additional action needs to be considered in response. A concern of data 

analytics is the detection of anomalous patterns, which could be of interest to citizens and city 

authorities and may require corresponding actions. In addition, by focusing on only the anomalies, 

further processing and analysis can be concentrated to the data within the spatial and temporal range 

of the detected anomalies’ context. The cost of consequent analysis can thus be reduced. Sensor data 

anomaly detection is employed for assessment of data integrity in [79]. 

Pan et al. detect traffic anomalies through changes in the traffic flow detected from road segment 

information and GPS trajectory data from taxis [89]. Trajectories are modeled in a graph consisting 

of origin, destination, and passed segments. The routes which have the same origin and destination 

but have longer passed distances are considered as anomalies. Zheng et al. provide a traffic anomaly 

detection approach that takes into account different data sources [95]. These data sources contain 

data about POIs, road network data, emergency call data, taxi flow data, and bike renting 

information. Multiple datasets are modeled in a Multiple-Source Latent-Topic model for estimation 

of distribution, and analyzed in a Spatiotemporal Likelihood Ratio Test model for anomaly detection. 

Szabó et al. [70] highlight the importance of anomaly detection for data analysis and actionable 

information in smart city applications. They propose various machine learning algorithms for the 

detection of anomalous events. The algorithms include decision tree, Naive Bayes, Support Vector 

Machines, kNN clustering, Random Forest, and Linear Discriminant Analysis/Quadratic 

Discriminant Analysis (LDA/QDA). 

A spatiotemporal anomaly detection algorithm is proposed in [71] for the data stream obtained 

from the sensors in a water distribution network. The authors propose two extensions to the Local 
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Indicators of Spatial Association (LISA) metric [96] for anomaly detection, involving extending the 

local neighborhood to contain both temporal (past measurements) and spatial factors (neighbor node 

measurements) and limiting the mean and sigma calculations to the local base station node 

measurements. 

Social data is used in the Wi-City Plus [39] smart city urban CPSS to suggest relevant events that 

receive a satisfactory score and match the stated preferences of the users. Car drivers can also report 

traffic incidents such as accidents through mobile phone apps. In [69], spatiotemporal conditions and 

stored user schedules are detected in order to trigger events, which are then used for situational 

reasoning. The events are used to restrict the discovery scope to object entities that are matched to 

the generated event. Traffic events such as accidents, traffic jams or road congestion are detected in 

the IBM Star City platform [72] by taking into account traffic sensor data from humans and city sensor 

data. 

5.4. Decision Support 

Decision support mechanisms encountered in the reviewed works have consisted of prediction 

algorithms that support further insights through data fusion. The bus passenger demand prediction 

system, detailed in [33], proposes three models to solve three identified challenges: a time varying 

Poisson model for non-homogeneous data that can detect the average number of passenger demands, 

a weighted time varying Poisson model for seasonal burstiness periods of expected events, and the 

autoregressive integrated moving average (ARIMA) model for a better accuracy for data with 

irregular periodicity. The three models are also combined in a sliding window ensemble framework. 

All the models are applied for predicting the spatial distribution of passenger demands, which can 

be used by the bus company for improved location-based services and by city authorities for 

gathering insights into urban planning and transport resource usage. A solution to enable cyclists to 

pass through traffic lights with an automated green light request [36] proposes three kinds of models 

to reduce energy usage on the cyclist’s mobile phone: constant sleep time model, logarithm model 

based on distance between the cyclist and the traffic light, and a boundary model based on the speed 

of the cyclist.  

6. Data Fusion 

This section presents the prevalent data fusion methods that have been implemented in urban 

CPSSs, with the aim of achieving either stated system goals or high levels of situation awareness. The 

fusion techniques ensure that there is actually a combination of computers, smart devices and people 

working together, rather than just people using the system [80]. Data integration is also a prerequisite 

to derive value from the high-dimensional, semantically hybrid and noisy CPSS big data [42]. 

6.1. Tensor Decomposition 

The tensor-based methods are employed in existing approaches for data fusion that can detect 

hidden information and community structure. Following representation of a video clip, an ontology 

document capturing cyber-space data and social relationships as low-order ranked tensors, Higher-

Order Singular Value Decomposition (HOSVD) is then employed to extract the core data which 

contains the more valuable information [42]. A similarity computation approach is then applied, with 

a supervised learning method making use of a similarity tensor model, for relation establishment 

between the various CPSS data objects.  

A similar technique is employed in [67], which uses a distributed and incremental version of the 

tensor decomposition method HOSVD to capture object and social connections between three 

families and their smart objects. The tensor method first detects the underlying community structure, 

which is also updated from time to time using incremental HOSVD (IHOSVD).  

Tensor decomposition is used to analyze the behavior similarity of users in [66]. The authors 

reduce the dimensionality of user behavior data and address the data sparsity by mapping the initial 

data to a denser approximate tensor representation. Group-centric data fusion is performed based on 
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the approximate tensor, with each element in the approximate tensor representing the prevalence of 

the corresponding behavior in the group. By calculating the weight to be assigned to each behavior, 

the authors perform group discovery based on the tensor approximation. 

6.2. Semantic Reasoning 

Semantic web-based methods have been used in the Wi-City Plus urban CPSS [38] to map 

proprietary relational datasets, environment monitoring data streams and participatory sensing data 

to sets of interconnected triples in the RDF format, which can then be queried using SPARQL. The 

resulting semantics-enabled decision support system provides a number of functionalities: mobility 

and logistics recommendation to mobile users, e.g., nearest services matched to user interest and the 

route to get there, taking into account current traffic and real-time weather data from monitoring 

stations; alerts about accidents or polluted areas; event recommendations based on personal and 

social data; and assistance to the elderly at home based on the fusion of health condition and indoor 

environment data. 

Semantic rule-based reasoning is used in a smart airport use case study [69], where device and 

environment capabilities are modeled as social objects and this data is then combined (using match 

filters) with user preferences to form a dynamic social structure of things. A ranking algorithm is first 

defined to determine service relevance matched to a user’s short-term situational goals, authorization 

permissions and service ratings. The reasoner, incorporating a ‘semantic service relevance rule 

engine’, then derives object relevance, which is used to determine a locality-oriented list of objects 

that can provision the required services, to achieve situational awareness. 

6.3. Social Intelligence as Context Descriptor 

A number of research works use the patterns detected from social data as a complementary or 

explanatory evidence to support the physical sensing data analysis. Kuznetsov et al. [31] provide 

physical sensors to different communities of people for them to monitor and check air quality data. 

The authors focus on analysis of variability of data across time and space across four different 

communities, i.e., parents, bicyclists, homeless, and activists. The analysis of the data combines the 

physical characteristics of the air quality data with social information about features of the 

communities, giving indicators for community togetherness and public activism. Pan et al. [89] focus 

on traffic anomaly detection and describe the detected anomaly by mining terms from social 

networks. Interlinks between anomaly and mined terms are based on the same context, i.e., same 

location and same temporal context for data from the different data sources. Zheng et al. [95] evaluate 

anomaly detection efficiency by utilizing events information reported in nycinsiderguide.com as 

ground truth. 

6.4. Cross-Space Data Fusion through Correlation 

Cross-space data fusion has taken the form of statistical methods being applied to calculate 

correlation between (usually) numerical data streams derived from the physical and social space. 

These include utilizing the data generated by citizens in social networking platforms in conjunction 

with data from sensor installations to build a model of the city’s dynamics. These mainly utilize 

location-based social sensing services. The research by Komninos et al. [57] analyzed Foursquare 

check-in data and its correlation with diurnal pollutant levels and traffic volume in Patras, Greece. 

The correlation and its p-value was calculated between the diurnal cumulative pollutant level 

averages for NOx and CO and diurnal Foursquare check-ins, with the check-in data closely following 

the pollution patterns. Jara et al. [63] correlated the traffic behavior with temperature in the city of 

Santander, discovering a fine-grained correlation in the evolution of both flows. 

7. CPSS Applications 

Figure 7 depicts the four CPSS domains which encompass the representative applications 

enabled by the novel fusion of fixed and mobile sensing with social data. The following sub-sections 
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present the various applications, supported by descriptions of the types of typical data sources, data 

processing and fusion mechanisms encountered in them. 

 

Figure 7. CPSS Application Domains. 

7.1. Smart Home 

Smart Home solutions are already mature enough to have a wide range of commercially 

available systems that go beyond the maker community and provide platforms that combine sensors 

with human interactions to create intelligent environments. Most of the commercial solutions provide 

the basic functionality of monitoring and control. However, some already display a sense of social 

data and urban intelligence to the benefit of the users. Nest, for example, collects alerts from energy 

companies in specific areas on energy peaks, so that the heating or cooling systems in a 

house/building can be automatically configured to save energy and money. SmartThings provides a 

powerful rule engine to configure the intelligence of the sensors and actuators present in the 

environment, however it does not provide a direct application of social data. 

The localized nature of data sources in a smart home setting allows modeling of human factors 

in terms of their capabilities and the relationships between humans and smart objects, as has been 

done in [42,66,67] through tensor-based modeling and fusion approaches. Another approach has 

been localized and individualized modeling of explicit or implicitly derived goals and health 

conditions that are semantically matched with service and environmental data for better living 

conditions [38]. 

7.2. Urban Intelligence 

With the growing attention to the concept of smart cities, both from the research community and 

by local governments, the integration of physical sensed and social data can provide innovative ways 

to achieve an awareness of urban dynamics. The resulting applications take into account social data 

(citizen contributed activity and mobility related messages on location-based social networks), fixed 

sensing infrastructure data and open datasets to deliver a data-enabled collaborative approach. The 
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deployed applications can enable a responsive urban area that can help inform people’s decision 

making and enable urban authorities to plan for the best possible use of limited city resources. 

Representative applications include those that try to build an understanding of the urban 

environment, such as prediction of the activity or dominant venue category (e.g., food/work/travel 

etc.) of existing urban neighborhoods [64], dynamics of human activity (manifest through check-ins 

on online social networks at different types of venues) and its relation to traffic and pollution in the 

city [57] and noise mapping and monitoring [18]. Other urban applications include those that enable 

situational awareness in a smart airport setting [69] and trip planning and event/venue 

recommendations that draw upon a mix of monitoring infrastructure, participatory sensing and 

social data [38,39]. 

7.3. Intelligent Transportation Systems (ITS) 

Applications in the ITS domain take advantage of fixed and mobile sensing infrastructure as 

well as crowd-sourced social intelligence. A combination of on-board vehicle sensors and 

infrastructure sensors have been employed in [38] for applications that report traffic dynamics such 

as congested roads or accidents. Other forms of traffic dynamics applications include smart parking 

systems that involve various sensor installations including cameras at entrances and infrared 

detectors for each parking space and dynamic control systems that tell drivers about signal timings 

of intersections and offers speed guidance; the control system also enables optimization of the traffic 

signal timing plans by using real-time vehicle arrival information [19]. Recent applications include 

social networks’ derived intelligence such as trip intent to evaluate existing traffic control plans [19]. 

Individual trip planning and recommendation applications [38] have been developed within the Wi-

City Plus CPSS that take into account current traffic and real-time weather data from monitoring 

stations. 

7.4. Environmental Monitoring 

Environment monitoring applications involve the full spectrum of data sources, often including 

both fixed and mobile sensing nodes as well as both participatory and recently, crowd-sensed social 

network sources. Environmental monitoring is an important application of CPSS as it highly impacts 

public health. To fuse these sensing data with social intelligence, many researches provide their 

diverse approaches. One kind of linkage is that made between air quality data with sentiment 

analysis results from social data. Sentiment analysis can be applied in social data from social 

networks such as Twitter [32]. Similar results can also be investigated from public surveys [65]. 

Regression analysis or correlations can then be applied on the two kinds of data. In a different 

approach, Kuznetsov et al. [31] divide communities into four kinds and provide analysis on air 

quality data directly from the data collected from the different communities. The analysis results can 

then be compared to show community togetherness and public activism. 

8. Discussion 

In this section, we discuss the key research or technical challenges that need to be met for truly 

multimodal, cross-space CPSS framework deployments as well as the involved societal challenges. 

From a technology perspective, a key feature that has emerged from this review of CPSS in urban 

areas is concerned with the highly inhomogeneous and distributed nature of the data sources, 

including that of the sensors themselves and their interaction mechanisms [97]. With the increasing 

deployment of mobile sensor nodes in typical smart city implementations, data source detection and 

data collection mechanisms need to evolve to manage the resultant mobility issues. An interesting 

search mechanism for retrieving observation data from mobile sources has been detailed in [62]. As 

pointed out in [98], data collection methods need to leverage Big Data techniques and distributed 

intelligence to be able to facilitate cooperative sensing and transparent access to data processing 

mechanisms. 
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A number of system modeling methodologies [1,44,99–101] have been proposed for the cyber-

physical parts of a CPSS, however, current approaches lack feasible methods to uniformly model the 

physical, cyber and social spaces. Concurrently, the models need to take into account the fact that the 

cross-space data can either fit continuous time models (i.e., physical data) or be unstructured (e.g., 

tweets from the Twitter social network). An initial effort in this direction is outlined in [1] where the 

design decisions of a single-user CPSS are modeled with a flow based model that formally captures 

the relationships between the physical object, human and cyber actors. The data flow is represented 

through directed acyclic graphs. 

Current reasoning strategies employed for data analysis and fusion fall under the deductive 

reasoning category. This could be combined with probabilistic reasoning methods to handle 

uncertainty situations. The approach consists of truth tables which give the “probabilities of what is 

likely to be true” [102], which can provide estimates on the likelihood of events. Another possible 

aligned approach concerned with non-stationary environments, which are typical in CPSS scenarios, 

is that of learning in dynamic or evolving environments. The approach, termed concept drift learning 

[103,104], is used to detect changes in the environment with some degree of confidence in order to 

trigger adaptive strategies.  

The growing prevalence of mobile crowd sensing in urban scenarios is transforming citizens into 

data sources. However, this engenders societal issues that will need to be solved, such as the trust 

level of the data, specially where it is involved in decision making processes. Annotating data with 

provenance metadata, such as the W3C provenance ontology, PROV-O [105], can be a possible 

solution to provide a degree of trust to data contributed by citizen smartphones. Closely aligned with 

the issue of trust is that of privacy and control of data. In current implementations, the service 

providers, who have access to usage statistics and users’ personal data, become the de-facto owners 

after the data collection step. Some studies [5] propose the use of a personal Databox [106] system, 

which stores personal data along with access policies, which is then contacted by service providers 

to negotiate on the data access.  

9. Conclusions 

In this paper, we have analyzed the CPSS domain and proposed a conceptual framework for 

urban CPSS from the data perspective. We studied both academic approaches as well as analyzed 

some commercial solutions that are enabling and proposing ways of integrating social data with 

sensor deployments. The contributing features of this study include a focus on passively contributed 

user data extracted from social networks and data fusion techniques for cross-space, inhomogeneous 

and multimodal data streams. Urban data processing requires an infrastructure that can handle the 

volume of data in a real-time fashion for most of the use cases, therefore innovative techniques for 

data processing that consider the real-time aspects and the heterogeneity of the data are needed. 

Combining the sensor data with the social streams will also become a powerful tool to understand 

the operation of the environment and how people interact with it, enabling a whole new set of 

applications, that can benefit not only local environments, as for example the Smart Home case, but 

that also has city wide implications, optimizing resources and providing new services that will 

eventually impact the operation of the city and their communities. 

A glance at the reviewed works reveals that the inclusion of social factors in urban CPSS has 

involved numerical fusion methods, and that multimodal fusion has largely taken the form of using 

social intelligence to give semantic meaning to patterns detected in sensor data streams. An 

interesting future direction of research is thus, to derive statistical patterns from social data which 

can then be numerically correlated with the non-relational sensor data streams. 
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