3,986 research outputs found

    Prevalence of unculturable bacteria in the periapical abscess: A systematic review and meta-analysis

    Get PDF
    Objective To assess the prevalence of unculturable bacteria in periapical abscess, radicular cyst, and periapical granuloma. Methods PubMed, Scopus, Science Direct, and Ovid databases were systematically searched from January 1990 to May 2020. All the included studies were cross-sectional design. The risk of bias was assessed using Joanna Briggs Institute check-list. Heterogeneity was described using meta-regression and mixed-effects model for lesion, country, and sequence technique moderators. Funnel plot and unweighted Egger's regression test were used to estimate the publication bias. Microbiome data on diversity, abundance, and frequency of unculturable bacteria in the periapical lesions were reviewed, analysed, and the principal component analysis (PCA) was performed. Results A total of 13 studies out of 14,780, were selected for the final analysis. These studies focused on the prevalence of unculturable bacteria in periapical abscesses and related lesions. Approximately 13% (95% CI: 7-23%) of the cumulative number of bacteria derived from periapical abscesses was unculturable. Country moderator significantly (P = 0.05) affects the diversity summary proportion. While the pooled frequency of unculturable bacteria was 8%; 95% CI: 5, 14%, the estimate of the pooled abundance of unculturable bacteria was 5%; 95% CI: 2, 12% with a significant (P = 0.05) country moderator that affects the abundance summary proportion. Of the 62 unculturable bacteria, 35 were subjected to PCA and Peptostreptococcus sp. oral clone CK035 was the most abundant species in periapical abscesses. Hybridization techniques were found to be the most reliable molecular methods in detecting the abundance and frequency of unculturable bacteria. Conclusion The significant prevalence of unculturable bacteria in the periapical abscess, suggests that they are likely to play, a yet unknown, critical role in the pathogenesis and progression of the disease. Further research remains to be done to confirm their specific contributions in the virulence and disease progression

    Association of diverse bacterial communities in human bile samples with biliary tract disorders: a survey using culture and polymerase chain reaction-denaturing gradient gel electrophoresis methods

    Get PDF
    Bacterial infection is considered a predisposing factor for disorders of the biliary tract. This study aimed to determine the diversity of bacterial communities in bile samples and their involvement in the occurrence of biliary tract diseases. A total of 102 bile samples were collected during endoscopic retrograde cholangiopancreatography (ERCP). Characterization of bacteria was done using culture and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) methods. Antimicrobial susceptibility of the isolates was determined based on the Clinical and Laboratory Standards Institute (CLSI) guidelines and identity of the nucleotide sequences of differentiated bands from the DGGE gels was determined based on GenBank data. In total, 41.2 (42/102) of the patients showed bacterial infection in their bile samples. This infection was detected in 21 (4/19), 45.4 (5/11), 53.5 (15/28), and 54.5 (24/44) of patients with common bile duct stone, microlithiasis, malignancy, and gallbladder stone, respectively. Escherichia coli showed a significant association with gallstones. Polymicrobial infection was detected in 48 of the patients. While results of the culture method established coexistence of biofilm-forming bacteria (Pseudomonas aeruginosa, E. coli, Klebsiella pneumoniae, Enterococcus spp., and Acinetobacter spp.) in different combinations, the presence of Capnocytophaga spp., Lactococcus spp., Bacillus spp., Staphylococcus haemolyticus, Enterobacter or Citrobacter spp., Morganella spp., Salmonella spp., and Helicobacter pylori was also characterized in these samples by the PCR-DGGE method. Multidrug resistance phenotypes (87.5 ) and resistance to third- and fourth-generation cephalosporins and quinolones were common in these strains, which could evolve through their selection by bile components. Ability for biofilm formation seems to be a need for polymicrobial infection in this organ. © 2016 Springer-Verlag Berlin Heidelber

    Acquisition of genome information from single-celled unculturable organisms (radiolaria) by exploiting genome profiling (GP)

    Get PDF
    BACKGROUND: There is no effective method to obtain genome information from single-celled unculturable organisms such as radiolarians. Even worse, such organisms are often very difficult to collect. Sequence analysis of 18S rDNA has been carried out, but obtaining the data has been difficult and it has provided a rather limited amount of genome information. In this paper, we have developed a method which provides a sufficient amount of data from an unculturable organism. The effectiveness of this method was demonstrated by applying it to the provisional classification of a set of unculturable organisms (radiolarians). RESULTS: Dendrogram was drawn regarding the single-celled unculturable species based on the similarity score termed PaSS, offering a consistent result with the conventional taxonomy of them built up based on phenotypes. This fact has shown that genome profiling-based technology developed here can obtain genome information being sufficient for identifying and classifying species from a single-celled organism. CONCLUSION: Since this method is so simple, general, and yet powerful, it can be applied to various organisms and cells, especially single-celled, uncluturable ones, for their genome analysis

    Biodiversity and ecosystem function in soil

    Get PDF
    1. Soils are one of the last great frontiers for biodiversity research and are home to an extraordinary range of microbial and animal groups. Biological activities in soils drive many of the key ecosystem processes that govern the global system, especially in the cycling of elements such as carbon, nitrogen and phosphorus. 2. We cannot currently make firm statements about the scale of biodiversity in soils, or about the roles played by soil organisms in the transformations of organic materials that underlie those cycles. The recent UK Soil Biodiversity Programme (SBP) has brought a unique concentration of researchers to bear on a single soil in Scotland, and has generated a large amount of data concerning biodiversity, carbon flux and resilience in the soil ecosystem. 3. One of the key discoveries of the SBP was the extreme diversity of small organisms: researchers in the programme identified over 100 species of bacteria, 350 protozoa, 140 nematodes and 24 distinct types of arbuscular mycorrhizal fungi. Statistical analysis of these results suggests a much greater 'hidden diversity'. In contrast, there was no unusual richness in other organisms, such as higher fungi, mites, collembola and annelids. 4. Stable-isotope (C-13) technology was used to measure carbon fluxes and map the path of carbon through the food web. A novel finding was the rapidity with which carbon moves through the soil biota, revealing an extraordinarily dynamic soil ecosystem. 5. The combination of taxonomic diversity and rapid carbon flux makes the soil ecosystem highly resistant to perturbation through either changing soil structure or removing selected groups of organisms

    Proteomics as the final step in the functional metagenomics study of antimicrobial resistance

    Get PDF
    peer-reviewedThe majority of clinically applied antimicrobial agents are derived from natural products generated by soil microorganisms and therefore resistance is likely to be ubiquitous in such environments. This is supported by the fact that numerous clinically important resistance mechanisms are encoded within the genomes of such bacteria. Advances in genomic sequencing have enabled the in silico identification of putative resistance genes present in these microorganisms. However, it is not sufficient to rely on the identification of putative resistance genes, we must also determine if the resultant proteins confer a resistant phenotype. This will require an analysis pipeline that extends from the extraction of environmental DNA, to the identification and analysis of potential resistance genes and their resultant proteins and phenotypes. This review focuses on the application of functional metagenomics and proteomics to study antimicrobial resistance in diverse environments.The Alimentary Pharmabiotic Centre is a research centre funded by Science Foundation Ireland (SFI). This publication has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2273 and by FP7 funded CFMATTERS (Cystic Fibrosis Microbiome-determined Antibiotic Therapy Trial in Exacerba- tions: Results Stratified, Grant Agreement no. 603038)
    • …
    corecore