10 research outputs found

    Recent advances in neuroimaging of bladder, bowel and sexual function

    Get PDF
    PURPOSE OF REVIEW: In this review, we summarize recent advances in the understanding of the neural control of the bladder, bowel and sexual function, in both men and women. RECENT FINDINGS: Evidence of supraspinal areas controlling the storage of urine and micturition in animals, such as the pontine micturition centre, emerged in the early 20th century. Neurological stimulation and lesion studies in humans provided additional indirect evidence for additional bladder-related brain areas. Thereafter, functional neuroimaging in humans with PET and fMRI provided more direct evidence of the involvement of these brain areas. The areas involved in the storage and expulsion of urine also seem to be involved in the central control of storage and expulsion of feces. Furthermore, most knowledge on the brain control of sexual function is obtained from dynamic imaging in human volunteers. Relatively little is known about the dysfunctional central circuits in patients with pelvic organ dysfunction. SUMMARY: fMRI has been the most widely used functional neuroimaging technique in the last decade to study the central control of bladder function, anorectal function and sexual function. The studies described in this review show which sensory and motor areas are involved, including cortical and subcortical areas. We propose the existence of a switch-like phenomenon located in the pons controlling micturition, defecation and orgasm

    The central autonomic network at rest: Uncovering functional MRI correlates of time-varying autonomic outflow.

    Get PDF
    Peripheral measures of autonomic nervous system (ANS) activity at rest have been extensively employed as putative biomarkers of autonomic cardiac control. However, a comprehensive characterization of the brain-based central autonomic network (CAN) sustaining cardiovascular oscillations at rest is missing, limiting the interpretability of these ANS measures as biomarkers of cardiac control. We evaluated combined cardiac and fMRI data from 34 healthy subjects from the Human Connectome Project to detect brain areas functionally linked to cardiovagal modulation at rest. Specifically, we combined voxel-wise fMRI analysis with instantaneous heartbeat and spectral estimates obtained from inhomogeneous linear point-process models. We found exclusively negative associations between cardiac parasympathetic activity at rest and a widespread network including bilateral anterior insulae, right dorsal middle and left posterior insula, right parietal operculum, bilateral medial dorsal and ventrolateral posterior thalamic nuclei, anterior and posterior mid-cingulate cortex, medial frontal gyrus/pre-supplementary motor area. Conversely, we found only positive associations between instantaneous heart rate and brain activity in areas including frontopolar cortex, dorsomedial prefrontal cortex, anterior, middle and posterior cingulate cortices, superior frontal gyrus, and precuneus. Taken together, our data suggests a much wider involvement of diverse brain areas in the CAN at rest than previously thought, which could reflect a differential (both spatially and directionally) CAN activation according to the underlying task. Our insight into CAN activity at rest also allows the investigation of its impairment in clinical populations in which task-based fMRI is difficult to obtain (e.g., comatose patients or infants).This work was supported by the US National Institutes for Health (NIH), Office of the Director (OT2-OD023867 to VN); National Center for Complementary and Integrative Health (NCCIH), NIH (P01-AT009965, R61-AT009306, R33-AT009306, R01-AT007550 to VN); the National Institute for Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH (R01-AR064367 to VN); the Medical Research Council (MRC), UK (MR/P01271X/1 to LP); the American Heart Association (16GRNT26420084 to RB)

    Viewing the personality traits through a cerebellar lens. A focus on the constructs of novelty seeking, harm avoidance, and alexithymia

    Get PDF
    The variance in the range of personality trait expression appears to be linked to structural variance in specific brain regions. In evidencing associations between personality factors and neurobiological measures, it seems evident that the cerebellum has not been up to now thought as having a key role in personality. This paper will review the most recent structural and functional neuroimaging literature that engages the cerebellum in personality traits, as novelty seeking and harm avoidance, and it will discuss the findings in the context of contemporary theories of affective and cognitive cerebellar function. By using region of interest (ROI)- and voxel-based approaches, we recently evidenced that the cerebellar volumes correlate positively with novelty seeking scores and negatively with harm avoidance scores. Subjects who search for new situations as a novelty seeker does (and a harm avoiding does not do) show a different engagement of their cerebellar circuitries in order to rapidly adapt to changing environments. The emerging model of cerebellar functionality may explain how the cerebellar abilities in planning, controlling, and putting into action the behavior are associated to normal or abnormal personality constructs. In this framework, it is worth reporting that increased cerebellar volumes are even associated with high scores in alexithymia, construct of personality characterized by impairment in cognitive, emotional, and affective processing. On such a basis, it seems necessary to go over the traditional cortico-centric view of personality constructs and to address the function of the cerebellar system in sustaining aspects of motivational network that characterizes the different temperamental trait

    Anxiety can significantly explain bolus perception in the context of hypotensive esophageal motility: Results of a large multicenter study in asymptomatic individuals

    Get PDF
    This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving'. © 2017 John Wiley & Sons, Inc. All rights reserved. This author accepted manuscript is made available following 12 month embargo from date of publication (May 2017) in accordance with the publisher’s archiving policyBackground Previous studies have not been able to correlate manometry findings with bolus perception. The aim of this study was to evaluate correlation of different variables, including traditional manometric variables (at diagnostic and extreme thresholds), esophageal shortening, bolus transit, automated impedance manometry (AIM) metrics and mood with bolus passage perception in a large cohort of asymptomatic individuals. Methods High resolution manometry (HRM) was performed in healthy individuals from nine centers. Perception was evaluated using a 5‐point Likert scale. Anxiety was evaluated using Hospitalized Anxiety and Depression scale (HAD). Subgroup analysis was also performed classifying studies into normal, hypotensive, vigorous, and obstructive patterns. Key Results One hundred fifteen studies were analyzed (69 using HRM and 46 using high resolution impedance manometry (HRIM); 3.5% swallows in 9.6% of volunteers were perceived. There was no correlation of any of the traditional HRM variables, esophageal shortening, AIM metrics nor bolus transit with perception scores. There was no HRM variable showing difference in perception when comparing normal vs extreme values (percentile 1 or 99). Anxiety but not depression was correlated with perception. Among hypotensive pattern, anxiety was a strong predictor of variance in perception (R2 up to .70). Conclusion and Inferences Bolus perception is less common than abnormal motility among healthy individuals. Neither esophageal motor function nor bolus dynamics evaluated with several techniques seems to explain differences in bolus perception. Different mechanisms seem to be relevant in different manometric patterns. Anxiety is a significant predictor of bolus perception in the context of hypotensive motility

    Uncertainty in anticipation of uncomfortable rectal distension is modulated by the autonomic nervous system — A fMRI study in healthy volunteers

    No full text
    International audienceThe human brain responds both before and during the application of aversive stimuli. Anticipation allows the organism to prepare its nociceptive system to respond adequately to the subsequent stimulus. The context in which an uncomfortable stimulus is experienced may also influence neural processing. Uncertainty of occurrence, timing and intensity of an aversive event may lead to increased anticipatory anxiety, fear, physiological arousal and sensory perception. We aimed to identify, in healthy volunteers, the effects of uncertainty in the anticipation of uncomfortable rectal distension, and the impact of the autonomic nervous system (ANS) activity and anxiety-related psychological variables on neural mechanisms of anticipation of rectal distension using fMRI. Barostat-controlled uncomfortable rectal distensions were preceded by cued uncertain or certain anticipation in 15 healthy volunteers in a fMRI protocol at 3T. Electrocardiographic data were concurrently registered by MR scanner. The low frequency (LF)-component of the heart rate variability (HRV) time-series was extracted and inserted as a regressor in the fMRI model ('LF-HRV model'). The impact of ANS activity was analyzed by comparing the fMRI signal in the 'standard model' and in the 'LF-HRV model' across the different anticipation and distension conditions. The scores of the psychological questionnaires and the rating of perceived anticipatory anxiety were included as covariates in the fMRI data analysis. Our experiments led to the following key findings: 1) the subgenual anterior cingulate cortex (sgACC) is the only activation site that relates to uncertainty in healthy volunteers and is directly correlated to individual questionnaire score for pain-related anxiety; 2) uncertain anticipation of rectal distension involved several relevant brain regions, namely activation of sgACC and medial prefrontal cortex and deactivation of amygdala, insula, thalamus, secondary somatosensory cortex, supplementary motor area and cerebellum; 3) most of the brain activity during anticipation, but not distension, is associated with activity of the central autonomic network. This approach could be applied to study the ANS impact on brain activity in various pathological conditions, namely in patients with chronic digestive conditions characterized by visceral discomfort and ANS imbalance such as irritable bowel syndrome or inflammatory bowel diseases

    Uncertainty in anticipation of uncomfortable rectal distension is modulated by the autonomic nervous system - A fMRI study in healthy volunteers

    No full text
    The human brain responds both before and during the application of aversive stimuli. Anticipation allows the organism to prepare its nociceptive system to respond adequately to the subsequent stimulus. The context in which an uncomfortable stimulus is experienced may also influence neural processing. Uncertainty of occurrence, timing and intensity of an aversive event may lead to increased anticipatory anxiety, fear, physiological arousal and sensory perception. We aimed to identify, in healthy volunteers, the effects of uncertainty in the anticipation of uncomfortable rectal distension, and the impact of the autonomic nervous system (ANS) activity and anxiety-related psychological variables on neural mechanisms of anticipation of rectal distension using fMRI. Barostat-controlled uncomfortable rectal distensions were preceded by cued uncertain or certain anticipation in 15 healthy volunteers in a fMRI protocol at 3T. Electrocardiographic data were concurrently registered by MR scanner. The low frequency (LF)-component of the heart rate variability (HRV) time-series was extracted and inserted as a regressor in the fMRI model ('LF-HRV model'). The impact of ANS activity was analyzed by comparing the fMRI signal in the 'standard model' and in the 'LF-HRV model' across the different anticipation and distension conditions. The scores of the psychological questionnaires and the rating of perceived anticipatory anxiety were included as covariates in the fMRI data analysis. Our experiments led to the following key findings: 1) the subgenual anterior cingulate cortex (sgACC) is the only activation site that relates to uncertainty in healthy volunteers and is directly correlated to individual questionnaire score for pain-related anxiety; 2) uncertain anticipation of rectal distension involved several relevant brain regions, namely activation of sgACC and medial prefrontal cortex and deactivation of amygdala, insula, thalamus, secondary somatosensory cortex, supplementary motor area and cerebellum; 3) most of the brain activity during anticipation, but not distension, is associated with activity of the central autonomic network. This approach could be applied to study the ANS impact on brain activity in various pathological conditions, namely in patients with chronic digestive conditions characterized by visceral discomfort and ANS imbalance such as irritable bowel syndrome or inflammatory bowel diseases.publisher: Elsevier articletitle: Uncertainty in anticipation of uncomfortable rectal distension is modulated by the autonomic nervous system — A fMRI study in healthy volunteers journaltitle: NeuroImage articlelink: http://dx.doi.org/10.1016/j.neuroimage.2014.11.043 content_type: article copyright: Copyright © 2014 Elsevier Inc. All rights reserved.status: publishe

    Irritable Bowel Syndrome : Studies of central pathophysiological mechanisms and effects of treatment

    Full text link

    Electrophysiological correlates of anticipation and emotional memory

    Get PDF
    This thesis investigated the role of anticipation as a mediating factor in the Emotion-Enhanced Memory (EEM) phenomenon. Using behavioural and ERP measures, three anticipatory conditions were explored: Informative, No-Cue and Non-Informative. The primary objective was to determine how far the pre-stimulus-Dm (Ps-Dm) effect is a reliable indicator of emotional memory encoding under different levels of anticipation, and if the preparatory process explanation accounts for any effects. This study also aimed to determine if there is an association between anticipatory activity at the pre- and post- stimulus phase, and the related behavioural outcome. One behavioural and three ERP studies were conducted to measure the difference due to memory (Dm) effect during an anticipatory phase. The Dm effect distinguishes between neural activity of subsequently remembered and forgotten items, providing an index of successful encoding. We employed an S1-S2 (Stimulus 1: Cues - Stimulus 2: Pictures) Cueing-Subsequent Memory Paradigm. Upper case letters (O, X, Z) served as cue stimuli (S1). Emotional and neutral images selected from International Affective Picture System (IAPS) were used as S2. Findings revealed a Dm effect for informative as well as for non-informative cue conditions when participants anticipated high-arousal emotionally negative pictures. This effect was found during the 400-600ms time window only when the cue remained on the screen. This effect was not significant for the studies in which the arousal level of anticipated negative pictures was mixed. Moreover, the behavioral findings mirrored the neural activity in this particular study. However, in rest of the studies, behavioral results could not corroborate neural activity. The results of the present set of experiments highlighted that emotional memory might be formed without specific information about the content or valence of imminent pictures
    corecore