403 research outputs found

    Cross-calibration of Time-of-flight and Colour Cameras

    Get PDF
    Time-of-flight cameras provide depth information, which is complementary to the photometric appearance of the scene in ordinary images. It is desirable to merge the depth and colour information, in order to obtain a coherent scene representation. However, the individual cameras will have different viewpoints, resolutions and fields of view, which means that they must be mutually calibrated. This paper presents a geometric framework for this multi-view and multi-modal calibration problem. It is shown that three-dimensional projective transformations can be used to align depth and parallax-based representations of the scene, with or without Euclidean reconstruction. A new evaluation procedure is also developed; this allows the reprojection error to be decomposed into calibration and sensor-dependent components. The complete approach is demonstrated on a network of three time-of-flight and six colour cameras. The applications of such a system, to a range of automatic scene-interpretation problems, are discussed.Comment: 18 pages, 12 figures, 3 table

    Automatic 3DS Conversion of Historical Aerial Photographs

    Get PDF
    In this paper we present a method for the generation of 3D stereo (3DS) pairs from sequences of historical aerial photographs. The goal of our work is to provide a stereoscopic display when the existing exposures are in a monocular sequence. Each input image is processed using its neighbours and a synthetic image is rendered, which, together with the original one, form a stereo pair. Promising results on real images taken from a historical photo archive are shown, that corroborate the viability of generating 3DS data from monocular footage

    A data-fusion approach to motion-stereo

    Get PDF
    This paper introduces a novel method for performing motion--stereo, based on dynamic integration of depth (or its proxy) measures obtained by pairwise stereo matching of video frames. The focus is on the data fusion issue raised by the motion--stereo approach, which is solved within a Kalman filtering framework. Integration occurs along the temporal and spatial dimension, so that the final measure for a pixel results from the combination of measures of the same pixel in time and whose of its neighbors. The method has been validated on both synthetic and natural images, using the simplest stereo matching strategy and a range of different confidence measures, and has been compared to baseline and optimal strategies

    Deep Eyes: Binocular Depth-from-Focus on Focal Stack Pairs

    Full text link
    Human visual system relies on both binocular stereo cues and monocular focusness cues to gain effective 3D perception. In computer vision, the two problems are traditionally solved in separate tracks. In this paper, we present a unified learning-based technique that simultaneously uses both types of cues for depth inference. Specifically, we use a pair of focal stacks as input to emulate human perception. We first construct a comprehensive focal stack training dataset synthesized by depth-guided light field rendering. We then construct three individual networks: a Focus-Net to extract depth from a single focal stack, a EDoF-Net to obtain the extended depth of field (EDoF) image from the focal stack, and a Stereo-Net to conduct stereo matching. We show how to integrate them into a unified BDfF-Net to obtain high-quality depth maps. Comprehensive experiments show that our approach outperforms the state-of-the-art in both accuracy and speed and effectively emulates human vision systems

    Recent Developments in Monocular SLAM within the HRI Framework

    Get PDF
    This chapter describes an approach to improve the feature initialization process in the delayed inverse-depth feature initialization monocular Simultaneous Localisation and Mapping (SLAM), using data provided by a robot’s camera plus an additional monocular sensor deployed in the headwear of the human component in a human-robot collaborative exploratory team. The robot and the human deploy a set of sensors that once combined provides the data required to localize the secondary camera worn by the human. The approach and its implementation are described along with experimental results demonstrating its performance. A discussion on the usual sensors within the robotics field, especially in SLAM, provides background to the advantages and capabilities of the system implemented in this research

    Contribution towards a fast stereo dense matching.

    Get PDF
    Stereo matching is important in the area of computer vision as it is the basis of the reconstruction process. Many applications require 3D reconstruction such as view synthesis, robotics... The main task of matching uncalibrated images is to determine the corresponding pixels and other features where the motion between these images and the camera parameters is unknown. Although some methods have been carried out over the past two decades on the matching problem, most of these methods are not practical and difficult to implement. Our approach considers a reliable image edge features in order to develop a fast and practical method. Therefore, we propose a fast stereo matching algorithm combining two different approaches for matching as the image is segmented into two sets of regions: edge regions and non-edge regions. We have used an algebraic method that preserves disparity continuity at the object continuous surfaces. Our results demonstrate that we gain a speed dense matching while the implementation is kept simple and straightforward.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .Z42. Source: Masters Abstracts International, Volume: 44-03, page: 1420. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Online Mutual Foreground Segmentation for Multispectral Stereo Videos

    Full text link
    The segmentation of video sequences into foreground and background regions is a low-level process commonly used in video content analysis and smart surveillance applications. Using a multispectral camera setup can improve this process by providing more diverse data to help identify objects despite adverse imaging conditions. The registration of several data sources is however not trivial if the appearance of objects produced by each sensor differs substantially. This problem is further complicated when parallax effects cannot be ignored when using close-range stereo pairs. In this work, we present a new method to simultaneously tackle multispectral segmentation and stereo registration. Using an iterative procedure, we estimate the labeling result for one problem using the provisional result of the other. Our approach is based on the alternating minimization of two energy functions that are linked through the use of dynamic priors. We rely on the integration of shape and appearance cues to find proper multispectral correspondences, and to properly segment objects in low contrast regions. We also formulate our model as a frame processing pipeline using higher order terms to improve the temporal coherence of our results. Our method is evaluated under different configurations on multiple multispectral datasets, and our implementation is available online.Comment: Preprint accepted for publication in IJCV (December 2018

    Automatic face recognition using stereo images

    Get PDF
    Face recognition is an important pattern recognition problem, in the study of both natural and artificial learning problems. Compaxed to other biometrics, it is non-intrusive, non- invasive and requires no paxticipation from the subjects. As a result, it has many applications varying from human-computer-interaction to access control and law-enforcement to crowd surveillance. In typical optical image based face recognition systems, the systematic vaxiability arising from representing the three-dimensional (3D) shape of a face by a two-dimensional (21)) illumination intensity matrix is treated as random vaxiability. Multiple examples of the face displaying vaxying pose and expressions axe captured in different imaging conditions. The imaging environment, pose and expressions are strictly controlled and the images undergo rigorous normalisation and pre-processing. This may be implemented in a paxtially or a fully automated system. Although these systems report high classification accuracies (>90%), they lack versatility and tend to fail when deployed outside laboratory conditions. Recently, more sophisticated 3D face recognition systems haxnessing the depth information have emerged. These systems usually employ specialist equipment such as laser scanners and structured light projectors. Although more accurate than 2D optical image based recognition, these systems are equally difficult to implement in a non-co-operative environment. Existing face recognition systems, both 2D and 3D, detract from the main advantages of face recognition and fail to fully exploit its non-intrusive capacity. This is either because they rely too much on subject co-operation, which is not always available, or because they cannot cope with noisy data. The main objective of this work was to investigate the role of depth information in face recognition in a noisy environment. A stereo-based system, inspired by the human binocular vision, was devised using a pair of manually calibrated digital off-the-shelf cameras in a stereo setup to compute depth information. Depth values extracted from 2D intensity images using stereoscopy are extremely noisy, and as a result this approach for face recognition is rare. This was cofirmed by the results of our experimental work. Noise in the set of correspondences, camera calibration and triangulation led to inaccurate depth reconstruction, which in turn led to poor classifier accuracy for both 3D surface matching and 211) 2 depth maps. Recognition experiments axe performed on the Sheffield Dataset, consisting 692 images of 22 individuals with varying pose, illumination and expressions

    Camera Calibration from Dynamic Silhouettes Using Motion Barcodes

    Full text link
    Computing the epipolar geometry between cameras with very different viewpoints is often problematic as matching points are hard to find. In these cases, it has been proposed to use information from dynamic objects in the scene for suggesting point and line correspondences. We propose a speed up of about two orders of magnitude, as well as an increase in robustness and accuracy, to methods computing epipolar geometry from dynamic silhouettes. This improvement is based on a new temporal signature: motion barcode for lines. Motion barcode is a binary temporal sequence for lines, indicating for each frame the existence of at least one foreground pixel on that line. The motion barcodes of two corresponding epipolar lines are very similar, so the search for corresponding epipolar lines can be limited only to lines having similar barcodes. The use of motion barcodes leads to increased speed, accuracy, and robustness in computing the epipolar geometry.Comment: Update metadat
    • …
    corecore