43 research outputs found

    ECOS 2010 Volume I (Thermodynamics)

    Get PDF
    ECOS2010 - 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, June 14-17 2010, Lausanne, Switzerland Ecoefficiency and renewable energy for a sustainable world + Developments, application and teaching of methods in: - Basic and applied thermodynamics - Thermoeconomics and environomics - Simulation, improvement and optimization of energy conversion systems - Process design, analysis and integration of thermal and chemical systems - Diagnostic and control of thermal systems - Environmental impact and sustainability of energy systems + Relevant physical systems - Conventional and advanced power plants - Polygeneration and District heating/cooling systems - New technologies in heat pumps, refrigeration and air conditioning - New technologies for electricity (co)generation - Industrial process plants - Energy storage - Carbon Capture and Storage - Hydrogen and natural gas technologies - Biomass conversion systems - Energy conversion systems for transportation - Water Desalination and Treatment + Focus points - Technology, environmental and economical aspects of biofuels and other renewable energies (biomass, geothermal, thermal solar) - Fuel cells systems - Heat pumps and Organic Rankine Cycle

    ECOS 2012

    Get PDF
    The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology

    Advances in raw material industries for sustainable development goals

    Get PDF
    """Advances in Raw Material Industries for Sustainable Development Goals"" presents the results of joint scientific research conducted in the context of the Russian-German Raw Materials Forum. Today Russia and Germany are exploring various forms of cooperation in the field of mining, geology, mineralogy, mechanical engineering and energy. Russia and Germany are equally interested in expanding cooperation and modernizing the economy in terms of sustainable development. The main theme of this article collection is connected with existing business ventures and ideas from both Russia and Germany. In this book the authors regard complex processes in mining industry from various points of view, including: - modern technologies in prospecting, exploration and development of mineral resources - progressive methods of natural and industrial mineral raw materials processing - energy technologies and digital technologies for sustainable development - cutting-edge technologies and innovations in the oil and gas industry. Working with young researchers, supporting their individual professional development and creating conditions for their mobility and scientific cooperation are essential parts of Russian-German Raw Materials Forum founded in Dresden 13 years ago. This collection represents both willingness of young researchers to be involved in large-scale international projects like Russian-German Raw Material Forum and the results of their long and thorough work in the promising areas of cooperation between Russia and Germany.

    Unavoidable Destroyed Exergy in Crude Oil Pipelines due to Wax Precipitation

    No full text
    Based on the technological requirements related to waxy crude oil pipeline transportation, both unavoidable and avoidable destroyed exergy are defined. Considering the changing characteristics of flow pattern and flow regime over the course of the oil transportation process, a method of dividing station oil pipelines into transportation intervals is suggested according to characteristic temperatures, such as the wax precipitation point and abnormal point. The critical transition temperature and the specific heat capacity of waxy crude oil are calculated, and an unavoidable destroyed exergy formula is derived. Then, taking the Daqing oil pipeline as an example, unavoidable destroyed exergy in various transportation intervals are calculated during the actual processes. Furthermore, the influential rules under various design and operation parameters are further analyzed. The maximum and minimum unavoidable destroyed exergy are 381.128 kJ/s and 30.259 kJ/s. When the design parameters are simulated, and the maximum unavoidable destroyed exergy is 625 kJ/s at the diameter about 250 mm. With the increase of insulation layer thickness, the unavoidable destroyed exergy decreases continuously, and the minimum unavoidable destroyed exergy is 22 kJ/s at 30 mm. And the burial depth has little effect on the unavoidable destroyed exergy. When the operation parameters are simulated, the destroyed exergy increases, but it is less affected by the outlet pressure. The increase amplitude of unavoidable destroyed exergy will not exceed 2% after the throughput rises to 80 m3/h. When the outlet temperature increases until 65 °C, the loss increase range will not exceed 4%. Thus, this study provides a theoretical basis for the safe and economical transportation of waxy crude oil

    Planet Earth 2011

    Get PDF
    The failure of the UN climate change summit in Copenhagen in December 2009 to effectively reach a global agreement on emission reduction targets, led many within the developing world to view this as a reversal of the Kyoto Protocol and an attempt by the developed nations to shirk out of their responsibility for climate change. The issue of global warming has been at the top of the political agenda for a number of years and has become even more pressing with the rapid industrialization taking place in China and India. This book looks at the effects of climate change throughout different regions of the world and discusses to what extent cleantech and environmental initiatives such as the destruction of fluorinated greenhouse gases, biofuels, and the role of plant breeding and biotechnology. The book concludes with an insight into the socio-religious impact that global warming has, citing Christianity and Islam

    Best Available Techniques (BAT) Reference Document for Large Combustion Plants. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)

    Get PDF
    The BAT Reference Document (BREF) for Large Combustion Plants is part of a series of documents presenting the results of an exchange of information between the EU Member States, the industries concerned, non-governmental organisations promoting environmental protection, and the Commission, to draw up, review, and -where necessary- update BAT reference documents as required by Article 13(1) of Directive 2010/75/EU on Industrial Emissions. This document is published by the European Commission pursuant to Article 13(6) of the Directive. This BREF for Large Combustion Plants concerns the following activities specified in Annex I to Directive 2010/75/EU: - 1.1: Combustion of fuels in installations with a total rated thermal input of 50 MW or more, only when this activity takes place in combustion plants with a total rated thermal input of 50 MW or more. - 1.4: Gasification of coal or other fuels in installations with a total rated thermal input of 20 MW or more, only when this activity is directly associated to a combustion plant. - 5.2: Disposal or recovery of waste in waste co-incineration plants for non-hazardous waste with a capacity exceeding 3 tonnes per hour or for hazardous waste with a capacity exceeding 10 tonnes per day, only when this activity takes place in combustion plants covered under 1.1 above. In particular, this document covers upstream and downstream activities directly associated with the aforementioned activities including the emission prevention and control techniques applied. The fuels considered in this document are any solid, liquid and/or gaseous combustible material including: - solid fuels (e.g. coal, lignite, peat); - biomass (as defined in Article 3(31) of Directive 2010/75/EU); - liquid fuels (e.g. heavy fuel oil and gas oil); - gaseous fuels (e.g. natural gas, hydrogen-containing gas and syngas); - industry-specific fuels (e.g. by-products from the chemical and iron and steel industries); - waste except mixed municipal waste as defined in Article 3(39) and except other waste listed in Article 42(2)(a)(ii) and (iii) of Directive 2010/75/EU. Important issues for the implementation of Directive 2010/75/EU in the Large Combustion Plants sector are the emissions to air of nitrogen oxides, sulphur dioxide, hydrogen chloride and fluoride, organic compounds, dust, and metals including mercury; emissions to water resulting especially from the use of wet abatement techniques for the removal of sulphur dioxide from the flue gases; resource efficiency and especially energy efficiency. This BREF contains 12 Chapters. Chapters 1 and 2 provide general information on the Large Combustion Plants industrial sector and on the industrial processes used within this sector. Chapter 3 provides data and general information concerning the environmental performance of installations within the sector in terms of water consumption, the generation of waste and general techniques used within this sector. It also describes in more detail the general techniques to prevent or, where this is not practicable, to reduce the environmental impact of installations in this sector that were considered in determining the BAT. Chapters 4 to 9 provide the following information given below on specific combustion processes (gasification, combustion of solid fuel, combustion of liquid fuel, combustion of gaseous fuel, multi-fuel combustion and waste co-incineration). Chapter 10 presents the BAT conclusions as defined in Article 3(12) of the Directive. Chapter 11 presents information on 'emerging techniques' as defined in Article 3(14) of the Directive. Concluding remarks and recommendations for future work are presented in Chapter 12.JRC.B.5-Circular Economy and Industrial Leadershi

    Institute of Chemical Engineering Conference on Gasification Technology in Practice 1997

    Get PDF

    Energy: A continuing bibliography with indexes, issue 17

    Get PDF
    This bibliography lists 1292 reports, articles, and other documents introduced into the NASA scientific and technical information system from January 1, 1978 through March 31, 1978

    CPM LCA Database – Life Cycle Inventory Datasets

    Get PDF
    This report contains all 748 complete LCI datasets in the CPM LCA Database as published in 2020-11-20. Contents:Table 1 (pp 3-23) lists all LCI process names in alphabetical order.Table 2 (pp 24-2543) lists all complete LCI datasets in alphabetical order.For information about the database please refer to the Swedish Life Cycle Center, lifecyclecenter.se

    Hydrogen Research at Florida Universities

    Get PDF
    This final report describes the R&D activities and projects conducted for NASA under the 6-year NASA Hydrogen Research at Florida Universities grant program. Contained within this report are summaries of the overall activities, one-page description of all the reports funded under this program and all of the individual reports from each of the 29 projects supported by the effort. The R&D activities cover hydrogen technologies related to production, cryogenics, sensors, storage, separation processes, fuel cells, resource assessments and education. In the span of 6 years, the NASA Hydrogen Research at Florida Universities program funded a total of 44 individual university projects, and employed more than 100 faculty and over 100 graduate research students in the six participating universities. Researchers involved in this program have filed more than 20 patents in all hydrogen technology areas and put out over 220 technical publications in the last 2 years alone. This 6 year hydrogen research program was conducted by a consortium of six Florida universities: Florida International University (FIU) in Miami, Florida State University (FSU) and Florida A&M University (FAMU) in Tallahassee, University of Central Florida (UCF) in Orlando, University of South Florida (USF) in Tampa, and University of Florida (UF) in Gainesville. The Florida Solar Energy Center (FSEC) of the University of Central Florida managed the research activities of all consortium member universities except those at the University of Florida. This report does not include any of the programs or activities conducted at the University of Florida, but can be found in NASA/CR-2008-215440-PART 1-3
    corecore