4 research outputs found

    Unambiguous Languages Exhaust the Index Hierarchy

    Get PDF
    This work is a study of the expressive power of unambiguity in the case of automata over infinite trees. An automaton is called unambiguous if it has at most one accepting run on every input, the language of such an automaton is called an unambiguous language. It is known that not every regular language of infinite trees is unambiguous. Except that, very little is known about which regular tree languages are unambiguous. This paper answers the question whether unambiguous languages are of bounded complexity among all regular tree languages. The notion of complexity is the canonical one, called the (parity or Rabin/Mostowski) index hierarchy. The answer is negative, as exhibited by a family of examples of unambiguous languages the cannot be recognised by any alternating parity tree automata of bounded range of priorities. Hardness of the examples is based on the theory of signatures, previously studied by Walukiewicz. The technical core of the article is a definition of the canonical signatures together with a parity game that compares signatures of a given pair of parity games (of the same index)

    The Containment Problem for Unambiguous Register Automata

    Get PDF
    We investigate the complexity of the containment problem "Does L(A)subseteq L(B) hold?", where B is an unambiguous register automaton and A is an arbitrary register automaton. We prove that the problem is decidable and give upper bounds on the computational complexity in the general case, and when B is restricted to have a fixed number of registers

    Ambiguity Hierarchy of Regular Infinite Tree Languages

    Get PDF
    An automaton is unambiguous if for every input it has at most one accepting computation. An automaton is k-ambiguous (for k > 0) if for every input it has at most k accepting computations. An automaton is boundedly ambiguous if it is k-ambiguous for some k∈Nk \in \mathbb{N}. An automaton is finitely (respectively, countably) ambiguous if for every input it has at most finitely (respectively, countably) many accepting computations. The degree of ambiguity of a regular language is defined in a natural way. A language is k-ambiguous (respectively, boundedly, finitely, countably ambiguous) if it is accepted by a k-ambiguous (respectively, boundedly, finitely, countably ambiguous) automaton. Over finite words every regular language is accepted by a deterministic automaton. Over finite trees every regular language is accepted by an unambiguous automaton. Over ω\omega-words every regular language is accepted by an unambiguous B\"uchi automaton and by a deterministic parity automaton. Over infinite trees Carayol et al. showed that there are ambiguous languages. We show that over infinite trees there is a hierarchy of degrees of ambiguity: For every k > 1 there are k-ambiguous languages that are not k - 1 ambiguous; and there are finitely (respectively countably, uncountably) ambiguous languages that are not boundedly (respectively finitely, countably) ambiguous

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    corecore